
Some Mathematical Techniques in
Cryptography and Related Fields

Charles Blair
c-blair@uiuc.edu

c©1991,1992,1993 by the author

Contents

1 Subset-Sum (Knapsack) problems and their uses 2
1.1 Subset-sum problems are hard 2
1.2 Uses of the subset-sum problem 3

1.2.1 Computer passwords 3
1.2.2 Message verification . 4

2 Encryption Systems 4

3 Introduction to Number Theory 5
3.1 Congruences . 5
3.2 The Greatest Common Divisor 5
3.3 Powers modulo a prime . 7

4 A public key system as hard as factoring 9

5 Probabilistic Encryption 10

6 An Unbreakable Encryption System 11

7 A recent pseudo-random number generator 12

1

1 Subset-Sum (Knapsack) problems and their

uses

1.1 Subset-sum problems are hard

A subset of the numbers

267 493 869 961 1000 1153 1246 1598 1766 1922

adds up to 5842. Spend a few minutes trying to find such a subset. Whether
you succeed or not, I hope you are convinced the task is not trivial.

This is an example of a subset-sum problem. In general, we are given n
natural numbers ai and a target number T and asked to find a S ⊂ {1, . . . , n}
with ∑

i∈S

ai = T (∗)

A seemingly simpler problem is the subset-sum decision problem. For a given
ai and T , decide whether there is an S for which (∗) holds, without being
required to identify such an S. However, it can be proved that the decision
problem is just as difficult as the subset-sum problem in this sense:

Theorem 1 Suppose we had a method of solving the subset-sum decision
problem. Then we could solve a subset-sum problem using the assumed method
n times.

(the n is not particularly important— the main thing is that the number of
uses of the method is not too large.)

Proof: Begin by using the method to decide if T is a sum of the ai—
if not, we can stop immediately. Then use the method to determine if (∗)
holds for some S ⊂ {2, . . . , n}. If the answer is yes, we ignore a1 for the
rest of the analysis. If the answer is no, we know we must have 1 ∈ S. In
this second case, we continue by using the method to decide whether there
is S ⊂ {3, . . . , n} with ∑

i∈S

ai = T − a1

A yes answer means we can assume 2 /∈ S, otherwise 2 ∈ S.

The idea of this proof is more important than the specific result. We show
that one problem is as difficult as another by showing that a method of solving

2

the supposedly easier problem can be used to solve another problem. This
involves constructing one or several easier problems whose solution answers
the hard problem.

Using more elaborate versions of the techniques in Theorem 1, it can be
shown that a method of solving the subset-sum decision problem could be
used to solve many other problems, including:

• Factoring

• The Travelling Salesman Problem

• Any Integer Programming Problem

Don’t worry if you are not familiar with the details of these problems. The
important point is that they are all well-known problems for which many
people have been unable to find efficient solution methods, which makes it
unlikely that there is a method which solves all subset-sum decision problems
efficiently.

The discussion above makes it plausible that some subset-sum problems
are difficult. Further, there is some evidence that the “typical” subset-sum
problem is not easy. V. Chvatal1 has shown that if the ai and T are randomly
chosen, then with high probability (i) there will be no S for which (∗) holds
and (ii) certain simple ways of proving this will not work.

1.2 Uses of the subset-sum problem

1.2.1 Computer passwords

A computer needs to verify a user’s identity before allowing him or her access
to an account. The simplest system would have the machine keep a copy of
the password in an internal file, and compare it with what the user types. A
drawback is that anyone who sees the internal file could later impersonate
the user.

I believe this alternative is actually implemented on some systems: the
computer generates a large number (say 500) of ai. They are stored in the
internal file. A password is a subset of {1, . . . , 500}. (in practice, there is a
program to convert a normal sequence-of-symbols password to such a subset.)

1“Hard Knapsack Problems,” Operations Research, vol. 28, pp 1402–1411

3

Instead of having the password for the user, the computer keeps the total
associated with the appropriate subset. When the user types in the subset,
the computer tests whether the total is correct. It does not keep a record of
the subset. Thus impersonation is possible only if somebody can reconstruct
the subset knowing the ai and the total.

1.2.2 Message verification

A sender (S) wants to send messages to a receiver (R). Keeping the message
secret is not important. However, R wants to be sure that the message he is
receiving is not from an imposter and has not been tampered with. S and R
agree on a set of ai (say 500) and a set of totals Tj (say 200). These numbers
may be publicly known, but only S knows which subsets of the ai correspond
to which Tj. The message sent by S is a subset of size 100 of {1, . . . , 200}.
He does this by sending 100 subsets of the ai corresponding to the message
he wants to send.

