
CS144, Stanford University

Transport:
How Applications Communicate

Week 2
Philip Levis

1

CS144, Stanford University

1
2
3
4

7 Layers (or 4)

2

bits/bytes
frames

packets
segments

Physical
Link

Network
Transport
Session

Presentation
Application

1.
2.
3.
4.
5.
6.
7.

Link

Network
Transport

Application

CS144, Stanford University

1
2
3
4

7 Layers (or 4)

3

bits/bytes
frames

packets
segments

Physical
Link

Network
Transport
Session

Presentation
Application

1.
2.
3.
4.
5.
6.
7.

Link

Network
Transport

Application

CS144, Stanford University

Transport

• Provides inter-program communication
▶ ICMP: control messages to operating system
▶ UDP: unreliable datagrams to user programs
▶ TCP: reliable stream to user programs

• Evidenced by naming
▶ IP packets are addressed to hosts with addresses
▶ UDP and TCP segments are named to programs with ports
▶ ICMP is implicitly named to operating system/IP software

4

CS144, Stanford University

IP Header

5

ver. total len

source address

fragment offsetO D Midentification
checksum

options

32 bits (4 octets)

len type of serv.

TTL protocol

destination address

CS144, Stanford University

IP Header

6

ver. total len

source address

fragment offsetO D Midentification
checksum

options

32 bits (4 octets)

len type of serv.

TTL protocol

destination address

1 ICMP
4 IP
6 TCP
17 UDP

CS144, Stanford University

ICMP

• Internet Control Message Protocol, RFC 792

• Way for Internet hosts to send control information

• You’ll work a lot with ICMP in lab 3 (router)

• Unreliable datagrams

7

checksumtype code
data

Example: type 3 is destination unreachable
code 0: net unreachable
code 1: host unreachable
code 2: protocol unreachable
code 3: port unreachable…

CS144, Stanford University

ICMP: ping

• ping, a very basic tool!

• Source sends an ICMP Echo message

• Destination replies with an ICMP Echo Reply message

8

checksum8 0
identifier sequence number

checksum0 0
identifier sequence number

echo

echo reply

CS144, Stanford University

ICMP: traceroute

• Send UDP segments to destination with increasing TTL

• ICMP type 11: time to live exceeded

9

checksum11 0

first 64 bits of generating packet

CS144, Stanford University

UDP

• User Datagram Protocol, RFC 768

• Very thin layer on top of IP, just adds ports

• Unreliable, datagrams

10

source port destination port
UDP len checksum

CS144, Stanford University

UDP: DNS

• Example UDP program: Domain Name System (DNS)

• Maps names like cs.stanford.edu to IP addresses

• UDP port 53

• Learn details about DNS in Week 5

11

CS144, Stanford University

DNS Header Structure (RFC1035)

12

Header

Question

Answer

Authority

Additional

ID

QR OPCODE AA TC RD RA Z RCODE

QDCOUNT

ANCOUNT

NSCOUNT

ARCOUNT

16 bits

• QR: 0=query, 1=response

• OPCODE: 0=standard query

• RCODE: error code

• Flags
▶ AA: authoritative answer
▶ TC: truncated
▶ RD: recursion desired
▶ RA: recursion available

CS144, Stanford University

Encapsulation

13

ver. total len

source address

fragment offsetO D Midentification
checksum

len type of serv.

TTL protocol

destination address
source port destination port

UDP len checksum
ID fields

QDCOUNT ANCOUNT
NSCOUNT ARCOUNT

IP

UDP

DNS

data

CS144, Stanford University

TCP

• Transmission Control Protocol, RFC 793

• Different abstraction: bidirectional, reliable byte stream
▶ Building block of most applications today

• Abstracts away entire network -- just a pipe between two programs
▶ One side reads what the other writes

• Application level controls communication pattern and payloads
▶ World Wide Web (HTTP)
▶ Skype
▶ BitTorrent

14

CS144, Stanford University

Audacious Idea

• TCP: make a reliable data stream out of an unreliable network
▶ Can fail, but almost always explicitly detected (connection breaks)
▶ Assumes random errors, not malicious ones

• Part of a larger theme in computer systems, making robust, high
performance computing out of cheap, unreliable parts
▶ TCP from IP datagrams
▶ RAID: Redundant Array of Inexpensive Disks
▶ Early cloud computing systems (MapReduce, Hadoop, etc.)
▶ Domain Name System

15

CS144, Stanford University

How to Start?

