
sockets

sockets

sockets - basics

Although the socket concept covers a variety of cases, like Unix sockets (end-point(s) in local
interprocess communication) or end-point of a bi-directional communication link in the Berkeley sockets, we
will limit ourselves, within the scope of this course, to the most used variety, namely internet sockets. An
(internet) socket is a logical entity which describes the end point(s) of a communication link between two
IP entities (entities which implement the Internet Protocol). Sockets are identified by the IP address and
the port number.

IP addresses come in two flavors, as defined in by the two versions of the Internet Protocol currently in
use, version 4 and version 6.

Version 4 IP addresses are 32 bits long and are represented as a sequence of 4 8-bit integers, dot
separated, ranging from 0 to 255, like 193.231.200.67.

Version 6 IP addresses are 128 bits long and are represented by a sequence of eight 16-bit integers,
separated by columns (:). An example - 2008:0CB8:85A4:0000:0000:8F2C:0371:7714.

port numbers

Port numbers range from 0 to 65535 (2^16 – 1) and are split into 3 categories:

1. well known ports - ranging from 0 to 1023 – these ports are under the control of IANA (Internet
Assigned Number Authority), a selective list is shown in the table below:

Port
number

UDP protocol TCP protocol Other

1 TCPMUX

5 Remote Job Entry (RJE)

7 Echo

15 NETSTAT

20 FTP - data

21 FTP – control

22 Secure Shell

23 Telnet

25 Simple Mail Transfer Protocol (SMTP)

41 Graphics

42 ARPA Host Name Server Protocol WINS

43 WHOIS

53 Domain Name System (DNS)

57 Mail Transfer Protocol (MTP)

67 BOOTP

68 BOOTP

69 TFTP

1

http://en.wikipedia.org/wiki/Berkeley_sockets

79 Finger

80 HTTP

107 Remote Telnet

109 Post Office Protocol 2 (POP2)

110 POP3

115 Simple FTP (SFTP)

118 SQL services

123 Network Time Protocol (NTP)

137 NetBIOS Name Service

138 NetBIOS Datagram Service

139 NetBIOS Session Service

143 Internet Message Access Protocol (IMAP)

156 SQL service

161 Simple Network Management Protocol (SNMP)

162 SNMP Trap

179 Border Gateway Protocol (BGP)

194 Internet Relay Chat (IRC)

213 IPX

2. registered ports - ranging from 1024 to 49151 – registered by ICANN, as a convenience to the
community, should be accessible to ordinary users. A list of some of these ports is shown below:

Port
number

UDP protocol TCP protocol Other

1080 SOCKS proxy

1085 WebObjects

1098 RMI activation

1099 RMI registry

1414 IBM WebSphere MQ

1521 Oracle DB default listener

2030 Oracle services for Microsoft Transaction Server

2049 Network File System

2082 CPanel default

3306 MySQL DB system

3690 Subversion version control system

3724 World of Warcraft online gaming

4664 Google Desktop Search

5050 Yahoo Messenger

5190 ICQ and AOL IM

5432 PostgreSQL DB system

2

sockets

5500 VNC remote desktop protocol

5800 VNC over HTTP

6000/600
1

X11

6881-
6887

BitTorrent

6891-
6900

Windows Live Messenger – File transfer

6901 Windows Live Messenger – Voice

8080 Apache Tomcat

8086/808
7

Kaspersky AV Control Center

8501 Duke Nukem 3D

9043 WebSphere Application Server

14567 Battlefield 1942

24444 NetBeans IDE

27010/27
015

Half-Life, Counter-Strike

28910 Nintendo Wi-Fi Connection

33434 traceroute

3. dynamic (private) ports, ranging from 49152 to 65535

posix sockets

The socket APIs (Application Programming Interface) are rooted into the POSIX socket API. POSIX
stands for Portable Operating System Interface – a common name for a set of IEEE standards used to define
APIs. This family of standards dates back to 1988 and is identified as IEE 1003 or ISO/IEC 9945.