2 Encryption Systems

An encryption system is a procedure which takes the original message (plain-
text) and a small piece of information arranged in advance between sender
and receiver (the key) and creates an encoded version of the message (the
ciphertext).

Usually one assumes the person trying to break the code is only working
with the ciphertext. However, there are situations in which both plaintext
and ciphertext of a previously encoded message are available. For example, I
often keep encrypted versions of examinations on a mainframe computer, only
decoding them just before having them printed, and deleting the plaintext
file immediately afterward. If a student was able to look at my files, he could
keep a copy of the encoded test and compare this with the test he took. This
may be very useful in decoding future tests.

A more demanding standard is that a code may be safe against a chosen-
plaintext attack. We are imagining that the encryption is done by a machine,
and that unauthorized persons may have access to the machine, and may
type in any message to see how it is encrypted.

Example: Suppose the machine takes each 60-character line and writes
the characters in a different order. If we could do a chosen-plaintext attack,

4

we would use a message with all the characters different (all the small letters,
all the capital letters, and some digits, for example) to find out immediately
what permutation was being used.

Public-Key encryption carries the idea of a code that is safe from chosen-
plaintext attack one step further. The “bad guy” may not only type messages
on the encryption machine and note the encrypted version, he is allowed to
take the machine apart and see exactly how it works.

In the next section, we will present some material from number theory,
which can be used to construct a public-key system.

3 Introduction to Number Theory

3.1 Congruences

The congruence a ≡ b mod n (“a is congruent to b mod n”) says that, when
divided by n, a and b have the same remainder.

100 ≡ 34 mod 11 − 6 ≡ 10 mod 8

In the second congruence, we are using −6 = 8(−1) + 2. We always have
a ≡ b mod n for some 0 ≤ b ≤ n−1, and we are usually concerned with that
b. If a ≡ b mod n and c ≡ d, we can add or multiply

a + c ≡ b + d mod n ac ≡ bd mod n

Division does not always work: 6 ≡ 18 mod 12 but 3 6≡ 9 mod 12.

3.2 The Greatest Common Divisor

For a and b, the number (a, b) is the largest number which divides a and b
evenly.

(56, 98) = 14 (76, 190) = 38

Theorem 2 For any a, b there are integers x, y with ax + by = (a, b)

Proof: The equation can be solved by making a sequence of simplifying
substitutions:

30x + 69y = 3

5

30x′ + 9y = 3 [x′ = x + 2y]

3x′ + 9y′ = 3 [y′ = y + 3x′]

3x′′ + 0y′ = 3 [x′′ = x′ + 3y′]

It is easy to see that x′′ = 1, y′ = 0 is a solution to the final equation and we
get a solution to the original equation by working backwards:

x′ = x′′ − 3y′ = 1 y = y′ − 3x′ = −3 x = x′ − 2y = 7

We could also solve an equation like 30x + 69y = 15 by multiplying our
solution: y = −15, x = 35. It should be clear that the equation will have no
solution in integers if 15 is replaced by something that is not a multiple of
(30, 69) = 3.

All other integer solutions of 30x+69y = 15 may be obtained by changing
the first solution:

y = −15 +
30

3
t x = 35− 69

3
t for t integer

If we do the process illustrated on the previous page for any equation
ax+by = (a, b), we eventually get one of the coefficients as zero and the other
as (a, b). [In fact, this process is usually presented as “Euclid’s algorithm for
finding the greatest common divisor.”]

It is important that this process is feasible [on a computer] even if a and
b are several hundred digits long. It is easy to show that the larger of the
two coefficients decreases by at least 1/2 every two equations, hence that in
twenty equations the larger coefficient has decreased by 2−10 < 10−3, so a
600-digit number would not require more than 4000 equations. [this analysis
can be improved]

We pointed out earlier that division does not work with congruences. An
important application of Theorem 2 is that it does work for prime numbers.

Corollary 3 If p is a prime number, ar ≡ as mod p and a 6≡ 0, then r ≡ s.

Proof: Since p is a prime, (a, p) = 1, so Theorem 2 says there are integer x, y
with ax + py = 1. Hence

ax ≡ 1 mod p and r ≡ (1)r ≡ axr ≡ xar ≡ xas ≡ s mod p

6

Corollary 4 If p is a prime number and a 6≡ 0 mod p, then for any b, there
is y with ay ≡ b mod p.

Proof: We showed in the preceding proof that there is x with ax ≡ 1 mod p.
Let y = bx.

Corollary 5 (The “Chinese Remainder Theorem”) If (p, q) = 1, then
for any a, b, there is an n with

n ≡ a mod p and n ≡ b mod q

Proof: Theorem 2 implies there are integers x, y such that

px + a = qy + b so let n = px + a

3.3 Powers modulo a prime

The sequence
a a2 a3 . . . mod p

has many applications in cryptography. Before looking at theoretical prop-
erties, the example below (done using a pocket calculator) should make clear
that it is practical to compute these numbers, even when many digits are
involved.

