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ABSTRACT. We describe the foundations of a system for rule-based programming which integrates
two powerful mechanisms: (1) matching with context variables, sequence variables, and regular
constraints for their matching values; and (2) strategic programming with labeled rules. The
system is called ρLog, and is built on top of the pattern matching and rule-based programming
capabilities of Mathematica.
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1. Introduction

Rewriting is a general declarative formalism to specify, program, and reason about
computational systems. For instance, in equational reasoning and functional program-
ming, rules are understood as oriented equalities; in theorem proving or concurrent
programming, rules are understood as inferences or transitions. The increasing aware-
ness of the usefulness of rewriting in non-equational contexts has led to theoretical
developments such as rewriting logic [MES 92] and to specialized calculi such as Sys-
tem S [VIS 98], the Rho-calculus [CIR 03] and extensions thereof [BER 04, CIR 04].
These theoretical frameworks led to the emergence of rule-based programming lan-
guages such as ELAN [BOR 02], Maude [CLA 02] and Stratego [VIS 04], and to rule-
based specification languages such as ASF+SDF [BER 89] and CafeOBJ [DIA 02].

The rule-based programming style builds upon the idea of expressing computa-
tions as strategic compositions of basic computational steps, where each basic step
can be decomposed into three elementary operations: (1) retrieve information from
the input data, as candidates for computing a new result, (2) use some decision crite-
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rion to filter the irrelevant candidates, and (3) compute a result from a candidate that
has passed the decision criterion. Such a basic computational step can be specified as
a transformation rule

apply(st, t1)→ t2 ⇐ cnd

where:

1) t1 is an expression that describes the structure of the input data,
2) st is an expression describing the strategic construct that acts on the input data,
3) cnd is a boolean test to filter irrelevant data,
4) t2 is an expression that describes the computation of a result.

Rule-based programs are collections of transformation rules that provide a declarative
semantics for answering queries. The expressive power of a rule-based programming
language can be estimated by looking at: (1) the kind of queries that can be answered,
(2) the strategic constructs recognized by the language, and (3) the programming con-
structs for specifying transformation rules.

In this paper we describe the foundations of a rule-based programming system
called ρLog. The distinguishing features of ρLog, when compared to other rule-based
systems, are:

– Programming with context and sequence variables. Context variables are place-
holders for contexts, which are functional expressions whose applicative behavior is
to replace a special constant (the context hole) with the expression given as argu-
ment. Sequence variables are placeholders for arbitrarily long finite sequences of
expressions. These constructs enable a compact representation of expressions whose
instances can be terms of arbitrary depth and width.

– Regular constraints for the admissible values of sequence variables and of con-
text variables. A regular constraint specifies a regular grammar of the language where
the value of the constrained variable belongs.

– Strategic programming in a language with constructors for most of the strategic
relations used in rule-based transformations: composition, choice, reflexive-transitive
closure, normalization, and or-else choice.

To our knowledge, ρLog is the first rule-based programming system which integrates
programming with sequence variables, context variables, and regular constraints in a
single framework. These capabilities enable a highly declarative programming style
that is expressive enough to support concise implementations for: specifying and pro-
totyping deductive systems, solvers for various equational theories, tools for querying
and translating XML, evaluation strategies, etc. [MAR 04a, MAR 04c, MAR 04d].

However, the integration of these features into a coherent framework requires the
acceptance of some syntactic restrictions. For example, unrestricted rule-based pro-
gramming with sequence variables and context variables is problematic because it
requires unification of terms with sequence and context variables, and this unifica-
tion problem is not finitary. We have overcome this problem by imposing the re-
striction of determinism on programs and goals. Determinism is a notion similar to
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well-modedness in logic programming, that allows to compute the answers of queries
by iterative matching instead of unification.

The paper is structured as follows. In the next section we introduce the syntax of
ρLog. In Section 3 we describe the underlying calculus. To give the reader a better
feeling of the generality of our rule based-programming approach and the wide range
of application areas, we discuss some applications in Section 4. Section 5 concludes.

2. The Language

The main syntactic categories of our language are: terms, contexts, strategies,
regular expressions, regular constraints, programs and queries.

Terms are intended to specify the structure of input and output of the transforma-
tion rules of ρLog. They are built from: function symbols from a set F ; function
variables from a set Vf; individual variables from a set Vi; sequence variables from a
set Vs; and context variables from a set Vc. All these sets are assumed to be mutually
disjoint. In addition, the sets Vf, Vi, Vs and Vc are countably infinite, and contain the
following special symbols: the anonymous individual variable _i ∈ Vi; the anony-
mous function variable _f ∈ Vf; the anonymous sequence variable _s ∈ Vs; and the
anonymous context variable _c ∈ Vc. F contains the special function symbol �, called
the hole. From now on we assume that metavariables f, g, h range over F \ {�}; F,G
range over Vf; x, y, z range over Vi; x, y, z range over Vs; and C ranges over Vc.