The socket communication is, in general, asymmetric. One of the two communicating entities plays the
role of a server. The server listens for incoming requests at a certain port. This port number is public, and
together with the IP address identifies the server. The actual communication is initiated by the client, who
sends a connection request to the server. If the connection request Is accepted, the server creates (in
general) another socket, which is dedicated to the communication with that particular client. The closure of
this communication link can be initiated by either the client or by the server.

To create a client socket, two calls are necessary. The first one creates a file descriptor (fd) which is
basically a number which identifies an I/O channel (not different from the file descriptor resulted from a
fopen() call which opens a file).

The prototype of this call is the following:

int socket(int family, int type, int protocol);

The family parameter specifies the address family of the socket and may take one of the following
values, the list itself depending on the implementation platform:

 AF_APPLETALK

 AF_INET – most used, indicates an IP version 4 address

3

 AF_INET6 - indicates an IP version 6 address

 AF_IPX

 AF_KEY

 AF_LOCAL

 AF_NETBIOS

 AF_ROUTE

 AF_TELEPHONY

 AF_UNSPEC

The type parameter specifies the socket stream type and may take the following values:

 SOCK_DGRM – the transport level protocol is UDP

 SOCK_STREAM – the transport level protocol is TCP

 SOCK_RAW - used to generate/receive packets of a type that the kernel doesn't explicitly support

The value of the protocol parameter is set to 0, except for raw sockets.

The function socket()returns an integer. In case of success, it is the identifier of a file descriptor (fd),
and if the call fails, it is an error code.

The second call connects the client to the server. Here is the signature of the connect() call.

int connect(int sock_fd, struct sockaddr * server_addr, int addr_len);

The sockaddr structure varies depending on the protocol selected. For reference purposes, let's
display it, together with another associated structure – sockaddr_in, both used in the context of IPv4.

struct sockaddr {

 ushort sa_family;

 char sa_data[14];

};

struct sockaddr_in {

 short sin_family;

 u_short sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

};

Both structures have the same size and have compatible content, therefore casting is allowed.

The sock_fd parameter identifies the local socket and the server_addr parameter contains
information about the server we try to connect to. addr_len is just the size (in bytes) of this structure.

4

sockets

The connect() call returns 0, in case of success or a negative error indicator, in case of failure.

To create a server socket, four calls are necessary. Here are the prototypes of these calls:

int socket(int family, int type, int protocol);

int bind(int sock_fd, struct sockaddr * my_addr, int addr_len);

int listen(int sock_fd, int backlog);

int accept(int sock_fd, struct sockaddr * client_addr, int * addr_len);

The bind() function merely associates the socket to a specified port, while the listen() function sets
the server in listening mode.

A few remarks. Why not binding the client socket to a particular port, as well? Well, nobody stops us from
invoking the bind() function on a client socket, but this is not exactly relevant. While the server port has to be
known, because the client must know both the IP address (or the URL, if that is the case) and the port of the
server, it is not important to know the port of the client. The assignment of a port to a client socket is done by
the operating system, and this solution is quite satisfactory.

The accept()call causes the process to block until a client connects to the server. Thus, it wakes up
the process when a connection from a client has been successfully established. It returns a new file
descriptor, and all communication on this connection should be done using the new file descriptor. In case of
an error, the return value is an error code. The first parameter is the fd of the local listening socket, and the
second one is a reference pointer to the address of the client at the other end of the connection. The third
parameter is a pointer to the size of this structure.

the select() function

How do we detect if some sort of activity occurs on a file descriptor (fd) of interest?. There are two
specialized functions, namely poll() and select(), which are triggered when some I/O activity occurs at one of
the fd's of interest.

We present now the function select() while the poll function is presented in the next paragraph.

