
7 Probabilistic Encryption

[References to “the paper” in this section are to “Probabilistic Encryption,”
in Journal of Computer & System Sciences 28, pp. 270–299. I have also used
Primality and Cryptography, by E. Kranakis]

So far, the public key systems have been functions f such that the message
M presumably cannot be computed from the encoding f(M). A further
concern arises as to whether, even if the adversary cannot identify M exactly,
he may be able to obtain some partial information about M , for example tell
whether M is an even number, a square, a power of 2, etc.

An extreme case of this would be a scenario in which the adversary knows
the message is one of two possibilities, M1 or M2. Since we have been as-
suming that the function f is easy to calculate, all the adversary needs to do
is compare f(M1) and f(M2) with the ciphertext.

Probabilistic encryption is a system designed to avoid these problems.
Instead of f(M) being a single number, the calculation of f(M) involves the
sender doing some things randomly during the calculation, so that M has
many different encryptions. Indeed, the probability should be very close to
1 that if the same message is sent twice, the encryptions should be different.

7.1 The Goldwasser-Micali encryption system

As in many previously discussed systems, the person receiving messages
chooses two primes (∼ 100 digits) p, q and announces n = pq. This sys-
tem is concerned with whether, for a given number a, there is x with x2 ≡
a (mod n). Such a are called squares or (in most books and papers) quadratic
residues. For technical reasons, when we refer to squares mod n, we will ex-
clude a which are divisible by p or q. The following facts are easy to prove,
in some cases using primitive roots.

Lemma 20 If a, b are squares, then ab is a square. If a is a square and b is
not a square, then ab is not a square.

Lemma 21 a is a square mod n if and only if it is a square mod p and a
square mod q.

Lemma 22 Let h = p−1
2

. If a is a square mod p, ah ≡ 1 (mod p). If a is
not a square, ah ≡ −1.

32

This implies that, if p and q are known, it is easy to decide whether a is a
square. The encryption system depends on the assumption (called QRA in
the paper [p. 294]) that this problem is very difficult if p, q are unknown.

Lemma 23 1/2 of the numbers from 1 to p − 1 are squares mod p. Take
the numbers from 1 to n and leave out those divisible by p or by q. Divide
the remaining (p− 1)(q − 1) numbers into four groups according to whether
they are squares or not mod p and also mod q. There are (p − 1)(q − 1)/4
numbers in each group.

The numbers which are not squares mod p and also not squares mod q
are called pseudo-squares. Example: If p = 5, q = 7, the squares mod 35
are 1, 4, 9, 16, 29, 11 (29 ≡ 82, 11 ≡ 92; note we don’t include 25 and 14,
because they’re divisible by p, q). The pseudo-squares must be congruent to
2 or 3 mod 5 and to 3, 5, or 6 mod 7. Thus the pseudo-squares are 17, 12,
27, 3, 33, 13.

The encryption system is primarily concerned with the union of the set
of squares and pseudo-squares— this set is unfortunately denoted both by
Z1

n (p. 291) and by Z+1
n . Since exactly half the members of Z1

n are squares,
the crude idea of saying “this is a square” all the time will only be right half
the time. (QRA) says that no algorithm that runs in a reasonable amount of
time can do much better than this. [the precise definitions of “reasonable”
and “much better” are what require the concepts of circuits of size k and
“ε-approximating”]

In addition to announcing n, the person receiving messages announces
one pseudo-square y. To send a sequence of 0’s and 1’s, the sender converts
them into numbers as follows: for each number in the sequence, an x is chosen
at random. 0 is converted into x2 mod n, 1 is converted into yx2. Each 0 or
1 in the sequence can be converted (depending on the choice of x) into one
of (p− 1)(q − 1)/4 different numbers. If the message is of length 500 (about
one line of ordinary text), and p, q ≈ 10100, the message can be encoded into
(1/4)10100000 different possible ciphertexts.

By Lemma 20, 0’s are converted to squares, 1’s are converted to pseudo-
squares. Since the receiver knows p, q, Lemmas 21 and 22 show he can
efficiently decode the message.

In the subsequent sections, we will give the essential ideas of Goldwasser
& Micali’s proof that (assuming QRA) this system will prevent the adversary
from obtaining any partial information about the plaintext.