• Reliable communication typically benefits from have some state on each
end of a connection
▶ Need to be able to identify data to determine if it’s been delivered
▶ For a stream, need to know where in stream data is

• Problem: connection establishment
▶ How do you set up this state?

• Problem: connection teardown
▶ How do you clean up (reuse ports, etc.)?

16

CS144, Stanford University

TCP Header

17

source port destination port
sequence number

acknowledgment number
offset reserved U A P R S F window

checksum urgent pointer
options padding

32 bits (4 octets)

CS144, Stanford University

Connection Setup

18

source port destination port
sequence number

acknowledgment number
offset reserved U A P R S F window

checksum urgent pointer
options padding

32 bits (4 octets)

CS144, Stanford University

3-way Handshake

• Active opener sends first packet
▶ SYN with sequence number

• Passive opener responds
▶ SYN with sequence number
▶ ACKs active opener’s SYN packet

• Active opener responds
▶ ACKs passive opener’s SYN packet

• Also support “simultaneous open”
▶ Two SYNs pass each other
▶ Each side ACKs the other

19

active passive
SYN

SYN/ACK

ACK

SYN SYN

SYN/ACK SYN/ACK

data

data

ACK ACK

CS144, Stanford University

TCP Setup FSM

20

CS144, Stanford University

Conceptual Model

• SYN message tells destination endpoint the starting sequence number
▶ Can’t send data until it acknowledges it knows the starting sequence number

• ACK of SYN tells source that this endpoint knows the starting seq no.

• Happens in both directions: bidirectional dream

21

CS144, Stanford University

Connection established!
Now what?

How do we send data?

22

CS144, Stanford University

Flow Control

• Don’t send more packets than receiver can process

• Receiver gives sender feedback

• Two basic approaches
▶ Stop and wait (lab 1)
▶ Sliding window (lab 2)

23

CS144, Stanford University

Finite State Machines

24

State
1

State
2

event causing state transition
actions taken on state transition

event
action

State
3

CS144, Stanford University

Stop and Wait

• At most one packet in flight at any time

• Sender sends one packet

• Receiver sends acknowledgment packet when it receives data

• On receiving acknowledgment, sender sends new data

• On timeout, sender resends current data

25

CS144, Stanford University

Stop and Wait Problem

26

San Francisco Boston

Bottleneck is 10Mbps
RTT is 100ms

CS144, Stanford University

Stop and Wait Problem

27

San Francisco Boston

Bottleneck is 10Mbps
RTT is 100ms

At most 10 packets/second!
120Kbps << 10Mbps

CS144, Stanford University

Sliding Window

28

San Francisco Boston

Bottleneck is 10Mbps
RTT is 50ms

• Generalization of stop-and-wait:
allow multiple un-acked segments

• Bound on number of un-acked
segments, called window

• Can keep pipe full

CS144, Stanford University

Sliding Window Sender

• Every segment has a sequence number (SeqNo)

• Maintain 3 variables
▶ Send window size (SWS)
▶ Last acknowledgment received (LAR)
▶ Last segment sent (LSS)

• Maintain invariant: (LSS - LAR) ≤ SWS

• Advance LAR on new acknowledgment

• Buffer up to SWS segments

29

CS144, Stanford University

Sliding Window Receiver

• Maintain 3 variables
▶ Receive window size (RWS)
▶ Last acceptable segment (LAS)
▶ Last segment received (LSR)

