
4 Subset-Sum (Knapsack) problems and their

uses

4.1 Subset-sum problems are hard

A subset of the numbers

267 493 869 961 1000 1153 1246 1598 1766 1922

adds up to 5842. Spend a few minutes trying to find such a subset. Whether
you succeed or not, I hope you are convinced the task is not trivial.

This is an example of a subset-sum problem. In general, we are given n
natural numbers ai and a target number T and asked to find a S ⊂ {1, . . . , n}
with ∑

i∈S

ai = T (∗)

A seemingly simpler problem is the subset-sum decision problem. For a given
ai and T , decide whether there is an S for which (∗) holds, without being
required to identify such an S. However, it can be proved that the decision
problem is just as difficult as the subset-sum problem in this sense:

Theorem 17 Suppose we had a method of solving the subset-sum decision
problem. Then we could solve a subset-sum problem using the assumed method
n times.

(the n is not particularly important— the main thing is that the number of
uses of the method is not too large.)

Proof: Begin by using the method to decide if T is a sum of the ai—
if not, we can stop immediately. Then use the method to determine if (∗)
holds for some S ⊂ {2, . . . , n}. If the answer is yes, we ignore a1 for the
rest of the analysis. If the answer is no, we know we must have 1 ∈ S. In
this second case, we continue by using the method to decide whether there
is S ⊂ {3, . . . , n} with ∑

i∈S

ai = T − a1

A yes answer means we can assume 2 /∈ S, otherwise 2 ∈ S.

The idea of this proof is more important than the specific result. We show
that one problem is as difficult as another by showing that a method of solving

18



the supposedly easier problem can be used to solve another problem. This
involves constructing one or several easier problems whose solution answers
the hard problem. We saw another example of this idea in our discussion of
the Rabin encryption system (section 3.3).

Using more elaborate versions of the techniques in Theorem 17, it can be
shown that a method of solving the subset-sum decision problem could be
used to solve many other problems, including:

• Factoring

• The Travelling Salesman Problem

• Any Integer Programming Problem

• The Satisfiability Problem

Don’t worry if you are not familiar with the details of these problems. The
important point is that they are all well-known problems for which many
people have been unable to find efficient solution methods, which makes it
unlikely that there is a method which solves all subset-sum decision problems
efficiently (we will go into more detail on this in section 5).

The discussion above makes it plausible that some subset-sum problems
are difficult. Further, there is some evidence that the “typical” subset-sum
problem is not easy. V. Chvatal3 has shown that if the ai and T are randomly
chosen, then with high probablility (i) there will be no S for which (∗) holds
(ii) certain simple ways of proving this will not work.

4.2 A proposed public-key system based on subset-
sum

As an example of an easy subset sum problem, consider the task of deter-
mining what subset of

1 3 6 14 27 60 150 300 650 1400 (1)

adds up to 836. The ai in this problem have the special property that every
number is greater than the sum of all preceding numbers (27 > 1+3+6+14,
etc). [A sequence with this property is called super-increasing.]

3“Hard Knapsack Problems,” Operations Research, vol. 28, pp 1402–1411

19



1400 clearly cannot be in the set. If 650 is not in the set, we would be
in trouble, since the sum of the remaining numbers is < 650, hence < 836.
Thus 650 must be in the set, and we now have the task of finding numbers
which add up to 836− 650 = 186. 300 is too big, and the same reasoning as
before shows that 150 must be in the set. If we continue, it is easy to identify
the desired set as {650, 150, 27, 6, 3}.