33

7.2 Weak laws of large numbers

Both the encryption algorithm and the hypothetical algorithms used by the
adversary involve random events. We will need a theorem that says that, if
an event with probability p is tried r times, the chance that the number of
successes is not close to pr is small. The paper uses7 (p. 293)

Lemma 24 Let Sr be the number of successes in r tries. For any ψ

Pr
(∣∣∣∣

Sr

r
− p

∣∣∣∣ > ψ
)

<
1

4rψ2

Proof: Sr is a random variable, which is the sum of r independent ran-
dom variables, each having value 0 or 1. Let V be the variance of Sr. Each
of the 0–1 variables has variance ≤ 1/4, so

r2ψ2 Pr(|Sr − rp| > rψ) < V ≤ r

4

Lemma 24 provides a very rough estimate of the probability. An improve-
ment requiring much more work is:

Lemma 25 With the same notation as Lemma 24,

Pr
(

Sr

r
≥ p + ψ

)

≤ 1√
2πr(p + ψ)(1− p− ψ)

(
(1− p)(p + ψ)

ψ

)
exp

(
− rψ2(1 + ψ)

2(1− p)(p + ψ)

)
(∗)

For comparison, if p = .5, r = 1000, the probability that there are ≥ 520
successes is .1087. Lemma 24 gives8 an upper limit of .3125, while Lemma 25
gives .1498. (these figures courtesy of Mathematica)

One reason the paper does not use Lemma 25 is that it does not give
a simple formula for how large r would have to be in terms of the other
quantities. We will not use this result later, and you should skip to section 7.3
unless you like to manipulate formulas.

7The usual central limit theorem cannot be used because it does not tell you how large
r must be for the normal distribution to give a good estimate.

8We divide by 2 to eliminate the probability of ≤ 480.

34

Proof: We will assume pr + rψ is integer. From the binomial theorem:

Pr(Sr ≥ rp + rψ) =
∑

i≥pr+rψ

(
r
i

)
pi(1− p)r−i

≤
(

r
pr + rψ

)
ppr+rψ(1− p)r−pr−rψ(1 + α + α2 + . . .)

where α =
p(r − pr − rψ)

(1− p)(pr + rψ + 1)

p + ψ ≤ 1 implies p− pψ − p2 > 0 and

∑
αi =

1

1− α
=

(1− p)(pr + rψ + 1)

rψ + 1− p
≤ (1− p)(p + ψ)

ψ

which gives the second factor of (∗). We use Stirling’s formula on the binomial
coefficient and group it with the powers of p and 1− p to obtain:


 1√

2πr(p + ψ)(1− p− ψ)




(
p

p + ψ

)pr+rψ (
1− p

1− p− ψ

)r−pr−ψr

(∗∗)

The first factor of (∗∗) is the first factor of (∗). We obtain upper bounds on
the rest of (∗∗), using

−A− A2

2(1− A)
≤ ln(1− A) ≤ −A− A2

2

(the lower bound on ln(1− A) involves a geometric series)

(pr + rψ) ln

(
1− ψ

p + ψ

)
≤ −rψ − rψ2

2(p + ψ)

(pr + ψr − r) ln

(
1− ψ

1− p

)
≤ (r − pr − rψ)ψ

1− p
+

(r − pr − rψ)ψ2(1− p)

2(1− p)2(1− p− ψ)

= rψ − ψ2r

1− p

(
−1 +

1

2

)

Adding these and using exp gives the remaining factor of (∗).

35

7.3 The magic of sampling

We have 106 envelopes. Inside each envelope is a piece of paper with 0 or
1 written on it. If we want to know exactly how many envelopes have each
number, we have to open them all. Suppose we want to estimate the fraction
of the envelopes of each kind, and we want the proportion to be accurate to
within .05. Now we need only open 9(105) envelopes.

The situation changes dramatically if we only want to estimate the pro-
portion with high probability. If we are willing to accept a .01 probability of
an error > .05, Lemma 24 implies we only need to open a randomly chosen
sample of 104 envelopes9.

The special feature of problems involving squares and pseudo-squares is
that sampling is possible. We saw in our discussion of the Rabin system that
every number mod n has four square roots. Thus if we choose one of the
(p − 1)(q − 1) numbers x not divisible10 by p or q and compute x2 mod n,
each square has a (p−1)(q−1)/4 chance of being chosen. It is also important
that it is possible to sample from Z1

n (the set of squares and pseudo-squares)
even if p, q are not known.

Lemma 26 There is an efficient algorithm for deciding if a ∈ Z1
n.

The proof of this is difficult, involving “quadratic reciprocity” and the “Jacobi
symbol.” The algorithm itself is not that complicated, and is given in the
RSA paper.

Given this lemma, we can sample in Z1
n by choosing x at random and

testing if it is in the set. If not, another x is chosen. Since roughly half of
1 ≤ x ≤ n is in Z1

n, this won’t take too long.

The different sampling possibilities we have discussed so far have all as-
sumed that only n was known. If we are given a single pseudo-square y,
we can sample among all pseudo-squares by calculating yx2 for x randomly
chosen.

The possibility of doing these various kinds of sampling is closely related
to properties 2(a) and (c) in the paper (p. 277).

