Enumerating all maximal clique-partitions of a graph

MCP_1.gif

computes and displays all maximal clique-partitions of a graph made of the maximal cliques indicated in the list maximalCliques.

In[303]:=

MCP_2.gif

Out[303]=

MCP_3.gif

Test Examples

Some simple examples

In[346]:=

MCP_4.gif

MCP_5.gif

MCP_6.gif

MCP_7.gif

MCP_8.gif

Out[346]=

MCP_9.gif

In[347]:=

MCP_10.gif

MCP_11.gif

MCP_12.gif

MCP_13.gif

MCP_14.gif

Out[347]=

MCP_15.gif

In[348]:=

MCP_16.gif

MCP_17.gif

MCP_18.gif

MCP_19.gif

MCP_20.gif

Out[348]=

MCP_21.gif

Graphs G[n]

MCP_22.gif

In[320]:=

MCP_23.gif

In[349]:=

MCP_24.gif

MCP_25.gif

MCP_26.gif

MCP_27.gif

MCP_28.gif

Out[349]=

MCP_29.gif

In[350]:=

MCP_30.gif

MCP_31.gif

MCP_32.gif

MCP_33.gif

MCP_34.gif

Out[350]=

MCP_35.gif

In[351]:=

MCP_36.gif

MCP_37.gif

MCP_38.gif

MCP_39.gif

MCP_40.gif

Out[351]=

MCP_41.gif

Graphs H[n]

MCP_42.gif

In[352]:=

MCP_43.gif

In[353]:=

MCP_44.gif

MCP_45.gif

MCP_46.gif

MCP_47.gif

MCP_48.gif

Out[353]=

MCP_49.gif

Graphs G[m,n]

These graphs have m+n-1 vertices MCP_50.gif and n maximal cliques of order m: MCP_51.gif for 1<=i<=n.

In[327]:=

MCP_52.gif

In[328]:=

MCP_53.gif

MCP_54.gif

MCP_55.gif

MCP_56.gif

MCP_57.gif

Out[328]=

MCP_58.gif

In[354]:=

MCP_59.gif

MCP_60.gif

MCP_61.gif

MCP_62.gif

MCP_63.gif

Out[354]=

MCP_64.gif

In[355]:=

MCP_65.gif

MCP_66.gif

MCP_67.gif

MCP_68.gif

MCP_69.gif

Out[355]=

In[357]:=

MCP_71.gif

MCP_72.gif

MCP_73.gif

MCP_74.gif

MCP_75.gif

Out[357]=

Graphs SK[n]

MCP_77.gif

In[358]:=

MCP_78.gif

In[359]:=

MCP_79.gif

MCP_80.gif

MCP_81.gif

MCP_82.gif

MCP_83.gif

Out[359]=

MCP_84.gif

In[360]:=

MCP_85.gif

MCP_86.gif

MCP_87.gif

MCP_88.gif

MCP_89.gif

Out[360]=

MCP_90.gif

In[361]:=

MCP_91.gif

MCP_92.gif

MCP_93.gif

MCP_94.gif

MCP_95.gif

Created with the Wolfram Language