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Public Key Cryptography Overview

• Proposed in Diffie and Hellman (1976) “New Directions 
in Cryptography”

– public-key encryption schemes

– public key distribution systems

• Diffie-Hellman key agreement protocol

– digital signature

• Public-key encryption was proposed in 1970 by James 
Ellis in a classified paper made public in 1997 by the 
British Governmental Communications Headquarters

• Diffie-Hellman key agreement and concept of digital 
signature are still due to Diffie & Hellman
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Public Key Encryption

• Public-key encryption
– each party has a PAIR (K, K-1) of keys: K is the public key 

and K-1 is the private key, such that

DK-1[EK[M]] = M

• Knowing the public-key and the cipher, it is 
computationally infeasible to compute the private key

• Public-key crypto systems are thus known to be 
asymmetric crypto systems

• The public-key K may be made publicly available, e.g., 
in a publicly available directory

• Many can encrypt, only one can decrypt
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Public-Key Encryption Needs

One-way Trapdoor Functions

• Given a public-key crypto system,

– Alice has public key K

– EK must be a one-way function, i.e.:                    

knowing y=EK [x], it should be difficult to find x

• However, EK must not be one-way from Alice’s 

perspective. The function EK must have a 

trapdoor such that the knowledge of the 

trapdoor enables Alice to invert it
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Trapdoor One-way Functions

• Definition:

• A funcEon f: {0,1}* → {0,1}* is 

a trapdoor one-way function 

iff f(x) is a one-way function; 

however, given some extra 

information it becomes 

feasible to compute f-1:      

given y, find x s.t. y = f(x)
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RSA Algorithm

• Invented in 1978 by Ron Rivest, Adi Shamir and Leonard 

Adleman

– Published as R. L. Rivest, A. Shamir, L. Adleman, "On Digital Signatures 

and Public Key Cryptosystems", Communications of the ACM, vol. 21 

no 2, pp. 120-126, Feb 1978

• Security relies on the difficulty of factoring large composite 

numbers

• Essentially the same algorithm was discovered in 1973 by 

Clifford Cocks, who works for the British intelligence
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Zpq*

• Let p and q be two large primes

• Denote their product n=pq.

• Zn*= Zpq* contains, by definition, all integers in 

the range [1,pq-1] that are relatively prime to 

both p and q

• The size of Zn* is

Φ(pq) = (p-1)(q-1)=n-(p+q)+1

• For every x ∈ Zpq*, x(p-1)(q-1) ≡ 1 mod n
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Exponentiation in Zpq*

• Motivation: We want to use exponentiation for 

encryption

• Let e be an integer, 1<e<(p-1)(q-1)

• When is the function f(x)=xe a one-to-one

function in Zpq*?

• If xe is one-to-one, then it is a permutation in Zpq*
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Exponentiation in Zpq*

• Claim: If e is relatively prime to (p-1)(q-1) then 

f(x)= xe is a one-to-one function in Zpq*

• Proof by constructing the inverse function of f() 

As gcd{e,(p-1)(q-1)}=1, then there exists d and 

k s.t.   � ed=1+k(p-1)(q-1)

• Let y= xe, then yd=(xe)d=x1+k(p-1)(q-1)=x (mod pq), 

i.e., g(y)= yd is the inverse of f(x)= xe.
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RSA Public Key Crypto System

• Key generation:
– Select 2 large prime numbers of about the same size, 

p and q

– Compute n = pq, and Φ(n) = (p-1)(q-1)

– Select a random integer e, 1 < e < Φ(n), s.t.            
gcd(e, Φ(n)) = 1

– Compute d, 1< d < Φ(n) s.t. ed ≡ 1 mod Φ(n)

(using the Extended Euclidean Algorithm)

• Public key: (e, n)

• Private key: d

• Note: p and q must remain secret
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RSA Description (cont.)

• Encryption

– Given a message M, 0 < M < n M ∈ Zn- {0}

– use public key (e, n)

– compute C = Me mod n C ∈ Zn- {0}

• Decryption

– Given a ciphertext C, use private key (d)

– Compute Cd mod n = (Me mod n)d mod n =

= Med mod n = M
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RSA Example (1)

• p = 17, q = 11, n = 187, Φ(n) = 160

• Let us choose e=7, since gcd (7,160)=1

• Let us compute d: de=1 mod 160 , d=23 (in 

fact, 23x7=161 = 1 mod 160

• Public key = {7,187}

• Secret key = 23
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RSA Example (1) cont.