9Lemma 25 and Mathmatica suggest 400 envelopes are enough.
10Even though p, q are unknown, the gcd of x, n can be computed.

36

7.4 Determining algorithm performance by sampling

We are interested in algorithms for deciding whether a given number is or is
not a square. As with the algorithm in Section 6, there is some probability
that, for a given input a, the algorithm may give the wrong answer.

Let pa be the probability that a given algorithm gives the correct answer
for input a. We are also interested in pS, which is the average of pa over all
squares a, and pPS, the average over all pseudo-squares, and pZ , the average
of pa over all a ∈ Z1

n.

If we are given an algorithm, we can easily determine pS by running it
with input a = x2 on a sample of randomly chosen x and counting the number
of times the algorithm answers “this is a square.”

The procedure for determining pZ is more elaborate. Suppose we have
an algorithm for which pS = .6. Using Lemma 26, generate a sample of 100
members of Z1

n, and run the algorithm on each of them. Suppose we get the
answer “this is a square” 65 times. There are ∼ 50 squares in the sample,
on which there have been .6(50) correct responses and 20 incorrect. Pseudo-
squares have been identified as squares 65 − 30 = 35 times, which suggests
pPS ≈ 15/50. Finally pZ = (pS + pPS)/2 ≈ .45.

Lemma 24 or 25 can be used to determine the probability that these
estimates come within a specified amount.

7.5 Two versions of QRA

1. There is no efficient algorithm for distinguishing squares from pseudo-
squares with pa > 1− ε for all a ∈ Z1

n.

2. There is no efficient algorithm with pZ > .5 + ε

It would seem that (1) is not as strong as (2). Note that (2) would rule
out an algorithm with pS = .9 and pPS = .2. This would be something that
says “this is a square” most of the time, occasionally correctly identifying a
pseudo-square. However, the paper (p. 293) shows that (1) implies (2).

Suppose we are given an algorithm. We estimate pS, pPS, pZ with high
probability using the techniques in Section 7.4. To take a specific example,
we will assume we find pS = .6, pPS = .45. We want to test whether a is
a square. Run the algorithm on ax2 for 1000 randomly chosen x. If a is

37

a square, the algorithm will say “this is a square” ≈ 600 times. If a is a
pseudo-square, the answer will be “this is a square” ≈ 550 times.

7.6 Knowing a pseudo-square does not help much

QRA talks about the ability to identify squares when only n is known. In
the proposed encryption system, a pseudo-square y is also announced. The
paper shows (p. 295) that this does not make the problem easier.

Suppose we have an algorithm which takes as input a, y and tries to decide
if a is a square. Assume pZ = .55 whenever y is a pseudo-square. Choose
y ∈ Z1

n at random, then use the techniques from Section 7.4 to estimate pZ .
Since half the numbers in Z1

n are pseudo-squares, you will quickly find a y
for which pZ = .55.

7.7 The inability to distinguish two plaintexts

Theorem 5.1 of the paper addresses the issue we mentioned at the beginning
of section 7. It shows that if we have an algorithm which can identify mes-
sages m1 and m2 and efficiently tell the difference between an encryption of
m1 and an encryption of m2, then we could construct an algorithm which
efficiently distinguishes squares from pseudo-squares. Thus (QRA) implies
we cannot tell the difference between m1 and m2.

Proof:11 Suppose we are trying to decide whether a ∈ Z1
n is a square and

that the two distinguishable messages are

m1 = 01001011

m2 = 11101101

Choose 8 xi randomly and consider the sequences

x2
1 ax2

2 x2
3 x2

4 ax2
5 x2

6 ax2
7 ax2

8

ax2
1 ax2

2 ax2
3 x2

4 ax2
5 ax2

6 x2
7 ax2

8

If a is a pseudo-square, these will be randomly chosen encodings of m1 and
m2. In this case, the performance of our assumed algorithm on the two

11The argument we give is a simplification of the one in the paper, in that we do not use
the “sampling walk.” The more complicated argument seems to be necessary to analyze
encryption systems in general, as opposed to those based on squares and pseudo-squares.

38

sequences (averaged over repeated random choices of xi) will be different.
If a is a square, both sequences will be randomly chosen encodings of the
message consisting of all 0’s, so the algorithm’s response on average to the
two sequences will be identical.