Terms and term sequences are mutually defined by the grammars:

t ::= terms:
� hole

| x individual variable
| f(ts) rigid term
| F (ts) flex term
| C(t) context application

ts ::= term sequences:
pq empty sequence

| t term
| x sequence variable
| pts1, ts2q sequence of term sequences

The delimiters p and q around term sequences are mainly for readability purposes,
and we do not display them inside terms. Terms of the form f() with f ∈ F will be
abbreviated to f .

We introduce the following definitions: V−f := Vf \ {_f}, V−i := Vi \ {_i},
V−s := Vs \{_s}, V−c := Vc \{_c}, V := Vf∪Vi∪Vs∪Vc, Vany := {_f, _i, _s, _c},
V− := V \ Vany, and F− := F \ {�}. If M ⊆ F and V ⊆ V then T (M,V ) is the set
of terms and TS(M,V ) is the set of term sequences defined by the previous grammar
with symbols from M and V .
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A context is a term with a single occurrence of �. For example, �, C(�) and
f(g(x), �, x, F (C(a))) are contexts. We write Ctx (F ,V) for the set of contexts and
assume that the metavariable C ranges over contexts.

Strategies provide a mechanism to describe complex rule-based computations in a
highly declarative way. In ρLog, strategies are built from strategy names from a set
Fst that contains the special symbols (predefined strategy operators) Id, Compose,
Choice, Closure, NormalForm, OrElse, and strategy variables from a countably
infinite set Vst. We assume that these sets are disjoint, and also disjoint from the sets
V and F . From now on we assume the metavariable l ranges over the set

L := Fst \ {Id, Compose, Choice, Closure, NormalForm, OrElse}

of what we call user-definable strategy operators, and σ ranges over Vst.

Strategies are defined by the grammar

st ::= strategies:
l(st1, . . . , stm) basic strategy

| σ strategy variable
| Id identity
| Compose(st1, st2) composition
| Choice(st1, st2) choice
| Closure(st) closure
| NormalForm(st) normalization
| OrElse(st1, st2) or-else

where m ≥ 0. We write St(Fst,Vst) for the set of strategies defined by this grammar,
and abbreviate basic strategies of the form l() to l.

Strategic programming in ρLog is supported by the fact that the meaning of prede-
fined strategies is, as expected, predefined, whereas the meaning of the basic strategies
is user-definable. We defer the explanation of the meanings of strategic constructs un-
til Subsection 2.2, after we introduce the notions of program and query.

A substitution is a mapping

θ : V− ∪ Vst −→ F− ∪ Vf ∪ T (F−,V) ∪ TS(F−,V) ∪ Ctx (F ,V) ∪ St(Fst,Vst)

that satisfies the following conditions:

– θ(F ) ∈ F− ∪ Vf for all F ∈ V−f ,
– θ(x) ∈ T (F−,V) for all x ∈ V−i ,
– θ(x) ∈ TS(F−,V) for all x ∈ V−s ,
– θ(C) ∈ Ctx (F ,V) for all C ∈ V−c ,
– θ(σ) ∈ St(Fst,Vst) for all σ ∈ Vst, and
– {u ∈ V−f ∪ V−i ∪ V−s ∪ Vst | θ(u) 6= u} ∪ {C ∈ V−c | θ(C) 6= C(�)}
is a finite set. We call this set the domain of θ and denote it by Dom(θ).
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We use the standard notation and write substitutions as finite sets of bindings.

EXAMPLE 1. — The following two sets are substitutions:

{x 7→ f(a, _i, y), x 7→ pq, y 7→ pa,C(f(b)), xq, F 7→ g, C 7→ g(�)}.
{x 7→ F (_s), x 7→ y, C 7→ f(C(F (_s, a, �, b, _s)))}.

The following sets are not substitutions:

{x 7→ pC(f(a, _i, y)), aq, F 7→ �}.
{x 7→ _s, y 7→ y, C 7→ p�, aq}.
{_f → f, _i 7→ f(), _s 7→ pf(), g()q, _c 7→ C(�)}.

2

Substitutions can instantiate terms, term sequences, contexts, or strategies. The
instance Eθ of an expression E ∈ T (F ,V)∪ TS(F ,V)∪Ctx(F ,V)∪St(Fst,Vst)
is the expression obtained by

1) replacing every occurrence of some u ∈ V− ∪ Vst with θ(u), and
2) evaluating the subexpressions C(t) to C[t] where C[t] indicates the term ob-

tained from context C by replacing the occurrences of � with term t.

2.1. Regular constraints

Regular constraints restrict the possible values of a sequence variable or context
variable. Such restrictions are defined by associating a variable with a regular expres-
sion that represents the set of its admissible values. We consider two kinds of regular
expressions: for sequence terms and for contexts. Each such regular expression rep-
resents a set of corresponding syntactic objects. Our definitions of the semantics of
regular expressions will make use of the operation of language substitution. In general,
if A,A1, . . . , An are sets of objects (i.e., sequence terms or contexts), and o1, . . . , on

are symbols used in the construction of these objects, then the language substitution
A{o1 ← A1, . . . , on ← An} denotes the set consisting of all objects producible
from the elements of A by replacing, for all 1 ≤ i ≤ n, all occurrences of oi with
(possibly different) elements from Ai. In general, we will consider only conserva-
tive language substitutions, that is, language substitutions for which the objects of
A{o1 ← A1, . . . , on ← An} are in the same syntactic category as the objects of A.

