Transport:
How Applications Communicate

Week 2
Philip Levis

CS 144, Stanford University |

/ Layers (or 4)

— N W h U1 O N

Application
Presentation Application
Session
Transport segments Transport
Network packets Network
L|n.I< | frames inle
Physical bits/bytes

CS 144, Stanford University

— N W N

/ Layers (or 4)

/. Application

Application

4. Transport segments Transport

CS 144, Stanford University 3

Transport

¢ Provides inter-program communication
> |CMP: control messages to operating system
» UDP: unreliable datagrams to user programs
> TCP: reliable stream to user programs
e Evidenced by naming
> |P packets are addressed to hosts with addresses
> UDP and TCP segments are named to programs with ports
> |CMP is implicitly named to operating system/IP software

CS 144, Stanford University 4

IP Header

ver. | len |type of serv. total len
identification O[bM[fragment offset
TTL protocol checksum

source address

destination address

options

CS 144, Stanford University

32 bits (4 octets)

IP Header

VEr.

len

type of serv.

identification

TTL

protocol

— | ICMP
4 IP
6 TCP

source ada, |7 UDP

destination address

ffset

options

CS 144, Stanford University

32 bits (4 octets)

ICMP

¢ Internet Control Message Protocol, RFC 792
® Way for Internet hosts to send control information
e You'll work a lot with ICMP in lab 3 (router)

® Unreliable datagrams

type

code

checksum

data

CS 144, Stanford University

Example: type 3 is destination unreachable
code 0: net unreachable
code |:host unreachable
code 2: protocol unreachable
code 3: port unreachable...

|CMP: ping

® ping,a very basic tool!
® Source sends an ICMP Echo message
® Destination replies with an ICMP Echo Reply message

8 0 checksum
echo , :
identifier sequence number
echo reply 0 0 checksum
identifier sequence number

CS 144, Stanford University 8

|CMP: traceroute

® Send UDP segments to destination with increasing TTL

e |ICMP type | |:time to live exceeded

CS 144, Stanford University

0

checksum

first 64 bits of generating packet

UDP

® User Datagram Protocol, RFC 768
e Very thin layer on top of IP, just adds ports

® Unreliable, datagrams

source port

destination port

UDP len

checksum

CS 144, Stanford University

UDP: DNS

® Example UDP program: Domain Name System (DNY)

® Maps names like cs.stanford.edu to IP addresses
e UDP port 53

® | earn details about DNS in Week 5

CS144, Stanford University |

DNS Header Structure (RFC1035)

Header

Question

Answer

Authority
Additional

e QR:0=query, |=response
¢ OPCODE: O0=standard query
e RCODE: error code
® Flags
» AA:authoritative answer
» TC:truncated

» RD: recursion desired

» RA: recursion available

CS 144, Stanford University

ID

QR

OPCODE |AA]|TC|RD|RA

RCODE

QDCOUNT

ANCOUNT

NSCOUNT

ARCOUNT

IP

UDP

DNS

Encapsulation

ver. | len [type of serv. total len
identification O|D fragment offset
TTL protocol checksum

source address

destination address

source port destination port
UDP len checksum
1D fields
QDCOUNT ANCOUNT
NSCOUNT ARCOUNT

data

TCP

® Transmission Control Protocol, RFC 793
e Different abstraction: bidirectional, reliable byte stream
» Building block of most applications today
® Abstracts away entire network -- just a pipe between two programs

» One side reads what the other writes

e Application level controls communication pattern and payloads

> World Wide Web (HTTP)
> Skype
» BitTorrent

CS144, Stanford University | 4

Audacious ldea

® TCP: make a reliable data stream out of an unreliable network
» Can fail, but almost always explicitly detected (connection breaks)
» Assumes random errors, not malicious ones
® Part of a larger theme in computer systems, making robust, high
performance computing out of cheap, unreliable parts
» TCP from IP datagrams
> RAID: Redundant Array of Inexpensive Disks
> Early cloud computing systems (MapReduce, Hadoop, etc.)
> Domain Name System

CS144, Stanford University |5

How to Start!?

¢ Reliable communication typically benefits from have some state on each
end of a connection

> Need to be able to identify data to determine if it’s been delivered
> For a stream, need to know where in stream data is

® Problem: connection establishment
> How do you set up this state!

® Problem: connection teardown
» How do you clean up (reuse ports, etc.)?