7.8 Semantic Security

Theorem 5.2 of the paper shows that there is no property of the plaintext
message which can be efficiently estimated by looking at the ciphertext. Typ-
ical properties might be “the last bit of the plaintext is 0” or “the number of
1’s is twice as much as the number of 0’s.” In general, a property is defined
in the paper as the value of a function f(m) which takes a message as input
and gives a number as output. If f(m) is constant for all m, prediction of
f(m) is trivial. Similarly, if f(m) is almost constant for almost all m, there
is a simple algorithm which will be close to right with high prob

We wish to show that, except in the special cases we’ve mentioned, there
is no efficient algorithm which will predict f(m) from the ciphertext for m.
If there were, we could run our algorithm to estimate f(m) on the ciphertext
from randomly generated m until we found m1, m2 on which the algorithm
behaved differently. But this would contradict the result of the previous
section.

[The paper points out that it is not assumed that f(m) is an easily com-
putable function. I think this is a minor issue. The theorem really discusses
the capabilities of a an easily computable program for estimating f .]

7.9 How to play poker over the telephone

We will not analyze an entire game of poker, but just the task of each player
[we will assume only two players] getting dealt cards so that (i) each player
gets his cards at random, with all cards equally likely (ii) neither player
knows what his opponent has (iii) the players cannot get the same cards.
You will probably appreciate the procedure more if you first try to devise a
way of doing this yourself.

Several previous attempts to use cryptographic devices for this purpose
were flawed12. The elaborate procedure we describe is based on some number-

12R. Lipton, “How to cheat at mental poker,” Proceedings of AMS Short Course on
Cryptography

39

theory tools developed in section 3.3 and earlier in this section:

1. If n = pq and a is a square mod n, it has four square roots. If we know
roots r1, r2 with r1 6≡ ±r2, we can find p, q.

2. If p ≡ 3 (mod 4), a is a square mod p if and only if −a is not a square
(Lemma 22). If we also have q ≡ 3 (mod 4), then a ∈ Z1

n if and only if
−a ∈ Z1

n.

3. We can test whether or not a ∈ Z1
n without knowing p, q.

Two techniques are used repeatedly. They are also of interest in other
applications.

Theorem 27 (random numbers) B can generate a random number so
that A does not know its value now, but can verify it later.

A “first try” might be for B to generate a random number and give an
encryption of it to A, with the key revealed for verification later. This does
not work, since A cannot be sure that B chose his number at random.

To insure randomness, A gives B a second number (which A is supposed
to choose at random) after receiving B’s encryption, and the number used
by B is the “exclusive or” of the two:

A chooses 0110001
B chooses 1011011

B uses 1101010

Even if one of the players does not choose his number at random, the result
will be random as long as the other player does.

Theorem 28 B can ask A a question related to n. The answer to this ques-
tion may or may not allow B to factor n. At the time the question is asked,
A cannot tell whether the answer he gives B is useful or useless, but this can
be verified later.

Proof: A chooses primes p, q ≡ 3 (mod 4), and announces n = pq. Using
the technique of Theorem 27, B generates a random x, and will ask A for a
square root of a ≡ x2. At the time the question is asked, A will know a but
not x. B is allowed to specify whether the square root A gives him is or is
not in Z1

n.

40

If x ∈ Z1
n and B specifies that the square root is in Z1

n, A will give B ±x,
which is useless. B can get useful information by specifying that the square
root is not in Z1

n. If x 6∈ Z1
n, the square root in Z1

n will be useful, and the
other will be useless.

Since x is randomly chosen, and half the possible x are in Z1
n and half are

not, A will not be able to guess right more than half the time whether he is
being asked for useful or useless information.

The procedure

1. A announces n1, . . . n52, each of which is a product of two large primes≡
3 (mod 4). He encodes the names of the different cards using different
ni and also announces these. [if B finds the factors of one of the ni,
it does not help him identify the other cards] B does the same thing
using m1, . . . m52.

2. To get a card, B asks A one question for each ni, using the procedure
of Theorem 28. 51 of the questions will be useless. The useful question
allows B to decode the name of the card he receives. [it is crucial that
A will be able to verify the uselessness of the other 51 questions after
the game.]

3. B deletes the mi corresponding to the card he received (this ensures A
will not get this card).

4. A gets a card by asking 51 questions about the remaining mi, of which
50 are useless. He deletes the ni corresponding to this card.

5. If B gets a second card, he asks 51 questions. He avoids getting the
same card twice by not asking a useful question about the same ni as
the first time.

This procedure is too cumbersome to be practical, but it is a good example
of the kinds of things that can be done using cryptographic procedures.
Current research focusses on other tasks involving exchanges of encrypted
and partially encrypted information between two players.

41

8 Pseudo-random number generators

[This section is based on Blum, Blum, & Shub, “A simple unpredictable
pseudo-random number generator,” SIAM J. Computing 15, 364–383.]

Many programs (e. g., simulations, one-time-pads) make use of numbers
that are supposed to be random. A genuine source of randomness might be
a subroutine that made calls on something like a built-in Geiger counter.
We will be concerned with algorithms that produce a sequence of numbers
(usually 0’s and 1’s) which appears random (precise definition will be given
later).