We began section 4.1 with the problem of identifying a subset of

267 493 869 961 1000 1153 1246 1598 1766 1922

which adds up to 5842. What we didn’t mention before was that the ai

were carefully chosen to make them directly related to the ai in the easy
subset-sum problem (1):

267 ≡ 300(1000) (mod 2039) 493 ≡ 27(1000) (mod 2039) 869 ≡ 60(1000)

and so forth, where 2039 is a modulus chosen in advance (larger than any
of the numbers in the easy subset-sum problem) and 1000 is an arbitrarily
chosen number. (we must have gcd(2039, 1000) = 1)

To find the subset, begin by solving 1000U ≡ 1 (mod 2039), which gives
U = 1307. If we let bi be the numbers in the easy problem, the hard problem
can be written as ∑

i∈S

(1000bi) ≡ 5842 (mod 2039)

When we multiply by 1307, this becomes
∑

bi ≡ 1307(5842) ≡ 1478

It is easy to identify {1400, 60, 14, 3, 1} as a subset which adds to 1478, and
the desired subset of the original system is

{1246 ≡ 1400(1000) (mod 2039), 869 ≡ 60(1000), 1766, 961, 1000}
This would seem to give us a good public-key system: a problem which

is easy once some special information (the 2039 and the 1000) is known,
difficult without the information. Unfortunately, the special type of subset-
sum problem created in this way can be solved even without the special
information. There is a sequence of papers showing how to solve special
subset-sum problems and proposing a refinement which, in turn, was solved
by the next paper in the sequence. This has not happened with the RSA
system, but there is no guarantee that it won’t!

20



4.3 Breaking Knapsack Cryptosystems

We will present some of the basic ideas for attacking the system described in
the preceding section, and illustrate them on a small example.4 Our source is
the paper by E. Brickell and A. Odlyzko, “Cryptanalysis: a survey of recent
results,” in Contemporary cryptology: the science of information integrity.

It is not necessary to provide an efficient algorithm guaranteed to crack
all instances of a cryptosystem to call its security into question, and our
analysis is only an indication that the simple system of the previous section
can often be broken.

Suppose we are given the sequence ai:

611 929 1996 2456 2464 3594 3646 4085 5552 6765,

generated using an unknown multiplier V (correponding to 1000 in the pre-
vious example), an unknown modulus M , and an unknown super-increasing
sequence bi. Let UV ≡ 1 (mod M). Then there are non-negative ki such
that bi = Uai −Mki.

M must be larger than all the bi, hence it must be significantly larger
than the earliest members of the sequence.

The decryption method begins by guessing which of the known ai cor-
respond to a few of the early members of the sequence. A trial-and-error
approach is considered feasible for practical size problems.

Suppose we have guessed that 2464, 611, and 2456 correspond to the first
three bi, and further that 2464 corresponds to b1.

b1 = 2464U −Mk1 b2 = 611U −Mk2 b3 = 2456U −Mk3

U may be eliminated from pairs of equations to obtain:

611b1−2464b2 = M(611k1−2464k2) 2456b1−2464b3 = M(2456k1−2464k3)

Since M is large compared to b1, b2, b3 this implies

611k1 − 2464k2 and 2456k1 − 2464k3

4Calculations in this section were done using the Calc program based on the emacs
editor. Both programs are available free as part of the GNU system.

21



must be small— about the size of b1, b2, b3 (positive or negative). In other
words, 611k1 and 2456k1 must both be close to 0 or to 2464 mod 2464.

It is plausible that restrictions of this kind give a lot of information about
k1. As we look at all possible values of k1, 611k1 mod 2464 is evenly dis-
tributed through the entire range from 0 to 2463. If we require, for example,
that the number is either ≤ 100 or ≥ 2363, we would expect that only about
1/12 of the values for k1 satisfy this. It seems plausible that the distribution
of 2456k1 is independent of the distribution of 611k1, so a similar restriction
on the second number reduces the possible values of k1 by (1/12)2.

In our example, 611k1 ≡ s (mod 2464) implies k1 ≡ 1355s and 2456k1 ≡
1480s. We look at the values of s for something which makes 1480s mod 2464
small. Part of the results:

s 1 2 3 4 5 6 7 8 9 10 11 12
1480s 1480 496 1976 992 8 1488 504 1984 1000 16 1496 512

The multiples of s = 5 are clearly the most likely candidates. We try s = 5,
which gives k1 = 1847.

[The published algorithm recommends guessing more than 3 of the lowest
ai and determining ki from an integer program:

min W

−W ≤ a1kj − ajk1 ≤ W j ≥ 2

using a special algorithm which is polynomial-time for a fixed number of
constraints.]

