
Notes on Cryptography

Charles Blair
Business Administration Dept.

University of Illinois
c-blair@uiuc.edu

c©1991,1993,1994 by the author

Contents

1 Traditional Encryption Systems 3

2 Introduction to Number Theory 7
2.1 Congruences . 7
2.2 The Greatest Common Divisor 7
2.3 Powers modulo a prime . 9
2.4 Primitive roots . 10
2.5 Proof of Theorem 5 . 11

3 Encryption techniques based on powers and congruences 14
3.1 The Diffie-Hellman key exchange procedure 14
3.2 The Rivest-Shamir-Adleman public key system 14
3.3 A public key system as hard as factoring 15

3.3.1 Computing square roots modulo a prime 17

4 Subset-Sum (Knapsack) problems and their uses 18
4.1 Subset-sum problems are hard 18
4.2 A proposed public-key system based on subset-sum 19
4.3 Breaking Knapsack Cryptosystems 21
4.4 Other uses of the subset-sum problem 23

4.4.1 Computer passwords 23
4.4.2 Message verification . 23

1

5 Subset-Sum Problems and NP-Completeness 24
5.1 The Satisfiability Problem . 24
5.2 Converting (SP) to (SSP) . 25
5.3 Converting (SSP) to (SP) . 26
5.4 Cook’s Theorem . 28
5.5 Terminology . 29

6 A probabilistic test for primality 29
6.1 Analysis of the Rabin test . 30

7 Probabilistic Encryption 32
7.1 The Goldwasser-Micali encryption system 32
7.2 Weak laws of large numbers 34
7.3 The magic of sampling . 36
7.4 Determining algorithm performance by sampling 37
7.5 Two versions of QRA . 37
7.6 Knowing a pseudo-square does not help much 38
7.7 The inability to distinguish two plaintexts 38
7.8 Semantic Security . 39
7.9 How to play poker over the telephone 39

8 Pseudo-random number generators 42
8.1 The Quadratic Generator . 42
8.2 The Next Bit Theorem . 43
8.3 The Efficient Test Theorem 44

8.3.1 A consequence involving symmetry 47

9 Further results on pseudo-random generators 47
9.1 Hard-Core Predicates and Pseudo-Random Numbers 48
9.2 Construction of hard-core predicates 49
9.3 A recent pseudo-random number generator 52

2

1 Traditional Encryption Systems

An encryption system is a procedure which takes the original message (plain-
text) and a small piece of information arranged in advance between sender
and receiver (the key) and creates an encoded version of the message (the
ciphertext).

When we are considering the quality of an encryption system, we assume
the person trying to decode the message knows what the general procedure
is and is looking at the ciphertext— the only thing he does not have is
the key. We also assume the person sending messages does not spend time
trying to contrive a difficult-to-read message by using unusual words or letter
frequencies— the sender is counting on the system to provide all the needed
security.

Usually one assumes the person trying to break the code is only working
with the ciphertext. However, there are situations in which both plaintext
and ciphertext of a previously encoded message are available. For example, I
often keep encrypted versions of examinations on a mainframe computer, only
decoding them just before having them printed, and deleting the plaintext
file immediately afterward. If a student was able to look at my files, he could
keep a copy of the encoded test and compare this with the test he took. As
we will see, this may be very useful in decoding future tests.

[One countermeasure against this type of known-plaintext attack is to
continually change keys, assuming an encryption using one key is not helpful
on a different key. It can become difficult to keep track of the different keys
in use, especially if they are long.]

A more demanding standard is that a code may be safe against a chosen-
plaintext attack. We are imagining that the encryption is done by a machine,
and that unauthorized persons may have access to the machine (although
we assume they are only using it in the normal way, not allowed to take it
apart).

Example 1: Simple substitution

This is the simple letter-for-letter method found in Poe’s “The Gold Bug”
and many other stories. The key is a rearrangement of the 26 letters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

actqgwrzdevfbhinsymujxplok

3

Using this key, the plaintext:

THE SECURITY OF THE RSA ENCODING SCHEME RELIES ON THE

FACT THAT NOBODY HAS BEEN ABLE TO DISCOVER HOW TO TAKE

CUBE ROOTS MOD N WITHOUT KNOWING NS FACTORS

becomes the ciphertext:

UZG MGTJYDUO IW UZG YMA GHTIQDHR MTZGBG YGFDGM IH UZG

WATU UZAU HICIQO ZAM CGGH ACFG UI QDMTIXGY ZIP UI UAVG

TJCG YIIUM BIQ H PDUZIJU VHIPDHR HM WATUIYM

The messages can be made harder to decode (but also harder to read!) by
leaving out the spaces between words.