A typical example of such an algorithm is the function rand() in the C
programming language. Each call updates an internally maintained N using
the formula

N = N ∗ 1103515245 + 12345 mod 4294967296 = 232

with the output given by 2−16N mod 215.

I recently wrote a program to roll dice which involved using rand() mod 6.
In over 100 calls, it never happened that the same number occurred on two
consecutive rolls, even though this should have happened about 1/6(100)
times! This suggests this particular generator has some problems.13

In this section, we will present random number generators for which it
can be proved (given assumptions like (QRA)) that such problems will not
occur.

8.1 The Quadratic Generator

Let n = pq, where p, q are primes ≡ 3 (mod 4). For each prime, a is a
square if and only if −a is not a square (Lemma 22). This implies that, if
x ≡ ±a1 (mod p) and x ≡ ±a2 (mod q), there will be exactly one choice
which makes x a square mod n. Hence, if b is a square mod n, exactly one
of its four square roots will also be a square. This principal square root will
be denoted by

√
b.

13Knuth suggests that a better way to obtain a random number between 0 and k− 1 is
to use k rand()/M , where M is the maximum value of rand().

42

The quadratic generator uses a randomly chosen square x (called the
seed) not divisible by p or q to generate a sequence of 0’s and 1’s (bits). The
sequence is ai mod 2, where a0 = x and ai+1 ≡ √

ai (mod n):

x mod 2
√

x mod 2
√√

x mod 2 . . .

(from a practical point of view, it is simpler to generate the sequence starting
with the last number and squaring)

As a small example with n = 589 = 19(31) and x = 81, the sequence of
ai is

81 9 586 175 112 443 214 237 . . .

(note that
√

9 = −3, not 3) which gives the sequence of bits 11010101.

8.2 The Next Bit Theorem

It would certainly be undesirable if there were an efficient algorithm which
took as input the first k bits of the sequence from the generator and guessed
the (k+1)-st bit with probability much greater than 1/2. We say a generator
satisfies the Next Bit Condition if there is no such algorithm.

Theorem 29 If (QRA) is true, the quadratic generator satisfies the Next
Bit Condition.

Proof: We will show that an algorithm that could predict the (k + 1)-st bit
could be used to distinguish squares from pseudo-squares mod n.

Let b ∈ Z1
n. The sequence of length k

b2k

b2k−1

. . . b4 b2

can be considered as coming from the quadratic generator with seed the first
term of the sequence. If we take this sequence mod 2 and give it to our
predictor, we would get a guess as to whether

√
b2 ≡ 0 or 1 (mod 2)

which has probability > 1/2 of being right. The principle square root of b2

is b if b is a square, n− b if b is a pseudo-square. Since b 6≡ n− b mod 2, the
information from the predictor gives us a guess as to whether b is a square.

43

8.3 The Efficient Test Theorem

When we are given a sequence of bits from a pseudo-random number gener-
ator, we often test the quality of the generator by doing things like counting
the fraction of 0’s, the fraction of subsequences of the form 111, etc.

A test is defined to be an efficiently computable function T which takes
as input a sequence of bits of length m and gives as output a number between
0 and 1. Define

Ar = Average over all sequences s {T (s)}
Ag = Average over s from the generator {T (s)}

These averages both involve finite operations— Ar involves adding up T (s)
over the 2m possible s and dividing. Similarly Ag deals with an average over
all possible seeds (presumably the number of possible seeds is much less than
2m).

It would take too much time to calculate Ar, Ag exactly, but they can be
estimated with high probability using the sampling ideas in section 7.3.

A generator is said to satisfy the test T if Ag is close to Ar, i. e., T cannot
tell the difference between sequences from the generator and genuinely ran-
dom sequences. [we are being deliberately vague about the precise definition
of “close.”]

Theorem 30 If a generator satisfies the Next Bit Condition, it satisfies all
efficiently computable tests T .

Proof: We will show that, if we had T with Ar significantly different from
Ag, then for some k, T could be used to predict the (k + 1)-st bit from the
first k bits with probability somewhat larger than 1/2. This would contradict
the Next Bit Condition.

If s is a sequence of i bits, let fs be the fraction of all possible seeds whose
first i bits are s. For some s, we may have fs = 0. Note that

Ag =
∑
s

fsT (s)

where the sum is over all s of length m.