Here is the signature of the select function, according to [SELE]:

int select(int nfds, fd_set *readfds, fd_set *writefds,

 fd_set *exceptfds, struct timeval *timeout);

The function allows a program to monitor multiple file descriptors, waiting until one or more of the file
descriptors become "ready" for some class of I/O operation (e.g., input possible). A file descriptor is
considered ready if it is possible to perform a corresponding I/O operation.

The function returns the number of fd's which are “ready” or a negative number, in case of error.

The nfds is set equal to the highest fd + 1, readfds, writefds and excepfds are bit masks specifying that a
bit which is set denotes an fd of interest. A few macros – FD_ZERO, FD_SET, FD_CLR and FD_ISSET are
used to manage these bit masks.

The timeout value is specified in milliseconds and its expiration leads to the trigger of select, in case no
I/O activity was detected during the time specified.

the poll() function

The poll() function is an alternative to the select() function. One of the weaknesses of the select()

5

function is the way the in which it stores the fd's of interest. - as a bit mask and therefore has a fixed size
which sometimes is pretty big.

The signature of the poll() function is presented below:

 int poll(struct pollfd *fds, nfds_t nfds, int timeout);

Using the function requires the include of <poll.h>.

The struct pollfd is described below:

struct pollfd {

 int fd; /* file descriptor */
 short events; /* requested events */
 short revents; /* returned events */
 };

From a functional stand point, the poll() function waits for one of the file descriptors of interest to become
ready to perform some I/O operation.

The caller specifies the number of items in the array fds in the nfds parameter.

The timeout parameter specifies the number of milliseconds that the poll() function should be waiting for
some fd to become ready.

The main differences between poll() and select() are explained well by Richard Stevens [DIFSP]:

“The basic difference is that select()'s fd_set is a bit mask and therefore has some fixed size. It would be
possible for the kernel to not limit this size when the kernel is compiled, allowing the application to define
FD_SETSIZE to whatever it wants (as the comments in the system header imply today) but it takes more
work. 4.4BSD's kernel and the Solaris library function both have this limit. But I see that BSD/OS 2.1 has now
been coded to avoid this limit, so it's doable, just a small matter of programming. :-) Someone should file a
Solaris bug report on this, and see if it ever gets fixed.

With poll(), however, the user must allocate an array of pollfd structures, and pass the number of entries
in this array, so there's no fundamental limit. As Casper notes, fewer systems have poll() than select, so the
latter is more portable. Also, with original implementations (SVR3) you could not set the descriptor to -1 to tell
the kernel to ignore an entry in the pollfd structure, which made it hard to remove entries from the array;
SVR4 gets around this. Personally, I always use select() and rarely poll(), because I port my code to BSD
environments too. Someone could write an implementation of poll() that uses select(), for these
environments, but I've never seen one. Both select() and poll() are being standardized by POSIX 1003.1g.”

the server program

In our example, written in C, the server socket is identified by an integer, called listen_fd, which serves
as an identifier for the server socket.

One note: on Windows platforms, the function WSAStartup() has to be called before calling the socket()
function. How this can be done, is explained at the link below [WSAS]:

https://msdn.microsoft.com/en-us/library/windows/desktop/ms742213(v=vs.85).aspx

The general structure (main socket related functions) of a server socket program, using the particular
case of an IPv4, TCP server, is as follows, if we keep only the socket related functions:

// initialization part

WSAStartup(...); // if working on a Windows platforms

listen_fd = socket(AF_INET, SOCK_STREAM, 0);

err = bind(listen_fd, (sockaddr *)&serv_addr, sizeof(serv_addr));

listen(listen_fd, 16);

// service loop

6

https://msdn.microsoft.com/en-us/library/windows/desktop/ms742213(v=vs.85).aspx

sockets

while(1) {

num_ready = select(maxfd + 1, &rset, NULL, NULL, NULL);

conn_fd = accept(listen_fd, (sockaddr *)&cli_addr, &cli_len);

// read/write operations ...

