Test problems

Tests were done with success for approx. 100 problems, including the stiff ODEs from the stiff classification provided by Enright, W.H., Hull T.E., Lindberg B., BIT, 1975,cite from Hairer E., Wanner G., Solving ODEs I. and II.; and other sources;

The most popular classification of the stiff systems is due to Enright:

For proving the efficiency of a new method designed for stiff problems, the method must integrate with success all the stiff systems from STIFF-DETEST package.

In the next Tables we present the classical stiff systems. Note S the ratio between the maximum and minimum absolute eigenvalues evaluated at the starting point. The second notation correspond to that of STIFF-DETEST package.

Class A:

No. System T y(0) S
S1 (A1) y1'=-0.5y1, y2'=-y2, y3'=-100y3, y4'=-90y4 20 1, 1, 1, 1 2 x 102
S2 y'1=998y1+1998y2, y2'=-999y1-1999y2 100 1, 0 103
S3 y1'=-106y1+0.075y2, y2'=7500y1-0.075y2 10 1, -1 7.4 x 104
S4 (A2) y1'=-1800y1+900y2, yi'=yi-1-2yi+yi+1, i=2, ..., 8, y9'=1000y8-2000y9+10000 120 0, ... , 0 2 x 104
S5 (A3) y1'=-104y1+100y2-10y3+y4, y2'=-103y2+10y3-10y4, y3'=-y3+10y4, y4'=-0.1y4 20 1, 1, 1, 1 105
S6 (A4) yi'=-i5yi, i=1, ..., 10 1 1, ..., 1 105
S7 y1'=-k1y1+k2y3, y2'=-k4y2+k3y3, y3'=k1y1+k4y2-(k2+k3)y3, k1=8.43 x 10-10, k2=2.9 x 1011, k3=2.46 x 1010, k4=8.76 x 10-6 8 x 105 0, 1, 0 3.146 x 1011

Class B:

No. System T y(0) S
S8 (B1) y1'=-y1+y2, y2'=-100y1-y2, y3'=-100y3+y4, y4'=-10000y3-100y4 20 1, 0, 1, 0 102
S9, (B2-B5) y1'=-10y1+a y2, y2'=-a y1-10y2, y3'=-4y3, y4'=-y4, y5'=-0.5y5, y6'=-0.1y6a=3, 8, 25, 100 20 0, 1, 1, 1, 1, 1 102

Stiff perturbated linear systems from Classes A and B.

No. System T y(0) S
S10 y'=-200(y-E)+E', E(t)=10-(10+t)e-t 100 10 2 x 102
S11 y'=ay+adedt, a=10-4, d=i in C-R 100 y0 103
S12 y1'=-6y1+5y2+2 sin t, y2'=94y1-95y2 100 0, 0 103
S13y1'=-4498y1-5996y2+0.006-t, y2'=2248.5y1+2997y2-0.503+3t 25 25498/ 1500, -16499/ 1500
1.5 x 103
S14 y1'=-2000y1+1000y2+1, y2'=y1-y2 1000, 04 x 103
S15 y'=UBUy+UD, uii=-1/ 3 , uij=2/ 3, i# j, B=[(-100, 1000, 0), (-1000, -100, 0), (0, 0, -0.1)], D=(0, 0, 0, 1)T 100-1/ 3, 2/ 3, 2/ 3103
S16 y'=UBUTy+Uf(t), uii=-1/ 2, uij=1/ 2, i# j, B=[(0, 1, 0, 0), (-1, 0, 0, 0), (0, 0, -100, -900), (0, 0, 900, -100)], f(t)=(t2+2t, t2-2t, -800t+1, -1000t-1)T11, 0, 0, 1102

Stiff linear systems with variable coefficients from Class A.

No. System T y(0) S
S17 y1'=-(80+{1 / 3}(1+t)-1)y1 -(40-{2 / 5}(1+t)-1)y2, y2'=-(40-{2 / 5}(1+t)-1)y1-(20+{4 / 5}(1+t)-1)y2 100 0, 1 102
S18, (D1) y1'=0.2(y2-y1), y2'=10y1-(60-0.125t)y2+0.125t 400 0, 03.53 x 102

Stiff nonlinear systems from Class C.

No. System T y(0) S
S19, (C1) y1'=-y1+y22+y32+y42, y2'=-10y2+10(y32+y42), y3'=-40y3+40y42, y4'=-100y4+2201, 1, 1, 1 102
S20, (C2) y1'=-y1+2, y2'=-10y2+0.1y12, y3'=-40y3+4(y12+y22), y4'=-100y4+y12+y22+y32201, 1, 1, 1102

Stiff nonlinear systems from Class D.