• Given message (plaintext) M= 88 

(note that 88<187)

• Encryption: 

C = 887 mod 187 = 11

• Decryption: 

M = 1123 mod 187 = 88
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RSA Example (2)

• p = 11, q = 7, n = 77, Φ(n) = 60

• e = 37, d = 13 (ed = 481; ed mod 60 = 1)

• Let M = 15. Then C ≡ Me mod n

C ≡ 1537 (mod 77) = 71

• M ≡ Cd mod n

M ≡ 7113 (mod 77) = 15
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Why does RSA work?

• Need to show that (Me)d (mod n) = M, n = pq

• Since ed ≡ 1 (mod Φ(n))

We have that ed = tΦ(n) + 1, for some integer t.

• So:
(Me)d (mod n) = MtΦ(n) + 1 (mod n)=

(MΦ(n))t M1 (mod n)=1tM (mod n) = M (mod n)

as desired.
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RSA Implementation

• n, p, q

• The security of RSA depends on how large n is, 

which is often measured in the number of bits 

for n. Current recommendation is 1024 bits for n.

• p and q should have the same bit length, so for 

1024 bits RSA, p and q should be about 512 bits.

• … but p-q should not be small!
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RSA Implementation

• Select p and q prime numbers

• In practice, select random numbers, then test 

for primality

• Many implementations use the Rabin-Miller 

test, (probabilistic test) 
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RSA Implementation

• e

• e is usually chosen to be 

3 or 216 + 1 = 65537

– Binary: 11 or 

10000000000000001

• In order to speed up the 

encryption

• the smaller the number

of 1 bits, the better

• why? 19



Square-and-Multiply Algorithm for

Modular Exponentiation

• Modular exponentation means “Computing xc mod n”

• In RSA, both encryption and decryption are modular 
exponentations.

• Obviously, the computation of xc mod n can be done using 
c-1 modular multiplication, but this is very inefficient if c is 
large.

• Note that in RSA, c can be as big as Φ(n) – 1.

• The well-known “square-and-multiply” approach reduces 
the number of modular multiplications required to 
compute xc mod n to at most 2k, where k is the number of 
bits in the binary representation of c.
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Square-and-Multiply Algorithm for

Modular Exponentiation

• “Square-and-multiply” assumes that the exponent c is 
represented in binary notation, say :

� = ���
���

	
�
2�

Algorithm: Square-and-multiply (x, n, c = ck-1 ck-2 … c1 c0)

z=1

for i = k-1 downto 0 {

z = z2 mod n

if ci = 1 then z = (z * x) mod n

}

return z
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Square-and-Multiply Algorithm for

Modular Exponentiation: Example

• Let us compute 97263533 mod 11413

• x=9726, n=11413,  c=3533 = 110111001101 (binary form)

i ci z

11 1 12X 9726=9726

10 1 97262X 9726=2659

9 0 26592=5634

8 1 56342X 9726=9167

7 1 91672X 9726=4958

6 1 49582X 9726=7783

5 0 77832=6298

4 0 62982=4629

3 1 46292X 9726=10185

2 1 101852X 9726=105

1 0 1052=11025

0 1 110252X 9726=5761



Probabilistic Primality Testing

• In setting up the RSA Cryptosystem, it is necessary to generate

large « random primes ».

• In practice this is done by generating large random numbers

and then test them for primality using a probabilistic

polynomial-time Montecarlo algorithm like Solovay-Strassen

or Miller-Rabin algorithm.

• Both these algorithms are fast: an integer n can be tested in 

time that is polynomial in log2n, the number of bits in the 

binary representation of n

• However, there is a possibility that the algorithm claims that n 

is prime when it is not

• Running the algorithm enough times, one can reduce the 

error probability below any desired threshold. 23



Probabilistic Primality Testing

24

• How many random integers (of a specifiz size, say 500 bits) 

will need to be tested until we find one that is prime?

• The Prime Number Theorem states that the number of primes 

not exceeding N tends to N/ln N, for large N values.