Suppose we want to compute 432678 mod 987. The basic trick is to start
with a number and keep squaring:

4322 = 186624 ≡ 81 4324 ≡ 812 ≡ 639 4328 ≡ 6392 ≡ 690 . . . 432512 ≡ 858

Since 678 = 512 + 128 + 32 + 4 + 2,

432678 ≡ (81)(639) . . . (858) ≡ 204 (I hope!)

Calculations with exponents involve not-too-many multiplications. If the
numbers have several hundred digits, however, it is necessary to design special
subroutines to do the multiplications (see Knuth, volume 2).

Let us look at the sequence of powers of 2 mod 11:

2 4 8 5 10 9 7 3 6 1

Each number from 1 to 10 appears in the sequence.

7

Theorem 6 Let p be a prime. There is an a such that for every 1 ≤ b ≤
p− 1, there is 1 ≤ x ≤ p− 1 such that ax ≡ b mod p.

It is not always the case that a = 2. The powers of 2 mod 7 are 2, 4, 1 after
which the sequence repeats and we never get 3, 5, or 6.

The proof of Theorem 6 is long, and can be found in number theory
books. For now, we want to look at some of its consequences.

Corollary 7 Let a be as in Theorem 6. Then ap−1 ≡ 1 mod p.

Proof: We know that ad ≡ 1 for some 1 ≤ d ≤ p − 1. If d < p − 1, the
sequence of powers of a would start repeating before we got all the numbers:
ad+1 ≡ a, ad+2 ≡ a2, etc.

Corollary 8 (Fermat’s Theorem) For any b 6≡ 0, bp−1 ≡ 1 mod p.

Proof: Let a be as in Theorem 6. Using Corollary 7

bp−1 ≡ ax(p−1) ≡
(
ap−1

)x ≡ 1

Corollary 9 If x ≡ y mod (p− 1), then bx ≡ by mod p

Proof: For some integer r, y = r(p− 1) + x and by Corollary 8

by ≡
(
bp−1

)r
bx ≡ bx mod p

Lemma 10 Let b 6≡ 0, d the smallest positive number such that bd ≡ 1. Then
for any e > 0 with be ≡ 1 d divides e evenly. In particular, by Corollary 8, d
divides p− 1 evenly.

Proof: If d does not divide e, then e = dr + s for some 0 < s < d, but

bs ≡ be
(
bd

)−r ≡ 1

would contradict the definition of d.

8

4 A public key system as hard as factoring

The system we present here is due to Michael Rabin. It is a modification of
the famous system of Rivest, Shamir, and Adleman.2 The person who wishes
to receive messages announces a number n publicly, with n = pq for primes
p, q that are kept secret. For technical reasons, we assume p, q ≡ 3 mod 4.

The message being transmitted is converted to a number M between
1 and n, and the encoding function is simply:

f(M) ≡ M2 mod n

Strictly speaking, there is a problem with this encoding function, in that
there are four different M which will all give the same f(M). (example:
let n = 133 = 7(19). The encoding of M = 15 is 92 ≡ 225 mod 133, but
M = 34, 99, or 118 also have f(M) = 92.3

However, this is not serious from a practical point of view. We would be
implementing this with p, q at least one hundred digits long, and it is very
unlikely that more than one of the four numbers would correspond to an
intelligible message. The key facts about this system are:

1. If p, q are known, it is easy to compute all the Mi given f(M).

2. If we are given n, f(M), and all the Mi, we can calculate p, q.

The problem of devising an efficient algorithm for factoring large numbers
n has been unsolved in spite of intense efforts for several hundred years, so
the second point provides substantial reassurance about the strength of the
system. (note, by the way, the similarity to the situation in Theorem 1. Just
as before, we will prove that an efficient method of solving one problem gives
an efficient method of solving another one)

proof of 1: Since p ≡ 3 mod 4, there is an integer k with 4k = p + 1. If
x ≡ (f(M))k mod p, then using Corollary 8:

x2 ≡
((

M2
)k

)2

≡ M4k ≡ M2 mod p

2Communications of the Association for Computing Machinery 21, 120–126. See also
Knuth, The Art of Computer Programming, Vol. 2 (second edition), 386–389.

3This is not as mysterious as it may look. Note that 15 ≡ 1 mod 7 and 15 ≡ 15 mod 19,
while 118 ≡ −1 mod 7 and 118 ≡ −15 mod 19.