Most messages can be decoded by looking for frequently occuring pairs
of letters (TH and HE are by far the most common), using these to identify a
few letters to begin, and filling in the remaining letters one at a time (“The
Gold Bug” gives a good description, as do many books).

In a known-plaintext situation, the whole code is obtained almost imme-
diately. However, in our example, the letters J, P, and others do not occur in
the plaintext, so we could not tell how they are encoded. If we were allowed
a chosen plaintext, we would use all the letters to get the entire key.

Example 2: The Vigenère cipher and one-time pads

This cipher works by replacing each letter by another letter a specified num-
ber of positions further in the alphabet. For example J is 5 positions further
than E. D is 5 positions after Y. (Y,Z,A,B,C,D) The key is a sequence of shift
amounts. If the sequence is of length 10, the 1st, 11th, 21st, . . . letters of
the plaintext are processed using the first member of the key. The second
member of the key processes plaintext letters 2, 12, 22, . . . and so forth. If
we omit spaces from the plaintext on page 4 and use the key-sequence:

3 1 7 23 10 5 19 14 19 24

we obtain

WILPOHNFBR BPMQRJKGTC QDVASSZGVF

HNLOOQBSLM QUOBPFVHMF DUULLTWMAY VCLBXFUZXR

REPPMTOSKF RXALDFDSVS EFYLYYLAHB QXPQRTNHDL

RXPKQSLTTA WPYP

4

(We have divided the ciphertext into groups of ten letters for convenience.
The division into lines is arbitrary.)

This type of cipher was considered secure around the year 1600, but is
not really difficult. Suppose we guess that the first letter is T. This implies
the eleventh letter is Y, the 21st letter is N, etc. Now look at the two-letter
combinations that occur from different possiblilities for the second letter:

TI YP ND EN NU AU SC OE OX BF NX OX TP (no shift of 2nd letter)
TJ YQ NE EO NV AV SD OF OY BG NY OY TQ

TK YR NF EP NW AW SE OG OZ BH NZ OZ TR

TL YS NG EQ NX AX SF OH OA BI NA OA TS

(skipping over some in the middle)
TF YM NA EK NR AR SZ OB OU BE NU OU TM

TG YN NB EL NS AS SA OC OV BD NV OV TN

TH YO NC EM NT AT SB OD OW BE NW OW TO

The last line is the “right answer.” Although it shows several bad combi-
nations (NC NT SB NW), mostly caused by the last letter of one word being
adjacent to the first letter of the next word, it looks better than the other
possible rows. Once the second letter has been identified, the same approach
can be used to get the third letter. This approach is easily automated using
a table of digrams.

It is necessary to know the first letter and the length of the key-sequence.
If we assume the length is not too large, a program can just try all possibil-
ities, eventually choosing the plaintext which looks best.1

One-time pads

A long key-sequence makes this approach more difficult, since we have fewer
rows. The extreme case is that in which the key-sequence is as long as the
plaintext itself. This leads to a theoretically unbreakable cipher. For any
possible plaintext, there is a key for which the given ciphertext comes from
that plaintext.

This type of cipher has reportedly been used by spies, who were fur-
nished with notebooks containing page after page of randomly generated

1Mike Mendelson, a student in this course in 1989, wrote a program to implement this
algorithm. Another method would choose the shift amount for each member of the cycle
which gives the best letter frequency.

5

key-sequence. Notice that it is essential that each key-sequence be used only
once (hence the name of the system). Otherwise the approach for Vigenère
systems described above could be tried, since we would have at least two
rows to work with.

One-time pads seem practical in situations where one agent is communi-
cating with a central command. They become less attractive if several agents
may need to communicate with each other. The one-time feature is lost if
X and Y inadvertently use the same page to talk as W and Z are using.
Also capture of X’s equipment makes it possible to overhear a conversation
between Y and Z.