Since b1 = 2464U − 1847M implies U/M is close to 1847/2464, we try
using U = 1847, M = 2464 on the ai, which gives:

ai 611 929 1996 2456 2464 3594 3646 4085 5552 6765
1847ai 5 919 468 8 0 102 50 227 1840 11

This is not a super-increasing sequence, since 5+8 > 11. However, it is close
enough to one that one can use it to solve subset-sum problems with a small
amount of work. (in this example, considering separately the cases in which
the ai corresponding to 8 is and is not in the set)

The ai were generated using M = 6789, V = 1234, U = 5089. Compar-
ison of the ai ≡ V bi (mod M) with the “almost” super-increasing sequence

22



obtained above shows that, except for the first few terms, the ratio of terms
from the two sequences is nearly constant. Since a multiple of a super-
increasing sequence is super-increasing, this explains why we would expect
to obtain a useful sequence.

ai 2464 611 2456 6765 3646 3594 4085 1996 929 5552
bi 13 17 35 66 157 300 647 1300 2537 5099
1847ai 0 5 8 11 50 102 227 468 919 1840

4.4 Other uses of the subset-sum problem

The results mentioned at the end of the last section do not contradict the
presumed difficulty of subset-sum problems in general. It is only the spe-
cially constructed problems which are known to be easy. There are security
problems other than public-key codes for which subset-sum problems are
useful.

4.4.1 Computer passwords

A computer needs to verify a user’s identity before allowing him or her access
to an account. The simplest system would have the machine keep a copy of
the password in an internal file, and compare it with what the user types. A
drawback is that anyone who sees the internal file could later impersonate
the user.

I believe this alternative is actually implemented on some systems: the
computer generates a large number (say 500) of ai. They are stored in the
internal file. A password is a subset of {1, . . . , 500}. (in practice, there is a
program to convert a normal sequence-of-symbols password to such a subset.)
Instead of having the password for the user, the computer keeps the total
associated with the appropriate subset. When the user types in the subset,
the computer tests whether the total is correct. It does not keep a record of
the subset. Thus impersonation is possible only if somebody can reconstruct
the subset knowing the ai and the total.

4.4.2 Message verification

A sender (S) wants to send messages to a receiver (R). Keeping the message
secret is not important. However, R wants to be sure that the message he is

23



receiving is not from an imposter and has not been tampered with. S and R
agree on a set of ai (say 500) and a set of totals Tj (say 200). These numbers
may be publicly known, but only S knows which subsets of the ai correspond
to which Tj. The message sent by S is a subset of size 100 of {1, . . . , 200}.
He does this by sending 100 subsets of the ai corresponding to the message
he wants to send.

5 Subset-Sum Problems and NP-Completeness

The phrase “NP-complete” has an intimidating sound. In this section, we
will first define a new problem involving formulas in logic, called the Satisfi-
ability Problem (SP). We will use the abbreviation (SSP) for the subset-sum
problem. Our main results will be:

1. If there is an algorithm which efficiently solves (SSP), it can be used
to efficiently solve (SP).

2. If there is an algorithm which efficiently solves (SP), it can be used to
solve (SSP).

3. An algorithm to solve (SP) efficiently would give efficient solutions to
factoring and many other problems.

5.1 The Satisfiability Problem

We will use capital letters Ai, Bi, to stand for logical variables. These stand
for statements like “221 is a prime number” or “TH is the most common
two-letter sequence in English,” which are either true or false, i. e., these
variables have values of either T or F. ∼ Ai (“not Ai”) is the statement that
Ai is false, so it has value T if Ai has value F, and ∼ Ai has value F if Ai

has value T. We will also be interested in more elaborate formulas:

A1 or ∼ A2 or ∼ A4 or A7 or A8

This formula says that either A1 is true or A2 is false, or A4 is false, etc. The
value of this formula will be T unless A1 = F, A2 = T, A4 = T, A7 = F,
A8 = F. Thus, there is only one way in which the formula will be false.

Figure 1 illustrates a satisfiability problem. We want to assign T, F to
all the variables so that all of the formulas have value T. Even in this small
example, it may take you a minute or so to find such an assignment.