No. System T y(0) S
S21, yi'=-biyi+yi2, (bi)i=1,...,4=(1000, 800, -10, 0.001)T20-1, -1, -1, -1106
S22, (D2)y1'=-0.04y1+0.01y2y3, y2'=400y1-100y2y3-3000y22, y3'=30y22401, 0, 0105
S23, y1'=-0.04y1+104y2y3, y2'=0.04y1-104y2y3-3 x 107y22, y3'=3 x 107y22401, 0, 0105
S24, (D3)y1'=y3-100y1y2, y2'=y3+2y4-100y1y2-2 x 104y22, y3'=-y3+100y1y2, y4'=-y4+104y22201, 1, 0, 04 x 102
S25, (D4)y1'=-0.013y1-1000y1y3, y2'=-2500y2y3, y3'=-0.013y1-1000y1y3-2500y2y3501, 1, 03 x 105
S26, (D5)y1'=0.01-(0.01+y1+y2) x , x (y12+1001y1+1001), y2'=0.01-(0.01+y1+y2)(1+y22)1000, 0106
S27, (D6)y1'=-y1+108y3(1-y1), y2'=-10y2+3 x 107y3(1-y2), y3'=-y1'-y2'11, 0, 03 x 107

Stiff nonlinear systems from Class E.

No. System T y(0) S
S28, (E2) y1'=y2, y2'=5(1-y12)y2-y112, 05.2 x 106
S29, (E3)y1'=-(55+y3)y1+65y2, y2'=0.0785(y1-y2), y3'=0.1y15001, 1, 0104
S30, (E4)y'=-By+UT(z12/2-z22/2, z1z2, z32, z42]T , z=Uy, , B=U[(b1, -b2, 0, 0), (b2, b1, 0, 0), (0, 0, b3, 0), (0, 0, 0, b4)]U, uij=1/ 2, i# j, uii=-1/ 2, , b1=-b2=-10, , b3=1000, b4=0.0110, -2, -1, -1106
S31, (E5)y1'=-7.89 x 10-10y1-1.1 x 107 y1y3, y2'=7.89 x 10-10y1-1.13 x 109y2y3, y3'=7.89 x 10-10y1-1.1 x 107y1y3+1.13 x 103 y4-1.13 x 105 y2y3, y4'=1.1 x 107y1y3-1.13 x 103y410000.002, 0, 0, 02.7 x 107
S32, y1'=104y1y3+104y2y4, y2'=-104y1y4+104y2y3, y3'=1-y3, y4'=-y4-0.5y3+0.5101, 1, -1, 0104

Some stiff nonlinear systems which model real systems.

No. System T y(0)
S33y1'=-104y1+y24-2y32-y42-y5, y2'=-1/ 2y2+y1-y32, y3'=-0.01y22, y4'=-y3+y13-y53, y5'=-y1-y3y411, 10, 1, 1, 1
S34y1'=-y1-y1y2+e ky2, e y2'=y1-y1y2-e ky2, e=98, k=31001, 1
S35 y1'=y2, y2'=((1-y12)|1-y12|1/2y2-y1)/e, e=10-6112, 0
S36y1'=-(b+ai)y1+by2i, y2'=y1-ay2-y2i, , a=0.1, c=1, b=102, i=410ci, c
S37y1'=250[(-0.0048(y3-660.2)-, -0.032(y5-273.9)-1)y1+y2], y2'=0.1(y1-y2), y3'=93y1-0.26(y3-y4), y4'=0.87(y3-y4)-11(y4-y5), y5'=1.8(y4-y5)-13(y5-270)11, 1, 660.2, 302.2, 273.9
S38y1'=100y1/y2(y3-y1), y2'=-100(y3-y1), y3'=1/y4 [0.9-1000(y3-y5)-100y3(y3-y1)], y4'=100(y3-y1), y5'=-100(y5-y3), , a=0.99026, 0.99, 0.911, 1, 1, -10, a

Other stiff nonlinear systems which model real systems.

No. System T y(0)
S39y1'=77.27[y2+y1(1-8.375 x 10-6y1-y2)], y2'=[y3-(1+y1)y2]/77.27, y3'=0.161(y1-y3)3003, 1, 2
S40y1'=-1.71y1+0.43y2+8.32y3+7 x 10-4, y2'=1.71y1-8.75y2, y3'=-10.03y3+0.43y4+0.035y5, y4'=8.32y2+1.71y3-1.12y4, y5'=-1.745y5+0.43y6+0.43y7, y6'=-280y6y8+0.69y4+1.71y5-0.43y6+0.69y7, y7'=280y6y8-1.81y7, y8'=-y7'4001, 0, 0, 0, 0, 0, 0, 0.0057
S41y'1=-(2+e-1)y1+e-1y22, y2'=y1-y2(1+y2), e=10-841, 1
S42y1'=-k1y1-k2y1y2, y2'=k1y1+k3y3-k4y2y4-2k5y22, y3'=k2y1y2-k3y3, y4'=-k4y2y4, , k1=10-4, k2=2.9 x 104, k3=5 x 103, k4=104, k5=6.7 x 1010200.6, 0, 0, 0.4
S43y1'=1.30(y3-y1)+2.13 x 106k(y1)y2, y2'=1.80 x 103 [y4-y2(1+k(y1))], y3'=1752-269y3+267y1, y4'=0.1+320y2-321y4, k(y1)=0.006 x e20.7-15000/y11761, 0, 600, 0.1