}

closesocket(listen_fd);

It is worth noting that the accept() call returns the fd of a newly created socket which is dedicated to the
communication with that particular client

the client program

In our client example, written in C, the client socket is identified by an integer, called client_fd, which
serves as an identifier for the client socket.

Again, on Windows platforms, the function WSAStartup() has to be called before calling the socket()
function. How this can be done, is explained at the link below:

https://msdn.microsoft.com/en-us/library/windows/desktop/ms742213(v=vs.85).aspx

The general structure (main socket related functions) of a client socket program, using the particular
case of an IPv4, TCP client, is as follows, if we keep only the socket related functions:

// initialization part

WSAStartup(...); // if working on a Windows platforms

client_fd = socket(AF_INET, SOCK_STREAM, 0);

err = connect(client_fd, (struct sockaddr *)&address, len);

// read/write operations ...

closesocket(client_fd);

IN our particular program, the server information (namely the IP address and port number) are specified
as command line arguments. Moreover, there is no need to specify a particular port for the client socket,
because this is assigned automatically by the operating system.

socket libraries and APIs

High level languages allow a more consistent and coherent use of socket related functionality.

Library support for socket functions is provided by different vendors and contributors, for different
languages and platforms. Below are listed some of them.

C/C++ libraries:

• Boost.Asio

• C++ Network Library – a collection of open source libraries for high level network programming

• Qt

• ZeroMQ

• nanomsg

• Apache APR

• Winsock2 (for Windows only)

• C++ Rest SDK

7

https://msdn.microsoft.com/en-us/library/windows/desktop/ms742213(v=vs.85).aspx

• Glib networking

• libcurl

Java networking support is provided through the classes included in the java.net package. Below we list
some of its main classes:

• Socket, with SSLSocket as direct subclass

• ServerSocket

Other classes of interest are used for input and out through sockets, like:

• DataInputStream

• DataOutputStream

Other languages, not necessarily object oriented (at least at their beginnings), like Php, provide an
extended API for sockets support. In the Php case, we mention functions like:

• socket_accept()

• socket_bind()

• socket_close()

• socket_connect()

• socket_create()

• socket_listen()

• socket_read(), socket_recv()

• socket_select()

• socket_send(), socket_write()

bibliography

[DIFSP] – Differences between pol() and select() - https://stackoverflow.com/questions/970979/what-are-
the-differences-between-poll-and-select

[POLL] – the poll() function - http://man7.org/linux/man-pages/man2/poll.2.html

[PORT] – Port numbers - https://www.lifewire.com/popular-tcp-and-udp-port-numbers-817985

[POSO] – Posix sockets API - http://home.deib.polimi.it/agosta/lib/exe/fetch.php?id=teaching
%3Apsrete&cache=cache&media=teaching:socket.pdf

[SELE] – the select() function - http://man7.org/linux/man-pages/man2/select.2.html

[WSAS] – the WSAStartup() function - https://msdn.microsoft.com/en-
us/library/windows/desktop/ms742213(v=vs.85).aspx

8

https://msdn.microsoft.com/en-us/library/windows/desktop/ms742213(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms742213(v=vs.85).aspx
http://man7.org/linux/man-pages/man2/select.2.html
http://home.deib.polimi.it/agosta/lib/exe/fetch.php?id=teaching%3Apsrete&cache=cache&media=teaching:socket.pdf
http://home.deib.polimi.it/agosta/lib/exe/fetch.php?id=teaching%3Apsrete&cache=cache&media=teaching:socket.pdf
https://www.lifewire.com/popular-tcp-and-udp-port-numbers-817985
http://man7.org/linux/man-pages/man2/poll.2.html
https://stackoverflow.com/questions/970979/what-are-the-differences-between-poll-and-select
https://stackoverflow.com/questions/970979/what-are-the-differences-between-poll-and-select

	sockets
	sockets - basics
	port numbers
	posix sockets
	the select() function
	the poll() function
	the server program
	the client program
	socket libraries and APIs
	bibliography