9

Similarly if y ≡ (f(M))L mod q [4L = q + 1], then y2 ≡ M2 mod q. The Mi

are given from Corollary 4 by

M1 ≡ x mod p M2 ≡ x mod p M3 ≡ −x mod p M4 ≡ −x mod p
M1 ≡ y mod q M2 ≡ −y mod q M3 ≡ y mod q M4 ≡ −y mod q

proof of 2: If we know the Mi, there will be two like M1 and M3 above
with M1 + M3 ≡ 0 mod p and M1 + M3 6≡ 0 mod q. Thus we can calculate
(M1 + M3, n) to obtain p.

5 Probabilistic Encryption

We have presented an encryption function f such that the message M pre-
sumably cannot be computed from the encoding f(M). A further concern
arises as to whether, even if the adversary cannot identify M exactly, he
may be able to obtain some partial information about M , for example tell
whether M is an even number, a square, a power of 2, etc.

During World War II, the German general staff often began secret mes-
sages with several paragraphs that did not change from one message to the
next. This was very useful to the English cryptanalysts. It would be nice to
know that such patterns will not occur in the systems we use.

Probabilistic encryption4 is a system designed to avoid these problems.
Instead of f(M) being a single number, the calculation of f(M) involves the
sender doing some things randomly during the calculation, so that M has
many different encryptions. Indeed, the probability should be very close to
1 that if the same message is sent twice, the encryptions should be different.

As with the Rabin system, the receiver publically announces n = pq,
while keeping p and q secret. In this system, the crucial assumption is that,
for a given number k, it is computationally infeasible for somebody who does
not know p, q to tell whether there is an x with x2 ≡ k mod n, in other
words, whether k is a square mod n (like factoring, the problem of finding
an efficient algorithm for this task has been unsolved for a long time). In
addition to announcing n, the receiver announces a single number w which
is guaranteed not to be a square.

4The idea is due to Goldwasser and Micali, Journal of Computer & System Sciences 28,
pp. 270–299. See also Primality and Cryptography, by E. Kranakis]

10

The sender converts his message into a sequence of 0’s and 1’s. Corre-
sponding to each 0, the sender chooses a random number 1 < r < n, and
transmits r2 mod n. (for an application, n would be at least 100 digits long,
so the chance of sending an easily detectable “real” perfect square would be
negligible) Corresponding to each 1, wr2 mod n is transmitted (this is certain
not to be a perfect square). A separate random r is used for each bit of the
message, leading to an enormous number of different possible encryptions.

The facts that allow the receiver to distinguish squares from non-squares
are:

1. a is a square mod n if and only if it is a square mod p and a square
mod q.

2. Let h = p−1
2

. If a is a square mod p, ah ≡ 1 mod p. If a is not a square,
ah ≡ −1.

6 An Unbreakable Encryption System

Yes, there really is such a thing. Further, it does not depend on the advanced
mathematics of the preceding sections.

Assume for simplicity that your message is 500 characters long, with each
character being one of 120 possibilities (including a lot of possible symbols).
Arrange in advance with the sender (this is not a public-key system) a table
of 500 random numbers, each between 1 and 120. To encode your message,
shift each character by the amount specified by the corresponding entry in
the table. Thus,if the mumber in the table was 5, you would replace an “e”
by a “j.”

What makes this system unbreakable? There is no way for the bad guys
to guess what the random table looks like. For any 500-character plaintext,
there is some table of random numbers which would generate the actual
ciphertext, and one table is as likely as another.

This system is called a one-time pad. It is crucial that you don’t use the
same table to generate two different random messages. If you did, it would
become possible to do analysis based on letter frequencies, etc.

One-time pads seem practical in situations where one agent is communi-
cating with a central command. They become less attractive if several agents

11

may need to communicate with each other. The one-time feature is lost if
X and Y inadvertently use the same page to talk as W and Z are using.
Also capture of X’s equipment makes it possible to overhear a conversation
between Y and Z.

7 A recent pseudo-random number generator

The preceding two sections both made use of random numbers, so I will
describe a random number generator with some desirable properties here.
Before I do so, perhaps a cautionary tale about a system-supplied RNG is in
order:

I wrote a program to play backgammon. The RNG supplied by
C was used to roll the dice. I soon discovered that it never gave the
same number on two consecutive rolls!

The following simple generator was proposed in the 1989 Foundations of
Computer Science.

Choose 1 ≤ ai ≤ 2k randomly, for 1 ≤ i ≤ n, with n < k < 1.5n. Choose
S ⊂ {1, . . . n} randomly. Add the ai corresponding to S mod 2k to obtain
a sequence of k bits. Use the first k − n bits as output from the generator.
The remaining n bits give you a new S, for which you obtain a new sum. At
each step, you get k − n random bits.

The authors of the paper (Impagliazzo and Naor) prove that any method
of predicting the output of this generator could be used to provide an efficient
solution method for the subset-sum problem.

12

