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Transport

• Provides inter-program communication
▶ ICMP: control messages to operating system
▶ UDP: unreliable datagrams to user programs
▶ TCP: reliable stream to user programs

• Evidenced by naming
▶ IP packets are addressed to hosts with addresses
▶ UDP and TCP segments are named to programs with ports
▶ ICMP is implicitly named to operating system/IP software
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IP Header
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6

ver. total len

source address

fragment offsetO D Midentification
checksum

options

32 bits (4 octets)

len type of serv.

TTL protocol

destination address

1     ICMP
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ICMP

• Internet Control Message Protocol, RFC 792

• Way for Internet hosts to send control information

• You’ll work a lot with ICMP in lab 3 (router)

• Unreliable datagrams
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checksumtype code
data

Example: type 3 is destination unreachable
code 0: net unreachable
code 1: host unreachable
code 2: protocol unreachable
code 3: port unreachable…
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ICMP: ping

• ping, a very basic tool!

• Source sends an ICMP Echo message

• Destination replies with an ICMP Echo Reply message
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checksum8 0
identifier sequence number

checksum0 0
identifier sequence number

echo

echo reply
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ICMP: traceroute

• Send UDP segments to destination with increasing TTL

• ICMP type 11: time to live exceeded
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checksum11 0

first 64 bits of generating packet 
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UDP

• User Datagram Protocol, RFC 768

• Very thin layer on top of IP, just adds ports

• Unreliable, datagrams
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source port destination port
UDP len checksum
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UDP: DNS

• Example UDP program: Domain Name System (DNS)

• Maps names like cs.stanford.edu to IP addresses

• UDP port 53

• Learn details about DNS in Week 5
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DNS Header Structure (RFC1035)
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Header

Question

Answer

Authority

Additional

ID

QR OPCODE AA TC RD RA Z RCODE

QDCOUNT

ANCOUNT

NSCOUNT

ARCOUNT

16 bits

• QR: 0=query, 1=response

• OPCODE: 0=standard query

• RCODE: error code

• Flags
▶ AA: authoritative answer
▶ TC: truncated  
▶ RD: recursion desired
▶ RA: recursion available
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Encapsulation
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fragment offsetO D Midentification
checksum
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TTL protocol
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UDP
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TCP

• Transmission Control Protocol, RFC 793

• Different abstraction: bidirectional, reliable byte stream
▶ Building block of most applications today

• Abstracts away entire network -- just a pipe between two programs
▶ One side reads what the other writes

• Application level controls communication pattern and payloads
▶ World Wide Web (HTTP)
▶ Skype
▶ BitTorrent
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Audacious Idea

• TCP: make a reliable data stream out of an unreliable network
▶ Can fail, but almost always explicitly detected (connection breaks)
▶ Assumes random errors, not malicious ones

• Part of a larger theme in computer systems, making robust, high 
performance computing out of cheap, unreliable parts
▶ TCP from IP datagrams
▶ RAID: Redundant Array of Inexpensive Disks
▶ Early cloud computing systems (MapReduce, Hadoop, etc.)
▶ Domain Name System
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How to Start?

• Reliable communication typically benefits from have some state on each 
end of a connection
▶ Need to be able to identify data to determine if it’s been delivered
▶ For a stream, need to know where in stream data is

• Problem: connection establishment
▶ How do you set up this state?

• Problem: connection teardown
▶ How do you clean up (reuse ports, etc.)?
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TCP Header

17

source port destination port
sequence number

acknowledgment number
offset reserved U A P R S F window

checksum urgent pointer
options padding

32 bits (4 octets)
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Connection Setup
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source port destination port
sequence number

acknowledgment number
offset reserved U A P R S F window

checksum urgent pointer
options padding

32 bits (4 octets)
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3-way Handshake

• Active opener sends first packet
▶ SYN with sequence number

• Passive opener responds
▶ SYN with sequence number
▶ ACKs active opener’s SYN packet

• Active opener responds
▶ ACKs passive opener’s SYN packet

• Also support “simultaneous open”
▶ Two SYNs pass each other
▶ Each side ACKs the other

19

active passive
SYN

SYN/ACK

ACK

SYN SYN

SYN/ACK SYN/ACK

data

data

ACK ACK
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TCP Setup FSM
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Conceptual Model

• SYN message tells destination endpoint the starting sequence number
▶ Can’t send data until it acknowledges it knows the starting sequence number

• ACK of SYN tells source that this endpoint knows the starting seq no.

• Happens in both directions: bidirectional dream
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Connection established!
Now what?