Example 3: A Transposition System

In this system, we will assume every line of the message is 63 characters long.
The key is a permutation of the numbers from 1 to 63, and each line of the
plaintext is rearranged using the permutation to produce the corresponding
ciphertext. For example if the key is

1 11 21 . . . 61 8 18 . . . 54

(we would really want to use a more complicated permutation) and we use
the same plaintext as in the previous two examples, we obtain:

TTRNRT UHOMO SFECE HYSGEH REDEN E NHS E A LE I I CTCE O SI

FN ET AHBCT DNDO AOBTRA TALOO TY IW CBEO K SEV H AS TOE HE

C HNO OWOA S UMOGR TIWC RNK BOU S STIT O NF EDTN

We are using the version of the plaintext including blanks. The second line
of the plaintext has 55 characters, so we add 8 blanks on the end.

One method of decoding looks at a column of the ciphertext and asks
what other column could immediately follow it. For example, it is possible
that the column following OBO (the tenth ciphertext column) is UAO (the 8th),
but the column TFC would yield the improbable two-letter combination BF.

As always, a longer message is easier to decode. Unlike simple substitu-
tion, it seems that blanks make the decoding process more difficult.

What about a known-plaintext attack? Since there is only one Y in the
first line of the plaintext, we can tell that column 12 of the plaintext is

6

column 21 of the ciphertext, but there are other things we can’t tell. In this
example, there are 8 columns of three blanks at the end of the plaintext,
and we can’t be sure which of these corresponds to which of the all-blank
ciphertext columns. (it doesn’t matter for this message, but we would like to
know the entire key to deal with longer plaintexts in the future) A carefully
chosen plaintext can give us the entire key at once.

2 Introduction to Number Theory

2.1 Congruences

The congruence a ≡ b (mod n) (“a is congruent to b mod n”) says that, when
divided by n, a and b have the same remainder.

100 ≡ 34 (mod 11) − 6 ≡ 2 (mod 8)

In the second congruence, we are using −6 = 8(−1) + 2. We always have
a ≡ b (mod n) for some 0 ≤ b ≤ n − 1, and we are usually concerned with
that b. If a ≡ b (mod n) and c ≡ d, we can add or multiply

a + c ≡ b + d (mod n) ac ≡ bd (mod n)

Division does not always work: 6 ≡ 18 (mod 12), but 3 6≡ 9.

2.2 The Greatest Common Divisor

For a and b, the number (a, b) is the largest number which divides a and b
evenly.

(56, 98) = 14 (76, 190) = 38

Theorem 1 For any a, b there are integers x, y with ax + by = (a, b)

Proof: The equation can be solved by making a sequence of simplifying
substitutions:

30x + 69y = 3

30x′ + 9y = 3 [x′ = x + 2y]

3x′ + 9y′ = 3 [y′ = y + 3x′]

3x′′ + 0y′ = 3 [x′′ = x′ + 3y′]

7

It is easy to see that x′′ = 1, y′ = 0 is a solution to the final equation and we
get a solution to the original equation by working backwards:

x′ = x′′ − 3y′ = 1 y = y′ − 3x′ = −3 x = x′ − 2y = 7

We could also solve an equation like 30x + 69y = 15 by multiplying our
solution: y = −15 = 5(−3), x = 35 = 5(7). It should be clear that the
equation will have no solution in integers if 15 is replaced by something that
is not a multiple of (30, 69) = 3.

All other integer solutions of 30x+69y = 15 may be obtained by changing
the first solution:

y = −15 +
30

3
t x = 35− 69

3
t for t integer

If we do the process illustrated on the previous page for any equation
ax+by = (a, b), we eventually get one of the coefficients as zero and the other
as (a, b). [In fact, this process is usually presented as “Euclid’s algorithm for
finding the greatest common divisor.”]

It is important that this process is feasible [on a computer] even if a and
b are several hundred digits long. It is easy to show that the larger of the
two coefficients decreases by at least 1/2 every two equations, hence that in
twenty equations the larger coefficient has decreased by 2−10 < 10−3, so a
600-digit number would not require more than 4000 equations. [this analysis
can be improved]

We pointed out earlier that division does not work with congruences. An
important application of Theorem 1 is that it does work for prime numbers.

Corollary 2 If p is a prime number, ar ≡ as (mod p), and a 6≡ 0, then
r ≡ s.