RSA on Long Messages

• RSA requires that the message M is at 
most n-1 where n is the size of the 
modulus.

• What about longer messages?
– They are broken into blocks.

– Smaller messages are padded.

– CBC is used to prevent attacks regarding
the blocks.

• NOTE: In practice RSA is used to 
encrypt symmetric keys, so the 
message is not very long.
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Digital Signature

• The fact that the encryption and decryption 

operations are inverses and operate on the same set 

of inputs also means that the operations can be 

employed in reverse order to obtain a digital 

signature scheme following Diffie and Hellman’s 

model. 

• A message M can be digitally signed by applying the 

decryption operation to it, i.e., by exponentiating it 

to the dth power

– s = SIGN(M) = Md mod n 
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Digital Signature

• The digital signature can then be verified by applying 

the encryption operation to it and comparing the 

result with and/or recovering the message: 

– M = VERIFY (s) = se mod n 

• In practice, the plaintext M is generally some 

function of the message, for instance a formatted 

one-way hash of the message. 

• This makes it possible to sign a message of any 

length with only one exponentiation.
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Attacks against RSA
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Math-Based Key Recovery Attacks

• Three possible approaches:

1. Factor n = pq

2. Determine Φ(n)

3. Find the private key d directly

• All the above are equivalent to 

factoring n
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Knowing Φ(n) Implies Factorization

• If a cryptanalyst can learn the value of Φ(n), then he can 

factor n and break the system. In other words,

computing Φ(n) is no easier than factoring n

• In fact, knowing both n and Φ(n), one knows

n = pq

Φ(n) = (p-1)(q-1) = pq – p – q + 1 = n – p – n/p + 1

pΦ(n) = np – p2 – n + p

p2 – np + Φ(n)p – p + n = 0

p2 – (n – Φ(n) + 1) p + n = 0

• There are two solutions of p in the above equation.

• Both p and q are solutions. 30



Knowing Φ(n) Implies Factorization

• Example: suppose the cryptalyst has learned that n = 

84773093 and Φ(n)=84754668.

• Find out the two factors of n.
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Knowing Φ(n) Implies Factorization

• Example: suppose the cryptalyst has learned that n = 

84773093 and Φ(n)=84754668.

• Find out the two factors of n.

• Equation: p2 -18426p+84773093=0

• Solutions: 9539 and 8887
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Factoring Large Numbers

• RSA-640 bits, Factored Nov. 2 2005

• RSA-200 (663 bits) factored in May 2005

• RSA-768 has 232 decimal digits and was 

factored on December 12, 2009, latest.

• Three most effective algorithms are

– quadratic sieve

– elliptic curve factoring algorithm

– number field sieve
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Decryption attacks on RSA

• RSA Problem: Given a positive integer n that is a 
product of two distinct large primes p and q, a 
positive integer e such that gcd(e, (p-1)(q-1))=1, 
and an integer c, find an integer m such that me≡c
(mod n)
– widely believed that the RSA problem is 

computationally equivalent to integer factorization; 
however, no proof is known

• The security of RSA encryption’s scheme 
depends on the hardness of the RSA problem.
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Summary of Key Recovery Math-based

Attacks on RSA

• Three possible approaches:

1. Factor n = pq

2. Determine Φ(n)

3. Find the private key d directly

• All are equivalent

– finding out d implies factoring n

– if factoring is hard, so is finding out d
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Finding d: Timing Attacks

• Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems (1996), 
Paul C. Kocher

• By measuring the time required to perform 
decryption (exponentiation with the private key 
as exponent), an attacker can figure out the 
private key

• Possible countermeasures:
– use constant exponentiation time

– add random delays

– blind values used in calculations
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Timing Attacks (cont.)

• Is it possible in practice? YES !

OpenSSL Security Advisory [17 March 2003]

Timing-based attacks on RSA keys

================================

OpenSSL v0.9.7a and 0.9.6i vulnerability

----------------------------------------

• Researchers have discovered a timing attack on RSA keys, to which 
OpenSSL is generally vulnerable, unless RSA blinding has been turned on.

• RSA blinding: the decryption time is no longer correlated to the value of 
the input ciphertext

• Instead of computing cd mod n, choose a secret random value r and 
compute (rec)d mod n.

• A new value of r is chosen for each ciphertext
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