How do we send data?
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Flow Control

• Don’t send more packets than receiver can process

• Receiver gives sender feedback

• Two basic approaches
▶ Stop and wait (lab 1)
▶ Sliding window (lab 2)
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Finite State Machines

24

State 
1

State 
2

event causing state transition
actions taken on state transition

event
action

State 
3
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Stop and Wait

• At most one packet in flight at any time

• Sender sends one packet

• Receiver sends acknowledgment packet when it receives data

• On receiving acknowledgment, sender sends new data

• On timeout, sender resends current data

25
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Stop and Wait Problem

26

San Francisco Boston

Bottleneck is 10Mbps
RTT is 100ms
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Stop and Wait Problem
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San Francisco Boston

Bottleneck is 10Mbps
RTT is 100ms

At most 10 packets/second!
120Kbps << 10Mbps
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Sliding Window
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San Francisco Boston

Bottleneck is 10Mbps
RTT is 50ms

• Generalization of stop-and-wait: 
allow multiple un-acked segments

• Bound on number of un-acked 
segments, called window

• Can keep pipe full
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Sliding Window Sender

• Every segment has a sequence number (SeqNo)

• Maintain 3 variables
▶ Send window size (SWS)
▶ Last acknowledgment received (LAR)
▶ Last segment sent (LSS)

• Maintain invariant: (LSS - LAR) ≤ SWS

• Advance LAR on new acknowledgment

• Buffer up to SWS segments
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Sliding Window Receiver

• Maintain 3 variables
▶ Receive window size (RWS)
▶ Last acceptable segment (LAS)
▶ Last segment received (LSR)

• Maintain invariant: (LAS - LSR) ≤ RWS

• If received packet is < LAS,  send acknowledgment
▶ Send cumulative acks: if received 1, 2, 3, 5, acknowledge 3
▶ NOTE: TCP acks are next expected data (e.g., ack 4 in above example)
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RWS, SWS, and Sequence Space

• RWS ≥ 1, SWS  ≥ 1, RWS ≤ SWS

• Assuming packets not more than 2 RTTs:
▶ If RWS = 1, “go back N” protocol, need SWS+1 sequence numbers
▶ If RWS = SWS, need 2SWS sequence numbers

• Generally need RWS+SWS sequence numbers per 2 RTTs of delay

31



CS144, Stanford University

TCP Flow Control

• Receiver advertises RWS using window field

• Sender can only send data up to LAR + window

32

data sequence number

acknowledgment sequence number

source port destination port

offset res N C E U A P R S F window

checksum urgent

options
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Sequence numbers

• TCP sequence numbers are in bytes: specifies where in the stream the 
data in this particular segment resides
▶ Denotes state of forward stream, from source to destination of packet
▶ Sequence number 2,032, length 800 is bytes 2032–2831
▶ Sequence number 123,400, length 1200 is bytes 123,400–124,599

• Acknowledgement number specifies state of stream in reverse direction
▶ Cumulative acknowledgements: specifies the first byte of the stream that hasn’t 

been received
▶ If stream from A to B started at sequence number 5,000, acknowledgement 15,201 

sent from B means that B has received bytes 5,000–15,200 successfully
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Connection Teardown

34

source port destination port
sequence number

acknowledgment number
offset reserved U A P R S F window

checksum urgent pointer
options padding

32 bits (4 octets)
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Connection Teardown 

• FIN bit says no more data to send
▶ Caused by close() or shutdown() on other end

• Both sides must send FIN to terminate a connection

• Typical teardown exchange:
▶ A → B: FIN, seq SA, ack SB

▶ B → A: ack SA + 1

▶ B → A: FIN, seq SB, ack SA + 1

▶ A → B: ack SB + 1

• Can also have simultaneous close

• Can A and B forget about closed socket after final message?
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Cleaning Up Safely

• Problems with closed socket
▶ What if final ack is lost in the network?
▶ What if the same port pair is immediately reused for a new connection?

• Solution: “active” closer goes into TIME WAIT
▶ Active close is sending FIN before receiving one
▶ Keep socket around for 2MSL (twice the “maximum segment lifetime”)

• Can pose problems with servers
▶ OS has too many sockets in TIME WAIT, slows things down
▶ Hack: Can send RST and delete socket, set SO_LINGER socket option to time 0 
▶ OS won’t let you re-start server because port still in use (SO_REUSEADDR 

option lets you re-bind used port number)
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Full TCP FSM

37 http://en.wikipedia.org/wiki/File:Tcp_state_diagram_fixed.svg
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Transport

• Provides inter-program communication
▶ ICMP: control messages to operating system
▶ UDP: unreliable datagrams to user programs
▶ TCP: reliable stream to user programs

• Evidenced by naming
▶ IP packets are addressed to hosts with addresses
▶ UDP and TCP segments are named to programs with ports
▶ ICMP is implicitly named to operating system/IP software
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Transport Abstractions

• ICMP: unreliable datagrams, control messages between IP software

• UDP: unreliable datagrams, application data

• TCP: reliable stream, application data
▶ Need to establish connections: 3-way handshake
▶ Data transfer: stop and wait
▶ Data transfer: sliding window

- Receiver states current window size

- Sender can have up to window size unacknowledged bytes in flight

▶ Connection teardown
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