Proof: Since p is a prime, (a, p) = 1, so Theorem 1 says there are integer
x, y with ax + py = 1. Hence

ax ≡ 1 (mod p) and r ≡ (1)r ≡ axr ≡ xar ≡ xas ≡ s (mod p)

Corollary 3 If p is a prime number and a 6≡ 0 mod p, then for any b, there
is y with ay ≡ b (mod p).

8

Proof: We showed in the preceding proof that there is x with ax ≡ 1 (mod p).
Let y = bx.

Corollary 4 (The “Chinese Remainder Theorem”) If (p, q) = 1, then
for any a, b, there is an n with

n ≡ a (mod p) and n ≡ b (mod q)

Proof: Theorem 1 implies there are integers x, y such that

px + qy = b− a so let n = px + a

2.3 Powers modulo a prime

The sequence
a a2 a3 . . . mod p

has many applications in cryptography. Before looking at theoretical prop-
erties, the example below (done using a pocket calculator) should make clear
that it is practical to compute these numbers, even when many digits are
involved.

Suppose we want to compute 432678 mod 987. The basic trick is to start
with a number and keep squaring:

4322 = 186624 ≡ 81 4324 ≡ 812 ≡ 639 4328 ≡ 6392 ≡ 690 . . . 432512 ≡ 858

Since 678 = 512 + 128 + 32 + 4 + 2,

432678 ≡ (81)(639) . . . (858) ≡ 204 (I hope!)

Calculations with exponents involve not-too-many multiplications. If the
numbers have several hundred digits, however, it is necessary to design special
subroutines to do the multiplications (see Knuth, volume 2).

Let us look at the sequence of powers of 2 mod 11:

2 4 8 5 10 9 7 3 6 1

Each number from 1 to 10 appears in the sequence.

Theorem 5 Let p be a prime. There is an a such that for every 1 ≤ b ≤
p− 1, there is 1 ≤ x ≤ p− 1 such that ax ≡ b (mod p).

9

It is not always the case that a = 2. The powers of 2 mod 7 are 2, 4, 1 after
which the sequence repeats and we never get 3, 5, or 6.

The proof of Theorem 5 is long, and we will give it in section 2.5. For
now, we want to look at some of its consequences.

Corollary 6 Let a be as in Theorem 5. Then ap−1 ≡ 1 (mod p).

Proof: We know that ad ≡ 1 for some 1 ≤ d ≤ p − 1. If d < p − 1, the
sequence of powers of a would start repeating before we got all the numbers:
ad+1 ≡ a, ad+2 ≡ a2, etc.

Corollary 7 For any b 6≡ 0, bp−1 ≡ 1 (mod p).

Proof: Let a be as in Theorem 5. Using Corollary 6

bp−1 ≡ ax(p−1) ≡
(
ap−1

)x ≡ 1

Corollary 8 If x ≡ y (mod (p− 1)), then bx ≡ by (mod p)

Proof: For some integer r, y = r(p− 1) + x and by Corollary 7

by ≡
(
bp−1

)r
bx ≡ bx (mod p)

Lemma 9 Let b 6≡ 0, d the smallest positive number such that bd ≡ 1. Then
for any e > 0 with be ≡ 1 d divides e evenly. In particular, by Corollary 7, d
divides p− 1 evenly.

Proof: If d does not divide e, then e = dr + s for some 0 < s < d, but

bs ≡ be
(
bd

)−r ≡ 1

would contradict the definition of d.

2.4 Primitive roots

Recall that theorem 5 says that if p is a prime, there is an a such that the
equation

ax ≡ b (mod p)

has a solution for any b 6≡ 0. Such an a is called a primitive root of p, and x
is called the discrete logarithm of b.

10

We showed in the beginning of section 2 that it is easy to obtain b given
a and x. Finding x given a and b is much harder. Many modern encryption
systems are based on the fact that no efficient way of computing discrete
logarithms is known.

Lemma 10 Let b, d be as in Lemma 9. If d = p − 1, then b is a primitive
root.

Proof: If 1 ≤ K < L ≤ p− 1 and bK ≡ bL, then bL−K ≡ 1. Since this can’t
happen by assumption, the first p−1 powers of b must all be different, hence
must include all numbers between 1 and p− 1.