The proof involves two steps:

44

1. Identify a 0 ≤ k ≤ m− 1 such that the behavior of T (s) depends in a
significant way on the (k + 1)-st bit of s.

2. Use T to make a prediction for the (k + 1)-st bit.

The proof of step 1 uses ideas similar to the “sampling walk” used to
prove Theorem 5.1 in the Goldwasser-Micali paper. Define

Ai =
∑

s,t

fs2
i−mT (s ◦ t)

where the sum is over all s of length i and t of length m− i, with ◦ meaning
to combine s and t to create a sequence of length m. Ai is the expected
value of T applied to a sequence in which the first i bits come from the
generator (using a randomly chosen seed), with the remaining bits coming
from a genuinely random source.

Note that A0 = Ar, Am = Ag, and that all Ai can be estimated with high
probability using sampling. Since

|Ar − Ag| ≤
m∑

1

|Ai − Ai−1| there is k with |Ak+1 − Ak| ≥ |Ar − Ag|/m (2)

This completes step 1.14

In step 2, we are concentrating on a specific sequence s of length k, where
k satisfies (2). We wish to use the behavior of T to predict whether the
(k + 1)-st bit should be 0 or 1. Intuitively, we ask T which of the two
possibilities would make the sequence look more random.

We will need to look at the analogues of the averages Ak and Ak+1,
restricting attention to those sequences which begin with s:

Ak(s) =
∑

t

2k−mT (s ◦ t)

Ak+1(s) =
∑

t

(fs◦0/fs)2
k+1−mT (s ◦ 0 ◦ t) +

∑

t

(fs◦1/fs)2
k+1−mT (s ◦ 1 ◦ t)

14Instead of estimating all the Ai, we could begin by estimating A.5m. We would next
estimate either A.75m or A.25m, depending on whether A.5m was closer to A0 or Am.

45

The definition of Ak+1(s) is based on the idea that s◦0 and s◦1 are the only
sequences of length k + 1 which begin with s. Note that, for i = k or k + 1,
Ai =

∑
s fsAi(s), where the sum is taken over all s of length k.

Define As,0 =
∑

t

2k+1−mT (s ◦ 0 ◦ t)

As,1 =
∑

t

2k+1−mT (s ◦ 1 ◦ t)

These are the expected values of T for a sequence which begins with s, has
either 0 or 1 as its (k + 1)-st term, and continues randomly. They can be
estimated by sampling. Let ps be the fraction of the seeds which give s as
the first k bits which give 0 as the (k + 1)− st bit (thus ps = fs◦0/fs). Then

Ak(s) =
1

2
As,0 +

1

2
As,1 (3)

Ak+1(s) = psAs,0 + (1− ps)As,1 (4)

If we could estimate ps from (4), it would be simple to predict the next
generated bit after s. Unfortunately, we cannot efficiently estimate Ak+1(s).
The problem is that we would have to sample among the seeds which generate
s, and there is no easy way to find such seeds. Instead, we must find a way
to use the information that the average of Ak+1(s) is Ak+1, which we can
estimate.

The (far from obvious) idea will be to have the prediction of the (k+1)-st
bit itself be random. As we will see below, the probabilities can be assigned
to the two possible predictions can be chosen so that the expected number
of correct guesses looks like the right-hand side of (4).

We will assume Ak+1 > Ak [remember, we chose k so that the difference
between the two is significant]. The other case can be handled similarly. If
As,0 > Ak(s) > As,1, we would expect sequences beginning with s ◦ 0 to look
more like things from the generator than sequences beginning with s◦1. Our
prediction for the next bit following s will be random, given by

Predict





0 with probability 1
2

+ As,0 − Ak(s)

1 with probability 1
2

+ As,1 − Ak(s)

[The probabilities add to 1 by equation (3).]

46

The probability that the prediction for input s is correct is

ps

(
1

2
+ As,0 − Ak(s)

)
+ (1− ps)

(
1

2
+ As,1 − Ak(s)

)
=

1

2
+ psAs,0 + (1− ps)As,1 − Ak(s) =

1

2
+ Ak+1(s)− Ak(s)

When we average over all seeds resulting in all possible s, we get a correct
prediction with probability 1/2 + Ak+1 − Ak, which, by (2), is significantly
greater than 1/2. 15

8.3.1 A consequence involving symmetry

The Next Bit Condition was stated in a way that clearly distinguished the
beginning of the pseudo-random sequence from the end. By contrast, the
Efficient Test Theorem treats a pseudo-random sequence in a completely
symmetrical way. From that point of view, it does not matter which end of
the sequence is used to start the construction. This leads to

Corollary 31 Let n = pq. Start with a random 1 ≤ x ≤ n− 1 not divisible
by p or q. Let a0 = x, ai+1 ≡ a2

i (mod n). The sequence of bits given by
ai mod 2 satisfies all efficient tests.