We start with defining regular expressions. First we define them for term sequences
and then for contexts.

Rs ::= regular expressions for term sequences:
ts hole-free term sequence (ts ∈ TS(F−,V))

| pRs1,Rs2q concatenation
| Rs1 | Rs2 choice
| Rs∗ closure
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The anonymous variables _f, _i, _s and _c have special meanings: They are
anonymous placeholders respectively for a function symbol or a function variable,
for a term, for a term sequence, and for a context. This interpretation of anonymous
variables is taken into account when we define the language [[Rs]] generated by Rs:

[[ts]] := {ts}Θ

[[pRs1,Rs2q]] := {pts1, ts2q | ts1 ∈ [[Rs1]], ts2 ∈ [[Rs2]]}

[[Rs1 | Rs2]] := [[Rs1]] ∪ [[Rs2]]

[[Rs∗]] :=
⋃
n≥0

[[Rs]]n

where [[Rs]]0 = {pq}, [[Rs]]n+1 = {pts1, ts2q | ts1 ∈ [[Rs]], ts2 ∈ [[Rs]]n} for n ≥ 0,
and {ts}Θ is a language substitution with

Θ = {_f ← F− ∪ Vf, _i ← T (F−,V), _s ← TS(F−,V), _c ← Ctx (F ,V)}.

A regular constraint for a sequence variable is a pair of a non-anonymous sequence
variable and a regular expression for term sequences, written x:Rs, where x ∈ V−s .
We say that x is constrained by Rs. The purpose of such a constraint is to restrict a
possible value of the variable x to belong to the language [[Rs]].

Regular expressions for contexts are defined by the following grammar:

Rc ::= regular expressions for contexts:
C context

| Rc1.Rc2 composition
| Rc1 + Rc2 choice
| Rc? closure

We interpret anonymous variables in the same way as before, and define the language
[[Rc]] generated by Rc as follows:

[[C]] := {C}Θ

[[Rc1.Rc2]] := {C1[C2] | C1 ∈ [[Rc1]], C2 ∈ [[Rc2]]}

[[Rc1 + Rc2]] := [[Rc1]] ∪ [[Rc2]]

[[Rc?]] :=
⋃
n≥0

[[Rc]]n

where [[Rc]]0 = {�}, [[Rc]]n+1 = {C1[C2] | C1 ∈ [[Rc]], C2 ∈ [[Rc]]n} for n ≥ 0, and
{C}Θ is a language substitution with Θ being, like above,

{_f ← F− ∪ Vf, _i ← T (F−,V), _s ← TS(F−,V), _c ← Ctx (F ,V)}.

A regular constraint for a context variable is a pair of a non-anonymous context vari-
able and a regular expression on contexts, written C:Rc, where C ∈ V−c . We say that
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C is constrained by Rc. The purpose of such a construct is to restrict the value of C
to belong to the language [[Rc]].

For programming purposes, it is often useful to have the syntactic construct Rsn

as an abbreviation to n-fold concatenation pRs, . . . ,Rsq, and Rcn as an abbreviation
to n-fold composition Rc. · · · .Rc and, therefore, we will consider them as part of our
language of regular expressions.

2.2. Programs and queries

The building blocks of programs and queries are the reducibility atoms, built from
the reducibility predicate→ applied to 3 arguments: a strategy followed by two terms
without holes. We write a reducibility atom → (st, t1, t2) as apply(st, t1) → t2 to
emphasize the intuition behind it: the application of a strategy st on some input t1
in order to produce an output t2. The negation of apply(st, t1) → t2 is written as
¬(apply(st, t1)→ t2). A literal is a pair 〈L, C〉 where L is either a reducibility atom
or its negation, and C is a set of regular constraints for variables that occur in L.

A rule-based program is a special kind of general logic program that defines the
interpretation of the reducibility predicate→ used in the construction of reducibility
atoms. The general structure of a rule-based program clause is

〈apply(st, t)→ t′, C〉 :-L1, . . . , Ln

where L1, . . . , Ln are literals. In rule-based programming, these clauses are inter-
preted as conditional rewrite rules, because of the aforementioned intended meaning
of the reducibility predicate: application of a strategy st on some input t1 in order
to produce an output t2. The constraint part C is relevant for restricting the values
of the matchers considered in the rewrite step. In order to emphasize the rewriting
character of reducibility literals, we will abbreviate a literal 〈apply(st, t1) → t2, C〉
as t1 →st,C t2 and a literal 〈¬(apply(st, t1) → t2), C〉 as t1 9st,C t2. If C = ∅ then
we simply write t1 →st t2 instead of t1 →st,∅ t2, and t1 9st t2 instead of t1 9st,∅ t2.
We depict a program clause as a conditional rewrite rule of the form

t→st,C t′ ⇐
n∧

i=1

(ti ⇀sti,Ci
t′i)

where n ≥ 0 and ⇀ ∈ {→, 9}. If n = 0 then we elide the conditional part and write
the program clause simply as t→st,C t′.