It is often possible to find a primitive root if p− 1 has a small number of
prime divisors. We will use p = 1223 as an example. p− 1 = 2 · 13 · 47. By
Lemmas 10 and 9, if a is not a primitive root, then we will either have a26,
a94, or a611 ≡ 1 (mod 1223). a = 2 and 3 fail, but a = 5 satisfies all three
conditions, so it is a primitive root. (we could tell that a = 4 would not be
a primitive root without testing. Why?)

It is easy to show that, if a is a primitive root, ax is a primitive root if and
only if (x, p − 1) = 1. In this example, this means the number of primitive
roots is

1222
(

1

2

) (
12

13

) (
46

47

)
= 552

Thus, if we had just chosen a at random, the probability that it would be a
primitive root is ≈ .45. Choosing a at random and testing until we found a
primitive root would not be expected to take too long.

This is an example of a probabilistic algorithm. It is possible for it to take
a long time, but the amount of time needed on average is reasonably small.
We will see many other probabilistic algorithms later.

2.5 Proof of Theorem 5

This proof unfortunately requires many lemmas. It is probably a good idea
to skip over the lemmas as much as possible on a first reading.

We begin with three preliminary results about greatest common divisors,
which may be intuitive.

Lemma 11 If (a, b) = 1 and (a, c) = 1, then (a, bc) = 1.

11

Proof: By Theorem 1, there are integers x, y, w, z with ax+by = aw+cz = 1.
Together these imply

ax + b(awy + czy) = 1 = a(x + bwy) + bc(zy)

which is impossible if (a, bc) > 1.

Lemma 12 If a divides b and (b, c) = 1, then (ab, c) = 1.

Proof: Let bx + cy = 1 and b = az. Then

1 = bx + cy = b2x2 + bxcy + cy = ab(x2z) + c(bxy + y)

Lemma 13 If (a, b) = 1, cb is divisible by a, and ca is divisible by b, then c
is divisible by ab.

Proof: Let ax + by = 1, cb = aw, and ca = bz. Then

c = c(ax + by)2 = ca2x2 + cb2y2 + 2abcxy = ab(x2z + y2w + 2cxy)

The key step of the proof begins with any x 6≡ 0. Let d be the smallest
positive number for which xd ≡ 1 (there must be such a d ≤ p − 1 since
xK ≡ xL implies xK−L ≡ 1). By Lemma 10, if d = p − 1, x is a primitive
root. If d < p − 1, we will find t with ti 6≡ 1 for all 0 < i ≤ d. If t is
not a primitive root, we repeat the process, this time with x = t. Since the
exponent d increases each time, we eventually obtain a primitive root.

Lemma 14 There are at most d solutions to a congruence involving a poly-
nomial of degree d:

xd + α1x
d−1 + . . . αd ≡ 0 (mod p)

In particular, there are at most d x with xd ≡ 1.

Proof: This can be proved in the same way as the corresponding theorem
in ordinary algebra: if x = β is a solution, the polynomial can be written as
(x− β) times a polynomial of degree d− 1, which by induction has ≤ d− 1
solutions.

We return to the proof of Theorem 5.2 The sequence

x x2 x3 . . . xd ≡ 1 (mod p)
2This proof uses ideas of Michael Fischer, who pointed out an error in an earlier version.

12

consists of d different solutions of xd ≡ 1. If d < p − 1, let y 6≡ 0 be
any non-member of the sequence, with e the smallest positive number with
ye ≡ 1. If e > d, we may take t = y, so we will assume e ≤ d from now on. By
Lemma 14, yd 6≡ 1, which implies e does not divide d and e/(d, e) > 1. We will
use x and y to construct a number t such that ti 6≡ 1 for all 0 < i < de/(d, e).
The construction is based on two lemmas:

Lemma 15 Suppose that (a, b) = 1 and that a, b are the smallest positive
numbers for which ua ≡ vb ≡ 1. If k > 0 and (uv)k ≡ 1, then k is divisible
by ab.

Proof: Since (uv)ka ≡ 1 ≡ vka, Lemma 9 implies ka is divisible by b.
Similarly kb is divisible by a, and Lemma 13 gives the desired result.

Lemma 16 Let c = (d, e), d′ = d/c, e′ = e/c. There are m,m′ such that
(i) mm′ = c and (ii) (d′m, e′m′) = 1.

Proof: Let m be the largest divisor of c for which (m, e′) = 1, m′ = c/m.
The maximality of c implies (d′, e′) = 1. By Lemma 11, (md′, e′) = 1.