9 Further results on pseudo-random genera-

tors

The two main results of the preceding section were the Next Bit Theorem
and the Efficient Tests Theorem. The former depended on (QRA) and facts
about squares and pseudo-squares. The latter was an abstract result about
properties of arbitrary generators. Our first result is an abstract version of
the Next Bit Theorem.

15Thanks to R. Sengupta for pointing out the importance of the expression for Ak+1(s)−
Ak(s).

47

9.1 Hard-Core Predicates and Pseudo-Random Num-
bers

We have seen several functions f with the property that f(x) was easy to
compute but f−1 was difficult. Such an f is called a one-way function.16 A
predicate is a property B which is true or false for any x. Typical examples
might be “is an odd number” or “is ≤ 50.” A hard-core predicate for a
function f is a predicate such that

1. there is an efficient algorithm for deciding whether B(x) is true

2. if we are given f(x), there is no efficient algorithm for guessing whether
B(x) is true which has a probability much greater than 1/2 of being
right.

The example we used in the quadratic number generator was

f(x) ≡ x2 mod n B(x) = “x is odd”

where we are looking only at those x which are squares.

Theorem 32 If B is a hard-core predicate for f , the random number gen-
erator in which a seed x is chosen at random, giving the sequence of bits

B(x) B(f−1(x)) B(f−1(f−1(x))) . . .

satisfies the Next Bit Condition.

As a corollary, the sequence B(x), B(f(x)),. . . satisfies all efficient tests, using
the arguments in the preceding section.

Proof: If there were a program which took as input a sequence of bits and
could guess the next bit, we could get a good guess on B(x) with f(x) known
by asking the next-bit predictor what would occur next in the sequence

B(f (k)(x)) B(f (k−1)(x) . . . B(f(f(x))) B(f(x))

(this is really the same proof as in the case of the quadratic generator).

16In later work, we will be defining a one-way function to be such that there is no
efficiently computable g with g(x) = f−1(x) for most x.

48

9.2 Construction of hard-core predicates

It seems much harder to find examples of hard-core predicates than of one-
way functions. The latter can be obtained from discrete logarithms, subset-
sum problems, and elsewhere. It is difficult to prove that a property cannot
be guessed with probability much larger than 1/2. This makes the following
result17 interesting.

Theorem 33 Let f be a one-way function which maps sequences of bits of
length n to sequences of length n. For each S ⊂ {1, . . . n} and n-bit x define
B(S, x) to be true if the number of 1’s in positions in x specified by S is
even. There is no efficient algorithm which can guess B(S, x) given S and
f(x) with probability much greater than 1/2.

This result does not rule out the possibility that, for some specific S, it may
be possible to guess B(S, x) in an efficient way. However, it would not be
possible to do something like guess B(S, x) with probability .6 for 10% of all
possible S, and probability .5 for all other S. [this would imply we would be
correct about B(S, x) overall with probability .51]

To prove this, we shall consider the following scenario: We are trying
to determine an unknown x ∈ {0, 1}n. We have an oracle A(S) which is
supposed to tell us B(S, x). The oracle may lie, but must tell the truth
more than half the time. Theorem 34 says we can efficiently enumerate a
not-too-large set which probably includes x.

Theorem 34 Suppose that A(S) = B(S, x) for at least 1/2 + ε of all S ⊂
{1, . . . n}. We can enumerate U ⊂ {0, 1}n in time polynomial in ε−1 such
that x ∈ U with probability close to 1.

To deduce Theorem 33 from Theorem 34, suppose we had an efficient algo-
rithm for guessing B(S, x). We obtain U , which cannot be too large given
the time bound. If we are given the value of f(x), we can evaluate f for all
x ∈ U to identify the correct x with high probability, which would mean f
is not a one-way function.

The construction of U proceeds in stages. At stage k (1 ≤ k ≤ n), we
enumerate Uk ⊂ {0, 1}k which includes (with probability close to 1) the first
k digits of x.

17O. Goldreich and L. Levin, “A Hard-Core Predicate for Every One-Way Function,”
Symposium on Theory of Computation (1989)

49

We will consider k fixed for the rest of this section. Define L = {1, . . . k}
and R = {k + 1, . . . n}. If α and β are true or false, α == β is defined to be
1 if α and β are both true or both false, 0 otherwise. If h is defined for all
S ⊂ L, we will use Avg

S
h(S) to represent the average value of h, in other

words, 2−k ∑
S h(S), with similar definitions for other collections of S. The

hypothesis of Theorem 34 can be written as

Avg
S ⊂ {1, . . . n}

(A(S) == B(S, x)) ≥ 1/2 + ε

Let v ∈ {0, 1}k. If there is a w ∈ {0, 1}n−k with x = v ◦ w [i.e., v is the first
k bits of x], then