24



A1 or A2

∼ A1 or A5

∼ A1 or A3 or A4

A3 or ∼ A5

A4 or A5

∼ A3 or ∼ A4

∼ A2 or A3

Figure 1: A small (SP)

5.2 Converting (SP) to (SSP)

We want to construct numbers ai and a target number T so that there is a
subset adding up to T if and only if there is an assignment for (SP) which
makes all the formulas true. Using this construction allows us to use an
algorithm for (SSP) to solve (SP). It implies that solving (SSP) is at least as
hard as solving (SP).

We will illustrate the construction using the example in Figure 1. We will
have numbers a1, . . . , a5 corresponding to the logic variables A1, . . . , A5 with
Ai = T corresponding to ai being included in the subset. We will also need
additional ai, i > 5 for technical reasons.

a1 = 1 01 01 00 00 00 00
a2 = 2 00 00 00 00 00 01
a3 = 2 01 00 01 02
a4 = 4 00 01 02 00
a5 = 2 00 02 02 00 00
a6 = 1 00 00 00 00 00 00
a7 = 2 00 00 00 00 00 00
a8 = 1 00 00 00 00 00
a9 = 1 00 00 00 00 00

a10 = 4 00 00 00 00 00
a11 = 1 00 00 00 00
a12 = 2 00 00 00 00
a13 = 3 00 00 00 00
a14 = 8 00 00 00 00
a15 = 1 00 00 00
a16 = 3 00 00 00
. . . = . . .
T = 4 04 08 04 04 04 04

Figure 2: Subset-sum problem

25



The subset-sum problem is shown in Figure 2. For clarity, we have divided
the numbers into zones. T will be a sum of a subset of the ai if and only
if the totals within each zone are appropriate. Each zone corresponds to
one of the logic formulas. For a1 through a5, the value in a zone is 0 if the
corresponding Ai does not appear in the logic formula. If Ai does appear, a
power of 2 is used. (the reason for using powers of 2 is that different subsets
of {a1, . . . , a5} will have different totals)

The leftmost zone corresponds to the first logic formula in our example:
A1 or A2. By making suitable decisions about inclusion of a6 or a7, we will
be able to get a total of 4 in this zone, unless both a1 and a2 are left out of
the set, which is precisely what would make the logic formula have value F.

The second zone corresponds to ∼ A1 or A5, which has value T unless a1

is in the set and a5 is not. a8, a9, and a10 can be used to get the total for
the zone equal to 4 in any other case.

Similarly, each of the other zones5 has ai associated with it which can be
used to obtain the correct total except in one case.

The general problem is that we want numbers which can be used to obtain
any total between 1 and 2n, except for one “forbidden total” M . [In the two
zones discussed above M is 4 in one case and 3 in the other] We start with the
powers of 2 from 1 to 2n. If 2j ≤ M < 2j+1, replace 2j by the two numbers
M − 2j and M + 1. [We did not follow exactly the procedure described in
this paragraph in constructing Figure 2.]

5.3 Converting (SSP) to (SP)

Suppose we have a subset-sum problem with 50 ai, all between 1 and 220,
with T < 50(220) < 226. Solving the SSP may be crudely broken into two
steps:

1. Decide which ai are in the subset.

2. Verify that the sum of the chosen ai is T .

Our (SP) will also carry out these steps. The first is simple: we will have
logic variables A1, . . . , A50 with Ai = T corresponding to ai being in the

5We have omitted the ai for the last three zones in Figure 2.

26



subset. To carry out the second step, we need to construct a set of logic
formulas which acts as an “adding machine” to check the total.

We will represent numbers in base 2. Since all relevant numbers are < 226,
numbers may be represented by 26 logical variables. For each 1 ≤ i ≤ 50,
we will have variables Bi1, . . . , Bi26. These will represent ai if Ai = T, 0
if Ai = F. To do this, we need formulas which show how the value of Ai

determines the value of all the Bij:

∼ Ai or Bij Ai or ∼ Bij if jth digit of ai = 1

with the simple formula ∼ Bij if the jth digit of ai is 0.