ρLog is designed to answer queries of the form
∧n

i=1(ti ⇀sti,Ci t′i) by using a
form of SLDNF-resolution. Thus we consider rule-based programming as a special
case of general logic programming, where the only defined symbol is the reducibility
predicate→. (See, e.g., [APT 94] for a survey on general logic programming.)

The SLDNF-resolution principle works well for first-order term languages, but is
not suitable for the language of ρLog, where sequence variables and context variables
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render an infinitary unification problem for terms. We have overcome this problem
by identifying a class of queries and programs for which SLDNF-resolution can be
performed by matching instead of unification. The advantage of matching versus uni-
fication is that matching is finitary and there are known matching algorithms both for
unconstrained matching and for matching with regular constraints [KUT 05b].

In ρLog we require programs and queries to be deterministic. As we shall see
later, in Section 3, determinism is a syntactic restriction that ensures the possibility to
carry out SLDNF-resolution by matching instead of unification. In the remainder of
this subsection we introduce our notion of determinism. To simplify this presentation,
we employ the following notation:

– vars(E) denotes the set of variables of a syntactic object E. We say E is ground
if vars(E) = ∅.

– If C is a set of regular constraints then cvars(C) denotes the set of all vari-
ables constrained by regular expressions in C, and evars(C) denotes the set of all non-
anonymous variables that occur in regular expressions in C (the set of extra variables
of C). We also say that C constrains variables in cvars(C).

DEFINITION 2. — A program clause t′0 →st,C0 tn+1 ⇐
∧n

i=1(ti ⇀sti,Ci
t′i) is

deterministic if it satisfies the following conditions:

1) For all 1 ≤ i ≤ n, vars(sti) ⊆ vars(st),
2) For all 1 ≤ i ≤ n, if the ith literal of the conditional side of the clause is

negative then vars(t′i) ⊆ Vany ∪
⋃

0≤j<i vars(t
′
j),

3) For all 1 ≤ i ≤ n + 1, vars(ti) ⊆
⋃

0≤j<i vars(t
′
j) \ Vany,

4) For all 0 ≤ i ≤ n,

- Ci constrains any variable at most once, and

- cvars(Ci) ⊆ vars(t′i) \
⋃

0≤j<i vars(t
′
j) and evars(Ci) ⊆

⋃
0≤j<i vars(t

′
j).

A query
∧n

i=1(ti ⇀sti,Ci t′i) is deterministic if, for all 1 ≤ i ≤ n:

1) vars(sti) = ∅ and vars(ti) ⊆
⋃

1≤j<i vars(t
′
j) \ Vany,

2) If the ith literal is negative then vars(t′i) ⊆ Vany ∪
⋃

1≤j<i vars(t
′
j),

3) Ci constrains any variable at most once, and

4) cvars(Ci) ⊆ vars(t′i) \
⋃

1≤j<i vars(t
′
j) and evars(Ci) ⊆

⋃
1≤j<i vars(t

′
j).

We will explain the relevance of all these syntactic restrictions in Section 3, when we
introduce the resolution principle of ρLog and identify sufficient conditions to ensure
the tractability of resolution steps by matching instead of unification.
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2.3. Built-in strategies

For programming purposes, the meaning of the strategic constructors from Fst

should be built-in. More precisely, we want to ensure the following relationships for
all ground hole-free terms t1, t2 and ground strategies st, st1, st2:

t1 →Id t2 iff t1 = t2,
t1 →Compose(st1,st2) t2 iff t1 →st1 t3 and t3 →st2 t2 for some ground term t3,
t1 →Choice(st1,st2) t2 iff t1 →st1 t2 or t1 →st2 t2,
t1 →Closure(st) t2 iff t1 = t2 or there exists a sequence of ground terms

t′1, . . . , t
′
n such that t1 →st t′1, . . . , t

′
n−1 →st t′n

and t′n = t2,
t1 →NormalForm(st) t2 iff t1 →Closure(st) t2 and there is no ground term t3

such that t2 →st t3,
t1 →OrElse(st1,st2) t2 iff t1 →st1 t2 or else t1 →st2 t2.

We enforce this interpretation by considering the following built-in program:

Pst = { x→Id x.
x→Compose(σ1,σ2) z⇐ (x→σ1 y) ∧ (y→σ2 z).
x→Choice(σ1,σ2) y⇐ (x→σ1 y).
x→Choice(σ1,σ2) y⇐ (x→σ2 y).
x→Closure(σ) y⇐ (x→Id y).
x→Closure(σ) y⇐ (x→σ z) ∧ (z→Closure(σ) y).
x→NormalForm(σ) y⇐ (x→Closure(σ) y) ∧ (y 9σ _i).
x→OrElse(σ1,σ2) y⇐ (x→σ1 y),
x→OrElse(σ1,σ2) y⇐ (x 9σ1 _i) ∧ (x→σ2 y).}

where x, y, z ∈ Vi and σ, σ1, σ2 ∈ Vst. Note that all clauses of Pst are deterministic.