The maximality of m and Lemma 12 implies (m,m′) = 1. Since (d′, e′) =
1 implies ((d′,m′), e′) = 1, Lemma 11 implies (m(d′,m′), e′) = 1. Thus the
maximality of m implies (d′,m′) = 1. Lemma 11 now implies (md′,m′) = 1.

Applying Lemma 11 to the conclusions of the preceding paragraphs yields
(d′m, em′) = 1.

We can finally complete the proof of Theorem 5. With the notation of
Lemma 16, let t = xm′

ym. For u = xm′
, ua 6≡ 1 for 0 < a < md′. A

similar assertion holds for v = ym. The other conditions of Lemma 15 are
satisfied, and we can conclude that tk ≡ 1 if and only if k is a multiple of
md′m′e′ = de/c.

This proof does not give us an efficient procedure for finding a primitive
root for large primes p, but the reason may not be obvious. The steps implicit
in the lemmas can all be carried out efficiently. The one problem is the choice
of y, which was required to be a non-member of the set of powers of x. It
is too inefficient to list all the powers of x if d is large, and no significantly
better way of finding a non-member is known.

13

3 Encryption techniques based on powers and

congruences

3.1 The Diffie-Hellman key exchange procedure

A and B are communicating. C hears everything A and B say. A and B
want to agree on a number, without C knowing what the number is. It may
be, for example, that A and B plan to use the number as the key for future
encoded messages. The procedure (also often called a protocol):

A and B agree on a (large) prime p and a primitive root a. These numbers
are also known to C. A secretly chooses a (large) number X1, B secretly
chooses X2. aX1 and aX2 mod p are publicly announced (hence known to C).
The secret number will be S = aX1X2 mod p.

A calulates S ≡
(
aX2

)X1

B calculates S ≡
(
aX1

)X2

A possible drawback to this system is that neither A nor B controls what S
is. If S is not a satisfactory number, they may have to repeat the protocol.

Diffie and Hellman suggest the procedure can also be used in a situation
in which n people must find, for each pair of people, an agreed-upon number.
For 1 ≤ i, j ≤ n the number is aXiXj .

3.2 The Rivest-Shamir-Adleman public key system

A sets up a system so that anyone can send him an encoded message, but
only A will be able to decode it. The message is represented as a number
M . The encoding is done by a publicly known function f(M), with A the
only person who knows how to compute f−1. A chooses two large primes p,
q which he keeps secret. He announces n = pq and another number d, with
(d, p − 1) = (d, q − 1) = 1 (one way to do this is to choose d a prime larger
than p/2 and q/2.) The encoding is

f(M) ≡ Md mod n

where M and f(M) are both ≤ n− 1. We have seen f can be computed in
a realistic amount of time even if M , d, n are many digits long.

A computes M from Md using his knowledge of p, q. By Corollary 8,

If de ≡ 1 (mod (p− 1)) then
(
Md

)e ≡ 1 (mod p)

14

Similarly
(
Md

)e ≡ M (mod q) if de ≡ 1 (mod (q − 1)). e satisfies these two

conditions if ed ≡ 1 (mod (p− 1)(q − 1)). Theorem 1 says we can let e = x,
where x is a solution of

dx + (p− 1)(q − 1)y = 1

Since
(
Md

)e − M is divisible by p and by q, it is divisble by pq, hence we

can recover M from Md by taking to the e-th power mod pq.

It is crucial to the security of this system that knowledge of n does not
allow an eavesdropper to calculate p and q. The crude approach of dividing n
by all numbers up to

√
n would take ∼ 1050 steps for a 100-digit n. However,

many famous mathematicians have been unable to devise significantly better
factoring algorithms, and this problem has been studied for at least 100 years.

One practical difficulty in using this system is the need to do calculations
with many-digit numbers, especially to find primes. Another difficulty is
that the inventors of this system have patented it. Amateur programmers
who have posted implementations on electronic bulletin boards have received
letters from “RSA Security, Inc” warning of possible patent infringement.

3.3 A public key system as hard as factoring

It is possible in theory that there is some way of computing f−1 for the
system in the previous section that does not involve determining p and q. In
the original RSA paper, the authors say

It may be possible to prove that any general method of break-
ing our scheme yields an efficient factoring algorithm. This would
establish that any way of breaking our scheme must be as diffi-
cult as factoring. We have not been able to prove this conjecture,
however.