CS 144, Stanford University |16

TCP Header

source port

destination port

sequence number

acknowledgment number

offset | reserved [U|A|P|R(S|F window
checksum urgent pointer
options padding

CS 144, Stanford University

32 bits (4 octets)

Connection Setup

source port

destination port

sequence number

acknowledgment number

offset | reserved [U|A|P|R(S|F window
checksum urgent pointer
options padding

CS 144, Stanford University

32 bits (4 octets)

3-way Handshake

® Active opener sends first packet

> SYN with sequence number

® Passive opener responds

> SYN with sequence number

> ACKs active opener’s SYN packet

e Active opener responds

> ACKs passive opener’s SYN packet

® Also support “simultaneous open”

> Two SYNs pass each other
» Each side ACKs the other

CS 144, Stanford University

aCtive Passive
SYN | —
—> | SYN/ACK
ACK | &
ﬂ
4 datg —)
SYN | —
— | SYN
)\»
SYN/ACK| &~ > [SYN/ACK
‘,_, —]
ﬂ
ACK | — » | ACK
« —>
<4 data —p
A /

TCP Setup FSM

CONNECT/SYN (Step 1 of the 3-way-handshake)

----------------- » unusual event
» client/receiver path (Start)_‘
CLOSE/- :
> server/sender path LISTEN/- A :
: CLOSE/-
Step 2 of the 3-way-handshake) SYN/SYN+ACK
(SEE y) LISTEN
Y
RST/- : : SEND/SYN
SYN ... L pappa y SYN
RECEIVED |, SYN/SYN+ACK (simultaneous open) .. SENT

Data exchange occurs
ACKI/-
>~ I -

SYN+ACK/ACK
(Step 3 of the 3-way-handshake)

. CLOSE/FIN

CLOSE/FIN FIN/ACK
CS144, Stanford Wniversity 20

Conceptual Model

® SYN message tells destination endpoint the starting sequence number

> Can’t send data until it acknowledges it knows the starting sequence number
o ACK of SYN tells source that this endpoint knows the starting seq no.
¢ Happens in both directions: bidirectional dream

CS 144, Stanford University 21

Connection established!
Now what!
How do we send data?

CS 144, Stanford University 22

Flow Control

® Don’t send more packets than receiver can process
e Receiver gives sender feedback

® Two basic approaches
> Stop and wait (lab |)
> Sliding window (lab 2)

CS 144, Stanford University 23

Finite State Machines

event causing state transition
actions taken on state transition

event
action

CS 144, Stanford University 24

Stop and W it

® At most one packet in flight at any time

® Sender sends one packet

® Receiver sends acknowledgment packet when it receives data
® On receiving acknowledgment, sender sends new data

e On timeout, sender resends current data

CS 144, Stanford University 25

Stop and Wait Problem

San Francisco

e

Boston

@

Bottleneck is 10Mbps
RTT is 100ms

CS 144, Stanford University

26

Stop and Wait Problem

San Francisco

e

Boston

@

Bottleneck is 10Mbps
RTT is 100ms

CS 144, Stanford University

At most |0 packets/second!
|20Kbps << |OMbps

27

Sliding Window

San Francisco

e

Boston

@

Bottleneck is 10Mbps
RTT is 50ms

CS 144, Stanford University

28

¢ Generalization of stop-and-wait:
allow multiple un-acked segments

¢ Bound on number of un-acked
segments, called window

® Can keep pipe full

Sliding Window Sender

¢ Every segment has a sequence number (SeqNo)

¢ Maintain 3 variables
> Send window size (SWYS)

> Last acknowledgment received (LAR)
> Last segment sent (LSS)

® Maintain invariant: (LSS - LAR) < SWS
® Advance LAR on new acknowledgment
® Buffer up to SWS segments

CS 144, Stanford University 29

Sliding Window Receiver

® Maintain 3 variables
> Receive window size (RWY)
> Last acceptable segment (LAS)
> Last segment received (LSR)

® Maintain invariant: (LAS - LSR) < RWS
® [f received packet is < LAS, send acknowledgment

> Send cumulative acks: if received 1, 2, 3, 5, acknowledge 3
> NOTE: TCP acks are next expected data (e.g., ack 4 in above example)

CS 144, Stanford University 30

RWS, SWS, and Sequence Space

® RWS = [,SWS = [,RWS < SWS

® Assuming packets not more than 2 RTTs:

> If RWS = |,“go back N” protocol, need SWS+| sequence numbers
> If RWS = SWS, need 2SWVS sequence numbers

® Generally need RWS+SWS sequence numbers per 2 RTTs of delay

CS 144, Stanford University 31

TCP Flow Control

e Receiver advertises RWS using window field
® Sender can only send data up to LAR + window

data sequence number

acknowledgment sequence number

window

CS 144, Stanford University 32

Sequence numbers

e TCP sequence numbers are in bytes: specifies where in the stream the
data in this particular segment resides

> Denotes state of forward stream, from source to destination of packet
> Sequence number 2,032, length 800 is bytes 2032-283 |
> Sequence number 123,400, length 1200 is bytes 123,400—124,599
¢ Acknowledgement number specifies state of stream in reverse direction

> Cumulative acknowledgements: specifies the first byte of the stream that hasn’t
been received

> |If stream from A to B started at sequence number 5,000, acknowledgement 5,201
sent from B means that B has received bytes 5,000—15,200 successfully

CS 144, Stanford University 33

Connection Teardown

source port

destination port

sequence number

acknowledgment number

offset | reserved |U|A|P[R(S|F window
checksum urgent pointer
options padding

CS 144, Stanford University

32 bits (4 octets)

34

Connection Teardown

® FIN bit says no more data to send
» Caused by close() or shutdown() on other end
® Both sides must send FIN to terminate a connection
e Typical teardown exchange:
> A — B:FIN, seq Sa,ack Sg
» B = A:ack Sa+
> B = A: FIN, seq Sg,ack Sa + 1
> A = B:ack Sg + |
e Can also have simultaneous close
e Can A and B forget about closed socket after final message!?

CS 144, Stanford University 35

Cleaning Up Safely

® Problems with closed socket
> What if final ack is lost in the network?
> What if the same port pair is immediately reused for a new connection!?
® Solution:“active” closer goes into TIME WAIT
> Active close is sending FIN before receiving one
> Keep socket around for 2MSL (twice the “maximum segment lifetime”)
e Can pose problems with servers
> OS has too many sockets in TIME WAIT, slows things down
> Hack: Can send RST and delete socket, set SO LINGER socket option to time 0

> OS won’t let you re-start server because port still in use (SO_REUSEADDR
option lets you re-bind used port number)

CS 144, Stanford University 36

CS144, Stanford University

Full TCP FSM

CONNECT/SYN (Step 1 of the 3-way-handshake)

................. » unusual event
= client/receiver path (Start)_<
———— server/sender path LISTEN/- A CLOSE/-
: CLOSE!/-
Step 2 of the 3- -handshak A
(Step 2 0 e 3-way-handshake) SYN/SYN+ACK LISTEN
: Y
RST/- : i SEND/SYN
SYN .. . L P y sYN
RECEIVED |, SYN/SYN+ACK (simultaneous open) SENT
| Data exchange OCCcuUrs

o (Step 3 of the 3-way-handshake)

: CLOSE/FIN

CLOSE/FIN FIN/ACK
___________________________________ Active CLOSHE Passive CLOSE _"“"_"":
Y Y FINIACK S Y :
FINWAITL | > cLOSING | CLOSE WAIT !
FIN+ACK/ACK : : : !
ACKI- Vo CLOSE/FIN :
: Lo :
b '
: Y L Y :
FINWAIT2Z | > TIMEWAIT L LAST ACK]
FIN/ACK b ;
Timeout : : :
___ I R e e e e e e e e e e e e e e e e e Va)

(Go back to sta rt_<
37 http://en.wikipedia.org/wiki/File:Tcp_state diagram fixed.svg

Transport

¢ Provides inter-program communication
> |CMP: control messages to operating system
» UDP: unreliable datagrams to user programs
> TCP: reliable stream to user programs
e Evidenced by naming
> |P packets are addressed to hosts with addresses
> UDP and TCP segments are named to programs with ports
> |CMP is implicitly named to operating system/IP software

CS 144, Stanford University 38

Transport Abstractions

® |CMP: unreliable datagrams, control messages between [P software
® UDP: unreliable datagrams, application data

® TCP:reliable stream, application data
> Need to establish connections: 3-way handshake
» Data transfer: stop and wait
» Data transfer: sliding window

- Receiver states current window size

- Sender can have up to window size unacknowledged bytes in flight

» Connection teardown

CS 144, Stanford University 39