3. The ρLog Calculus

ρLog is designed to answer deterministic queries in theories represented by pro-
grams made of deterministic clauses. In general, the structure of a ρLog program P is
P := Pst ∪ Pu where

– Pst is the deterministic program introduced in the previous subsection; It pro-
vides default interpretation for the predefined strategy operators from Fst.

– Pu is a program that provides interpretation for user-definable strategy operators.
Pu is specified by the user, and consists of deterministic clauses of the form

t→st,C t′ ⇐
n∧

i=1

(ti ⇀sti,Ci t′i)

where st is a basic strategy.
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The computational model of ρLog is, in essence, SLDNF-resolution with leftmost
literal selection: Every program clause t →st0,C0 tn+1 ⇐

∧n
i=1(ti ⇀sti,Ci

t′i) is
logically equivalent to the clause t →st0,C0 x ⇐

∧n
i=1(ti ⇀sti,Ci

t′i) ∧ (tn+1 →Id x)
where x is a fresh individual variable, and therefore we can use resolution with respect
to these equivalent clauses. The inference rules that define the resolution calculus
of ρLog are shown in Figure 11, where mcsm(E1 � E2, C) denotes the minimal
complete set of matchers of E1 and E2 which satisfy the regular constraints from C.

(t→st,C t′) ∧G

(
∧n

i=1(ti ⇀sti,Ci t′i) ∧ (tn+1 →Id,C t′) ∧G)θ

if st 6= Id, where t0 →st0,C0 tn+1 ⇐
∧n

i=1(ti ⇀sti,Ci
t′i) is a fresh variant of a clause

from Pst ∪ Pu and θ ∈ mcsm(apply(st0, t0)� apply(st, t), C0).

(t→Id,C t′) ∧G

Gθ

where θ ∈ mcsm(t′ � t, C).
(t 9st,C t′) ∧G

G

if there exists a finite failed SLDNF-derivation tree of t →st,C t′ with respect to the
program Pst ∪ Pu.

Figure 1. The resolution calculus of ρLog.

The main differences between SLDNF-resolution and the calculus of ρLog are:

– the usage of mcsm(apply(st0, t0)� apply(st, t), C0) instead of
mcsu(t→st t′ ≡ t0 →st0 x, C0) when st 6= Id, and
– the usage of mcsm(t� t′, C) instead of
mcsu(t→Id t′ ≡ x→Id x, C) when st = Id

where mcsu(E1 ≡ E2, C) is the notation for a minimal complete set of unifiers be-
tween E and E′ which satisfy the regular constraints from C. We recall that the terms
of our language may contain anonymous variables, and therefore the notions of unifier
and matcher between terms must be defined with some care: First, every occurrence
of an anonymous variable in the terms under consideration is replaced by a fresh
new variable of the same sort; after computing the substitution (unifier or matcher),
the variables that were newly introduced at the beginning are back-substituted into
anonymous variables, and the bindings for anonymous variables are removed.

Unfortunately, mcsu(E1 ≡ E2, C) is usually an infinite set, and this is the place
where deterministic goals and queries overcome this problem: It can be shown that
any ρLog-derivation with leftmost literal selection of a deterministic goal with respect
to a deterministic program has the following properties:

1. The first inference rule was revised.
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1) Every selected literal t ⇀st,C t′ has vars(t) = vars(st) = ∅.
2) Every selected literal t ⇀st,C t′ has cvars(C) ⊆ vars(t′) and evars(C) = ∅.
3) Every selected literal t 9st,C t′ has vars(t′) ⊆ Vany.

Therefore, whenever we select an atom t →st,C t′ for resolution, we have vars(t) =
vars(st) = ∅, cvars(C) ⊆ vars(t′), evars(C) = ∅, and are in one of the following
two situations:

I) st 6= Id and resolution is with respect to a fresh variant

t0 →st0,C0 x⇐
n∧

i=1

(ti ⇀sti,Ci t′i) ∧ (tn+1 →Id x). (1)

In this situation mcsu(t →st t′ ≡ t0 →st0 x, C0) = {θ ∪ {x 7→ t′θ} | θ ∈
mcsm(apply(st0, t0)� apply(st, t), C0)}, and therefore SLDNF-resolution with re-
spect to (1) coincides with the corresponding inference rule of ρLog.

II) st = Id and resolution is with respect to a fresh variant x →Id x. In this case
mcsu(t →Id t′ ≡ x →Id x, C0) = {θ ∪ {x 7→ t} | θ ∈ mcsm(t′ � t, C0)} and,
again, SLDNF-resolution coincides with the corresponding inference rule of ρLog.

Hence, the resolution calculus of ρLog inherits all the properties of SLDNF-resolution
with leftmost literal selection. In particular, our calculus is sound and incomplete
because leftmost literal selection is an unfair selection strategy. Completeness can be
recovered if we adopt additional restrictions to guarantee termination of Pst∪Pu. We
do not address the termination problem in this paper.

Property 2) is important for the matching algorithm with regular constraints which
computes mcsm(E � E′, C) [KUT 05b].