To see the difficulties involved in trying to prove such a thing, suppose that
one could show that knowledge of a ciphertext f(M) and a plaintext M
enabled one to find p and q. Then one could factor n as follows:

1. Choose any M .

2. Compute f(M). [Remember, we are assuming f is publicly available.
Furthermore, f(M) can’t be too hard to compute, or the code would
be impractical.]

15

3. Use the assumed method to obtain p, q.

In words, we are unable to distinguish between the situation in which f(M)
is obtained from M (easy) and the (presumably difficult) situation in which
M is obtained from f(M).

Rabin has suggested an alternative to the RSA system in which there is a
direct connection to factoring. As in RSA, n = pq is announced publicly, with
primes p, q kept secret. For technical reasons, we assume p, q ≡ 3 (mod 4).
The encoding function is

f(M) ≡ M2 (mod n)

The way we avoid the difficulty described above is that there are four num-
bers M1,M2,M3,M4 with f(Mi) ≡ f(M). The key facts are:

1. If p, q are known, it is easy to compute all the Mi given f(M).

2. If we are given n, f(M), and all the Mi, we can calculate p, q.

We are not able to obtain p, q from just one of the Mi, so the approach based
on M and f(M) described above won’t work. One drawback of this system
is that, even with knowledge of p and q, one can only say the number sent is
one of the four Mi, without being able to identify which one. In practice, this
is not serious, since it is very unlikely that more than one of the Mi would
correspond to a feasible message.

proof of 1: Since p ≡ 3 (mod 4), there is an integer k with 4k = p + 1.
If x ≡ (f(M))k (mod p), then using Corollary 8:

x2 ≡
((

M2
)k

)2

≡ M4k ≡ M2 (mod p)

Similarly if y ≡ (f(M))L (mod q) [4L = q + 1], then y2 ≡ M2 (mod q). The
Mi are given from Corollary 4 by

M1 ≡ x (mod p) M2 ≡ x (mod p) M3 ≡ −x (mod p) M4 ≡ −x (mod p)
M1 ≡ y (mod q) M2 ≡ −y (mod q) M3 ≡ y (mod q) M4 ≡ −y (mod q)

proof of 2: If we know the Mi, there will be two like M1 and M3 above
with M1 + M3 ≡ 0 (mod p) and M1 + M3 6≡ 0 mod q. Thus we can calculate
(M1 + M3, n) to obtain p.

16

One problem with this system is that a person with access to a “black
box” that computes f−1 could quickly discover p, q, even if we assume that
the person trying to break the code gets only one of the Mi, chosen randomly.
The attacker keeps generating pairs M , f(M) until he gets an Mi with (M +
Mi, n) = p or q.

3.3.1 Computing square roots modulo a prime

In the previous section, we assumed the primes were of the form 4n + 3
in order to make the square root calculation as easy as possible. However,
square roots can be efficiently calculated for any prime.

Let p− 1 = 2ke, where e is odd. Define the sets

S0 = {a|ae ≡ 1 (mod p)}
S1 = {a|a2e ≡ 1 (mod p)} T0 = S1 \ S0 = {a|ae ≡ −1 (mod p)}

.

Sk−1 = {a|a2k−1e ≡ 1 (mod p)} Tk−2 = Sk−1 \ Sk−2 = {a|a2k−2e ≡ −1 (mod p)}

If a is a square, it must be in Sk−1. Thus the sets S0 and Ti, 0 ≤ i ≤ k − 2
partition the squares. Furthermore, by starting with ae and squaring, it is
possible to identify which member of the partition includes a.

If a ∈ S0, (
a(e+1)/2

)2 ≡ aea ≡ a,

so it is easy to calculate a square root of a. (when p = 4n + 3, all a ∈ S0)

Let b be a non-square mod p. Since b2(k−1)e ≡ −1 (mod p) for all non-
squares, it is easy to find one.

We argue by induction on i that square roots can be efficiently calculated
for a ∈ Si. We have seen that this is the case for S0. If a ∈ Si+1 \ Si = Ti,
there is an even m with abm ∈ Si−1. Specifically, if m = 2k−1−i,

(abm)2ie ≡ a2ieb2k−1e ≡ (−1)(−1) ≡ 1

Since m is even, division of a square root of abm by bm/2 gives a square root
of a.

17