Next, we need, for 2 ≤ i ≤ 50, variables Ci1, . . . Ci26 which represent the
total of the first i of the numbers given by the B-variables. Formulas are
needed which show the B-variables determining the C-variables.

We begin with a set of formulas S(V,W,X, Y, Z) which have Y get value
T if and only if an odd number of V, W,X have value T. Z gets value T if
and only if 2 or 3 of V, W,X have value T:

V or W or X or ∼ Y ∼ V or ∼ W or Z
∼ V or W or X or Y ∼ V or ∼ X or Z
V or ∼ W or X or Y ∼ W or ∼ X or Z
V or W or ∼ X or Y V or W or ∼ Z
∼ V or ∼ W or X or ∼ Y V or X or ∼ Z
∼ V or W or ∼ X or ∼ Y W or X or ∼ Z
V or ∼ W or ∼ X or ∼ Y
∼ V or ∼ W or ∼ X or Y

If V, W,X represent three one-digit numbers (0 or 1), the formulas S(V, W,X, Y, Z)
have the effect that Y is the number in the column with the three numbers,
while Z shows whether there is a number carried into the next column.

We will use Di1,. . . ,Di27, 2 ≤ i ≤ 50, to keep track of numbers being
carried. Since there are no numbers carried in the rightmost column, we
have the formulas ∼ Di1. The formulas

S(B1j, B2j, D2j, C2j, D2(j+1)) 1 ≤ j ≤ 26

have the effect of making C2j represent the sum of the numbers B1j and B2j.
To have Cij represent the sum of C(i−1)j and Bij, we use

S(Bij, C(i−1)j, Dij, Cij, Di(j+1)) 3 ≤ i ≤ 50 1 ≤ j ≤ 26

27



These logic formulas together have the effect that the Ai determine the Bi,
which determine C2j through C50j successively. This last group of variables
corresponds to the base-2 representation of the sum of the ai which are in the
set we have chosen. Finally, we add the formulas C50j or ∼ C50j depending
on whether the jth digit of T is 1 or 0. As planned, a solution to this
satisfiability problem gives a solution to the subset-sum problem (look at
which Ai have value T), which implies that a method of solving (SP) can be
used to solve (SSP).

The (SP) we have constructed is rather large, involving approximately
15(26)(50) formulas. However, the rate of growth if we had more ai with a
larger upper limit is not too bad.

5.4 Cook’s Theorem

It is more important to understand the general idea of what we did in sec-
tion 5.3 than to get involved in the details of the construction of the “adding
machine.” We used logical variables (the Ai) to represent our guess as to
what a solution to the (SSP) was, then constructed a set of formulas to
verify the guess was correct.

You should be able to convince yourself that a similar thing could be
done with a factoring problem. We could have variables Ai and Bi represent
our guesses as to two factors, then construct a “multiplication machine” to
verify that the product is what we want. Thus an efficient algorithm for (SP)
would lead to an efficient algorithm for factoring6.

Many other problems can be viewed as making some guesses as to what
the correct answer is, with the process of verification relatively easy. An
example might be an integer programming problem:

max cx
Ax ≤ b
xi = 0 or 1

We ask if there is a feasible solution with objective function value > K. For
a given x, it is easy to check that it satisfies all the problem constraints and
tell if the value is big enough.

6Unlike (SSP), nobody has been able to show that an algorithm for factoring would
give an algorithm for (SP).

28



The detailed construction in section 5.3 was intended primarily to con-
vince you that, if a verification can be done efficiently, it can be simulated
by a set of logic formulas. It should make you willing to believe

Theorem 18 (Cook) Any “guess and verify” problem can be converted to
a satisfiability problem. Thus, an efficient algorithm for (SP) can efficiently
solve any “guess and verify” problem.

5.5 Terminology

The concept we have vaguely described as solving efficiently is technically
known as “polynomial time.” The types of problem that can be considered
as “guess and verify” are called NP (for Nondeterministic [the guessing stage]
Polynomial [the verification stage]). Cook’s Theorem says that (SP) is as
hard as any NP problem— the usual terminology is to say (SP) is NP-
complete. Since we showed in section 5.2 that (SSP) could be used to solve
(SP), we essentially proved that (SSP) is also NP-complete.