Our notion of deterministic clause is a generalization of the notion of determinis-
tic 3-CTRS [OHL 01] to the case when negative literals are allowed in the conditional
part. Condition 2) of Definition 2 on program clauses overcomes the well-known prob-
lematic interpretation of negative literals in general logic programming with SLDNF-
resolution [APT 94], by ensuring the fact that SLDNF-resolution with leftmost literal
selection selects only negative literals with property 3) mentioned above.

ρLog may also access powerful external libraries to carry out symbolic or numeric
computations. The only requirement is the availability of an interface eval() that
enables to evaluate any ground term t to a boolean value eval(t) ∈ {0, 1}. This
capability is embedded in the framework of ρLog via boolean atoms. A boolean atom
is modeled as a reducibility atom of the form t→Id True where True ∈ F is a special
function symbol that indicates the evaluation of this literal should rely on the interface
eval() to some external libraries.

The inference rule for boolean atoms is

(t→Id True) ∧G

G
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if eval(t) = 1. In general we will abbreviate the boolean atoms and write t instead of
t→Id True inside goals and program clauses.

Notes on implementation

Our implementation of the calculus of ρLog takes advantage of the observation
that the resolution steps can be regarded as rewrite steps without evaluating conditions
with respect to the conditional term rewriting system Pst ∪ Pu, in the sense defined
by Bockmayr in [BOC 90]. This can be easily seen in Figure 1 where, for the case
st 6= Id, we compute a matcher between a subterm of the current goal and the left-hand
side of the conditional rewrite rule. Since the Mathematica interpreter has a built-in
mechanism for this kind of rewriting (with built-in backtracking), we found convenient
to implement ρLog as a Mathematica package [MAR 06]. The documented package
is available at www.score.score.cs.tsukuba.ac.jp/~mmarin/RhoLog/.

4. Applications

The most obvious application of ρLog is in automated reasoning, where rule-based
programs can be used to model inference rules, and strategies may enforce an efficient
exploration of the space for solutions. We have used this approach for fast prototyp-
ing of unification algorithms with sequence variables in free, flat, and restricted flat
theories [MAR 03], and of lazy narrowing calculi for theories presented by both un-
conditional and conditional term rewrite systems [MAR 04b]. Pattern matching with
regular constraints makes ρLog useful for querying and manipulating data with regular
(sub)structures, such as XML documents [KUT 05a], or genetic data.

In this section we illustrate the capabilities of ρLog by emphasizing the concise
and declarative character of this programming style.

4.1. Automated Deduction

Proof derivations are sequences of inference steps. For several deductive systems,
the inference rules can be modeled by program clauses for basic strategies, and proof
derivations correspond to sequences of resolution steps produced by unfolding certain
strategies. In these situations, rule-based programming provides a natural encoding of
the deductive system and support for proof search: the resolution derivation obtained
in this way constitutes a proof certificate. By tracing the derivations of ρLog, we can
generate certificates which justify the correctness of proofs.

To illustrate, we consider Gentzen’s system G′ [GAL 85], which is a sequent cal-
culus for the fragment of propositional logic with logical connectives ∧ (conjunction),
∨ (disjunction),⇒ (implication) and ¬ (negation). The inference rules of system G′

are shown in Table 1. The metavariables Γ,∆,Λ,Ω range over sequences of proposi-
tional formulas, L and R are lists of formulas, and A and B are propositional formulas.
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{Γ, A, ∆} ` {Λ, A, Ω}
{Γ, A, B, ∆} ` R

{Γ, A ∧B, ∆} ` R

L ` {Γ, A, ∆} L ` {Γ, B, ∆}
L ` {Γ, A ∧B, ∆}

{Γ, A, ∆} ` R {Γ, B, ∆} ` R

{Γ, A ∨B, ∆} ` R

L ` {Γ, A, B, ∆}
L ` {Γ, A ∨B, ∆}

{Γ, ∆} ` {A, Λ} {B, Γ, ∆} ` {Λ}
{Γ, A ⇒ B, ∆} ` {Λ}

{A, Γ} ` {B, ∆, Λ}
{Γ} ` {∆, A ⇒ B, Λ}

{Γ, ∆} ` {A, Λ}
{Γ,¬A, ∆} ` {Λ}

{A, Γ} ` {∆, Λ}
{Γ} ` {∆,¬A, Λ}

Table 1. System G′ for propositional logic.