1/2 + ε ≤ Avg
D ⊂ R


 Avg

C ⊂ L

(
A(C ∪D) == B(C ∪D, v ◦ w)

)



Define T (v, D) = Avg
C ⊂ L

(
A(C ∪D) == B(C, v)

)

Recall that B(S, x) is true if and only if the sum of the bits of x corresponding
to S is even. This implies

Avg
C

(
A(C∪D) == B(C∪D, v◦w)

)
=

{
T (v, D) if B(D,w) is true
1− T (v, D) if B(D, w) is false

Thus, if x = v ◦ w, then

Avg
D ⊂ R

(
|T (v, D)− 1/2|

)
≥ ε (5)

To test whether a given v satisfies (5) requires looking at all possible C and
D, which would take too much time. However, as in section 7.3, we can
take not-too-large random samples from all possible C and D, with a high
probability of correctly deciding whether v satisfies (5). Let N be the number
of different D used in the sampling.

At stage k − 1, we have obtained Uk−1 which includes the first k− 1 bits
of x with high probability. To create Uk, we take each member of Uk−1, add
0 and 1 to it, and identify using sampling which of the resulting k-bit strings
satisfy (5).

50

This process would take too much time if the number of strings doubled
at each step. To complete the proof, we use Lemma 35 to show that, for every
D, the number of v with |T (v, D)−1/2| ≥ ε is not too large, specifically there
are at most (2ε)−2 such v. In order to to be included in Uk, v must satisfy
|T (v, D)− 1/2| ≥ ε for at least one of the sets D used in the sample, which
gives a bound of N(2ε)−2 on |Uk|.
Lemma 35 For any D,

∑
v(T (v, D) − 1/2)2 = 1/4, where the sum is over

all v ∈ {0, 1}k.

Proof: D is a constant and may be ignored. We will argue by induction
on k. Define L′ = {1, . . . k − 1}. The function A may be represented by
A1, A2 with

A1(C ∪D) = A(C ∪D) A2(C ∪D) = A(C ∪ {k} ∪D) for all C ⊂ L′.

Define Ti(v, D) = Avg
C ⊂ L′

(
Ai(C ∪D) == B(C, v)

)
i = 1, 2

Then T (v, D) =
1

2
(T1(v, D) + T2(v,D)) if vk = 0

=
1

2

(
T1(v,D) + (1− T2(v, D)

)
if vk = 1

We divide {0, 1}k according to whether vk = 0 or 1 to obtain

∑
v

(T (v, D)− 1/2)2 =
∑

vk=0

(
1

2
T1(v,D) +

1

2
T2(v,D)− 1

2

)2

+
∑

vk=1

(
1

2
T1(v, D) +

1

2
(1− T2(v, D))− 1

2

)2

=
∑ 1

2

[(
T1(v, D)− 1

2

)2

+
(
T2(v,D)− 1

2

)2
]

=
1

2

[
1

4
+

1

4

]

51

9.3 A recent pseudo-random number generator

R. Impagliazzo and M. Naor18 proposed a pseudo-random number generator
that involved only addition:

Choose 1 ≤ ai ≤ 2n randomly, for 1 ≤ i ≤ k, with k < n < (1 + ε)k.
Choose S ⊂ {1, . . . k} randomly. Add the ai corresponding to S mod 2n

to obtain a sequence of n bits. Use the first n − k bits as output from the
generator. The remaining k bits give you a new S, for which you obtain a
new sum.

This generator is more efficient than the one in section 8.1, since it uses
simpler operations and produces more than one bit of pseudo-random output
per iteration. The paper establishes connections between the existence of
efficient tests (in the sense of section 8.3) and the average-case difficulty of
subset-sum problems. We will not try to give a precise statement of the
result, but will try to indicate some of the main ideas.

Suppose there were an efficient algorithm A which looked at the ai and at
b ∈ {0, 1}n and guessed whether b came from a sum of the ai with probability
greater than 1/2. We will show that such an algorithm could be used to
determine whether b came from a sum with probability close to 1.

In the case in which b =
∑

i∈S ai we show that A can be used to guess, for
each R ⊂ {1, . . . , n}, whether |R∩S| is even or odd with probability greater
than 1/2. Theorem 34 can then be used to identify S with probability close
to 1.

To guess the parity of |R ∩ S|, we make a guess j for the size of this set
and choose a random x. We have A look at a problem in which b is replaced
by b− jx and ai is replaced by ai − x for each i ∈ R. If j is a correct guess,
A will see a sum of a subset. Otherwise, b − jx will be a random number,
and we assumed A could distinguish between these two possibilities with
probability greater than 1/2.

18“Efficient Cryptographic Schemes Provably as Secure as Subset Sum,” Symposium on
Foundations of Computer Science, 1989

52