Computers and Intractability, by Garey and Johnson, is strongly recom-
mended for more information.

6 A probabilistic test for primality

Suppose we want to test whether 247 is a prime number. Recall two facts
about prime numbers p:

1. ap−1 ≡ 1 (mod p) if a 6≡ 0.

2. If a2 ≡ 1 (mod p), then a ≡ 1 or a ≡ −1. [(a + 1)(a− 1) ≡ 0]

Suppose we randomly choose a = 2 and test for consistency with these con-
ditions. Since 2246 ≡ 220 (mod 247) we can conclude immediately that 247
is not a prime.

Perhaps we were lucky with a = 2. If we try a = 27, we get a246 ≡
1 (mod 247). However,

27246 ≡
(
27123

)2
and 27123 ≡ 170 (mod 247)

which is inconsistent with the second condition, again implying 247 is not a
prime.

29



Not every choice of a is inconsistent with the conditions. For example,
160123 ≡ −1 (hence 160246 ≡ 1) and 178123 ≡ 1. However, the fact that some
choices of a give a proof that a number is not prime suggests the following
test:

Rabin’s Primality Test. Let p− 1 = 2km, where m is an odd number.
Choose a at random. Compute the sequence

am a2m a4m . . . ap−1 mod p

This sequence is consistent with p being a prime if am ≡ 1 or if the sequence
has −1 at some point, followed by 1 for all subsequent terms. In all other
cases, a provides a proof that p is not prime (this is usually described by
saying that a is a witness that p is not prime). Repeat this test for some
number of random choices of a, and conclude that p is a prime if none of the
chosen a is a witness.

Two features of the test should be emphasized. It does not provide an
absolute guarantee that p is a prime, only that it is probably a prime (we
will analyze exactly how probable in the next section). Secondly, when we
know p is not a prime, we do not know what its factors are— factoring is
much more difficult than testing for primality.

[A different probabilistic test is described near the end of the RSA paper.]

6.1 Analysis of the Rabin test

We will calculate how many a are witnesses that 247 is not a prime. Our
analysis will make use of the fact that 247 = 13(19) and that 2 is a prim-
itive root for both 13 and 19. However, it should be emphasized that this
information (which will not be available in general) was not used when we
did the test itself.

How many a satisfy a123 ≡ 1 (mod 247)? We must have a123 ≡ 1 (mod 13)
and a123 ≡ 1 (mod 19). Let a ≡ 2x (mod 13). Then we must have 123x
divisible by 12. This gives the possible values 0, 4, 8 for x, which implies
a ≡ 1, 3, or 9 mod 13. Similarly, if a ≡ 2x (mod 19), 123x must be divisible
by 18, which leads to a ≡ 1, 7, or 11 mod 19. (we actually found 178 above
by solving a ≡ 9 (mod 13) and a ≡ 7 (mod 19)) The 3 choices mod 13 and
mod 19 imply there are 9 a with a123 ≡ 1.

30



How many a satisfy a123 ≡ −1 (mod 247)? If 2123x ≡ −1 (mod 13),
we must have 123x ≡ 6 (mod 12), which leads to a ≡ 4, 7, or 17 mod 13.
Similarly, we get a ≡ 8, 18, or 12 mod 19. Thus we get 9 a satisfying this
condition.

If we choose 1 ≤ a ≤ 246 at random, the chances of getting an a that
is not a witness are 18/246 ≈ .073. If we do the test 5 times, the chance of
incorrectly concluding 247 is a prime is ≈ 2(10−6).

[We actually did more work than necessary, identifying the exact set of
numbers which would lead to a wrong conclusion. If we only want to count
how many numbers there are, we could make use of observations such as
that, for any k, an equation 123x ≡ k (mod 12) will either have 3 solutions
or no solutions.]

Theorem 19 (Rabin) If p is not a prime, at least 3/4 of 1 ≤ a ≤ p − 1
are witnesses.

This implies that for any non-prime p, the chance of being incorrectly iden-
tified after 5 tests is ≤ 4−5 < .001.

31