System G′ has a a straightforward encoding into ρLog program clauses:

{_s, A, _s} ` {_s, A, _s} →G′ true.
{Γ, A ∧B,∆} ` R→G′ true⇐ ({Γ, A, B, ∆} ` R→G′ true).
L ` {Γ, A ∧B,∆} →G′ true⇐ (L ` {Γ, A, ∆} →G′ true)∧

(L ` {Γ, B,∆} →G′ true).
{Γ, A ∨B,∆} ` R→G′ true⇐ ({Γ, A, ∆} ` R→G′ true)∧

({Γ, B,∆} ` R→G′ true).
L ` {Γ, A ∨B,∆} →G′ true⇐ (L ` {Γ, A, B,∆} →G′ true).
{Γ, A⇒ B,∆} ` {Λ} →G′ true⇐ ({Γ,∆} ` {A,Λ} →G′ true)∧

({B,Γ,∆} ` {Λ} →G′ true).
{Γ} ` {∆, A⇒ B,Λ} →G′ true⇐ ({A,Γ} ` {B,∆,Λ} →G′ true).
{Γ,¬A,∆} ` {Λ} →G′ true⇐ ({Γ,∆} ` {A,Λ} →G′ true).
{Γ} ` {∆,¬A,Λ} →G′ true⇐ ({A,Γ} ` {∆,Λ} →G′ true).

where Γ,∆,Λ ∈ Vs, A,B ∈ Vi, G′ ∈ L, and list, entails, implies, and, or,
not, true are function symbols for which we consider the following abbreviations:

t1 ` t2 instead of entails(t1, t2), {ts} instead of list(ts),
t1 ∧ t2 instead of and(t1, t2), t1 ∨ t2 instead of or(t1, t2),
t1 ⇒ t2 instead of implies(t1, t2), and ¬t instead of not(t).

Let’s check whether the formula (P ⇒ Q)⇒ ((¬Q)⇒ (¬P )) is a tautology or not.
This amounts to checking whether there is a ρLog refutation of the query

{} ` {(P ⇒ Q)⇒ ((¬Q)⇒ (¬P ))} →G′ true.
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We can refute this query as follows:

{} ` {(P ⇒ Q)⇒ ((¬Q)⇒ (¬P ))} →G′ true 7

({P ⇒ Q} ` {(¬Q)⇒ (¬P )} →G′ true) ∧ (true→Id true) 7

({¬Q,P ⇒ Q} ` {¬P} →G′ true) ∧(true→Id true) ∧ (true→Id true) 8

({P ⇒ Q} ` {Q,¬P} →G′ true) ∧(true→Id true) ∧ (true→Id true)
∧(true→Id true) 9

({P, P ⇒ Q} ` {Q} →G′ true) ∧(true→Id true) ∧ (true→Id true)
∧(true→Id true) ∧ (true→Id true) 6

({P} ` {P,Q} →G′ true) ∧({Q,P} ` {Q} →G′ true)
∧(true→Id true) ∧ (true→Id true)
∧(true→Id true) ∧ (true→Id true) 1

(true→Id true) ∧({Q,P} ` {Q} →G′ true)
∧(true→Id true) ∧ (true→Id true)
∧(true→Id true) ∧ (true→Id true) Id

({Q,P} ` {Q} →G′ true)∧(true→Id true) ∧ (true→Id true)
∧(true→Id true) ∧ (true→Id true) 1

(true→Id true)∧(true→Id true) ∧ (true→Id true)
∧(true→Id true) ∧ (true→Id true) Id · · · Id 2.

where  n indicates a ρLog resolution step with respect to the n-th program clause
for system G′, and Id is a ρLog resolution step when the applied strategy is Id.

4.2. Bioinformatics

Bioinformatics is an area of research where the analysis of long sequences of DNA
or aminoacids reveals important genetic information. There are many situations when
relevant genetic information can be detected by the identification of regular sequence
patterns in DNA strands.

First, we illustrate the simplicity of encoding the translation of segments of RNA
into proteins. The overall translation is achieved by translating successively triplets of
nucleotides (codons) into aminoacids in accordance with the universal genetic code.
There are 20 known aminoacids, and we will encode them as terms of the form a()
with a from the subset {A, V, L, I,G, C, F,W,M,P, S, T, Y, N,Q,D,E,K,R,H}
of F . We have chosen the names of these function symbols to coincide with the stan-
dard one-letter abbreviations of the aminoacids. The RNA nucleotides are encoded as
terms of the form n() with n ∈ {U, C, A, G} ⊂ F .

The genetic code has 64 translation rules, one for every possible codon, but we
can encode them with 24 ρLog rules by using anonymous variables. There are 3
codons that do not actually translate into an aminoacid, but trigger the termination
of the translation process. We encode this fact by translating those codons into a
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{U, U, x} →uc,{x:U|C} F. {C, A, x} →uc,{x:U|C} H.
{U, U, x} →uc,{x:A|G} L. {C, A, x} →uc,{x:A|G} Q.
{C, U, _i} →uc L. {A, A, x} →uc,{x:U|C} N.
{A, U, x} →uc,{x:U|C|A} I. {A, A, x} →uc,{x:A|G} K.
{A, U, G} →uc M. {G, A, x} →uc,{x:U|C} D.
{G, U, _i} →uc V. {G, A, x} →uc,{x:A|G} E.
{U, C, _i} →uc S, {U, G, x} →uc,{x:U|C} C.
{C, C, _i} →uc P. {U, G, G} →uc W.
{A, C, _i} →uc T. {C, G, _i} →uc R.
{G, C, _i} →uc A. {A, G, x} →uc,{x:U|C} S.
{U, A, x} →uc,{x:U|C} Y. {A, G, x} →uc,{x:A|G} R.
{U, x} →uc,{x:pA,Aq|pA,Gq|pG,Aq} Ter. {G, _i, _i} →uc G.