• Maintain invariant: (LAS - LSR) ≤ RWS

• If received packet is < LAS, send acknowledgment
▶ Send cumulative acks: if received 1, 2, 3, 5, acknowledge 3
▶ NOTE: TCP acks are next expected data (e.g., ack 4 in above example)

30

CS144, Stanford University

RWS, SWS, and Sequence Space

• RWS ≥ 1, SWS ≥ 1, RWS ≤ SWS

• Assuming packets not more than 2 RTTs:
▶ If RWS = 1, “go back N” protocol, need SWS+1 sequence numbers
▶ If RWS = SWS, need 2SWS sequence numbers

• Generally need RWS+SWS sequence numbers per 2 RTTs of delay

31

CS144, Stanford University

TCP Flow Control

• Receiver advertises RWS using window field

• Sender can only send data up to LAR + window

32

data sequence number

acknowledgment sequence number

source port destination port

offset res N C E U A P R S F window

checksum urgent

options

CS144, Stanford University

Sequence numbers

• TCP sequence numbers are in bytes: specifies where in the stream the
data in this particular segment resides
▶ Denotes state of forward stream, from source to destination of packet
▶ Sequence number 2,032, length 800 is bytes 2032–2831
▶ Sequence number 123,400, length 1200 is bytes 123,400–124,599

• Acknowledgement number specifies state of stream in reverse direction
▶ Cumulative acknowledgements: specifies the first byte of the stream that hasn’t

been received
▶ If stream from A to B started at sequence number 5,000, acknowledgement 15,201

sent from B means that B has received bytes 5,000–15,200 successfully

33

CS144, Stanford University

Connection Teardown

34

source port destination port
sequence number

acknowledgment number
offset reserved U A P R S F window

checksum urgent pointer
options padding

32 bits (4 octets)

CS144, Stanford University

Connection Teardown

• FIN bit says no more data to send
▶ Caused by close() or shutdown() on other end

• Both sides must send FIN to terminate a connection

• Typical teardown exchange:
▶ A → B: FIN, seq SA, ack SB

▶ B → A: ack SA + 1

▶ B → A: FIN, seq SB, ack SA + 1

▶ A → B: ack SB + 1

• Can also have simultaneous close

• Can A and B forget about closed socket after final message?

35

CS144, Stanford University

Cleaning Up Safely

• Problems with closed socket
▶ What if final ack is lost in the network?
▶ What if the same port pair is immediately reused for a new connection?

• Solution: “active” closer goes into TIME WAIT
▶ Active close is sending FIN before receiving one
▶ Keep socket around for 2MSL (twice the “maximum segment lifetime”)

• Can pose problems with servers
▶ OS has too many sockets in TIME WAIT, slows things down
▶ Hack: Can send RST and delete socket, set SO_LINGER socket option to time 0
▶ OS won’t let you re-start server because port still in use (SO_REUSEADDR

option lets you re-bind used port number)

36

CS144, Stanford University

Full TCP FSM

37 http://en.wikipedia.org/wiki/File:Tcp_state_diagram_fixed.svg

CS144, Stanford University

Transport

• Provides inter-program communication
▶ ICMP: control messages to operating system
▶ UDP: unreliable datagrams to user programs
▶ TCP: reliable stream to user programs

• Evidenced by naming
▶ IP packets are addressed to hosts with addresses
▶ UDP and TCP segments are named to programs with ports
▶ ICMP is implicitly named to operating system/IP software

38

CS144, Stanford University

Transport Abstractions

• ICMP: unreliable datagrams, control messages between IP software

• UDP: unreliable datagrams, application data

• TCP: reliable stream, application data
▶ Need to establish connections: 3-way handshake
▶ Data transfer: stop and wait
▶ Data transfer: sliding window

- Receiver states current window size

- Sender can have up to window size unacknowledged bytes in flight

▶ Connection teardown

39