Figure 2. ρLog encoding of the generic code.

special term, Ter(), where Ter is a special function symbol that indicates termination
of translation. In ρLog, the genetic code can be encoded as shown in Figure 2. The
translation of an RNA sequence can be easily encoded in two program clauses:

{} →transl {}.
{x, x, y} →transl {z, z} ⇐ ({x, x} →uc z) ∧ ({y} →transl {z}).

As a second example, we illustrate the usefulness of ρLog in the detection of ge-
netic mutations. One well-known kind of mutation is the trinucleotide repeat ex-
pansion, discovered in humans in 1991, which denotes an increase in the number of
trinucleotide tandem repeats. The fragile X syndrome is the most thoroughly studied
syndrome, responsible for over 10 genetic disorders. This syndrome is due to the ex-
pansion of a certain region in DNA where the trinucleotide CGG is repeated several
times in tandem. People whose DNA region contains more than 50 repeats of this
trinucleotide have high probability to show symptoms of genetic disorder [FAI 99].

With ρLog we can detect such abnormal CGG repeats by answering the query

G→Id,{y:pC,G,Gq50} {px, y, _sq}

where G denotes the region of DNA that is prone to the fragile X syndrome, encoded
as a list of terms of the form n() with n ∈ {C, G, A, T} ⊂ F .

4.3. Term Rewriting Strategies

Labeled rules act on expressions by trying to transform the expression as a whole.
Term rewriting is a transformation relation which is closed under contexts, i.e., it can
act on a term by selecting and transforming certain subterms. Often, term rewriting
relations are defined by starting with a finite set of transformation rules. Efficient
computations can be achieved by defining rewriting strategies which constrain the
selection of the subterms which are going to be transformed.
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In ρLog, term rewriting strategies can be easily specified. To illustrate, let’s start
with a set PA of transformation rules which formalize the operations of addition and
multiplication in Peano arithmetic:

0⊕ x→PA x, s(x)⊕ y →PA s(x⊕ y),
0⊗ x→PA 0, s(x)⊗ y →PA y ⊕ (x⊗ y)

where x, y ∈ Vi, PA ∈ L, and 0, s,⊕,⊗ are function symbols. The rewrite relation
induced by the term rewrite system PA is the reducibility relation induced by the
labeled rule rw-PA defined by the program clause

x→rw-PA C(x2)⇐ (x→Id,{C:_f(_s,�,_s)?} C(x1)) ∧ (x1 →PA x2).

where x, x1, x2 ∈ Vi and C ∈ Vc. This program clause is a straightforward transliter-
ation in ρLog of the definition of term rewriting. We can take advantage of the fact that
the rewrite relation induced by PA is terminating, and define an evaluator for Peano
arithmetic by adding the program clause

x→eval y ⇐ (x→NormalForm(rw-PA) y).

Rule rw-PA does not impose any restriction on the selection of the subterm which
is rewritten. This is one of the reasons why the rewriting relation →rw-PA is non-
deterministic. Rewriting strategies restrict the selection of the subterm which is rewrit-
ten. We illustrate the ρLog implementation of two popular rewriting strategies: inner-
most rewriting and outermost rewriting. Innermost rewriting always selects an inner-
most subterm which can be transformed, and outermost rewriting always selects an
outermost subterm which can be transformed. This kind of behavior can be specified
with the following user-defined program clauses:

x→I-rw-PA y ⇐ (x→OrElse(I-rw-PA-1, PA) y).
x→O-rw-PA y ⇐ (x→OrElse(PA, O-rw-PA-1) y).
F (x, x, z)→I-rw-PA-1 F (x, y, z)⇐ (x→I-rw-PA y).
F (x, x, z)→O-rw-PA-1 F (x, y, z)⇐ (x→O-rw-PA y).

It is not hard to see that the reduction relation→I-rw-PA encodes leftmost innermost
term rewriting, and→O-rw-PA encodes leftmost outermost term rewriting:

– Innermost subterm selection is achieved by giving priority to rule I-rw-PA-1
(which rewrites a subterm) over rule PA (which transforms the term as a whole).

– Outermost subterm selection is achieved by giving priority to rule PA (which
transforms the term as a whole) over rule O-rw-PA-1 (which rewrites a subterm).

5. Conclusion and Future Work

The interplay between (1) matching with context and sequence variables and con-
text variables, (2) regular constraints, and (3) strategic programming with labeled
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rules provides support for concise and natural implementations of several applica-
tions. Since the basic principles of matching and rule-based programming advocated
by us are so pervasive in all areas of sciences and engineering, we believe that ρLog
could become a very useful programming paradigm.

As future work, we intend to extend matching with allowing regular expressions
inside terms and permitting in regular constraints the same variable to be constrained
by several regular expressions. This would make the language more expressive, and
would allow to relax some current restrictions on regular constraints.

Having ρLog implemented in Mathematica has several advantages that have been
emphasized in [MAR 04d]. However, it has also a major drawback: Mathematica is
not free. Therefore, we plan to reimplement ρLog on a free platform.
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