
Programming with Sequence Variables: the 
Sequentica Package

Mircea Marin, Johann Radon Institute for Computational 
and Applied Mathematics, Austria
Dorin Tepeneu, University ofTsukuba
University of Tsukuba
mircea.marin@oeaw.ac.at  dorinte@score.is.tsukuba.ac.jp

1 Abstract
Sequence  variables  are  an  advanced  feature  of  modern  programming  languages.  They
enhance the support for writing programs in a declarative and easily understood way. To
our  knowledge,  Mathematica  provides  the best  support  for  programming with sequence
variables,  but  it  requires  a  good  understanding  of  how  the  interpreter  chooses  the
matcher.  This  is  so  because  matching  against  patterns  with  sequence  variables  is  in
general not unitary. We claim that there is room to improve the programming style with
sequence variables. We propose a number of new programming constructs which impose
certain  strategies  on  the  pattern  matching  process.  Our  constructs  enable  to  control  the
selection  of  a  matcher  by  annotating  sequence  variables  with  binding  priorities  and
ranges for their lengths, and to compute optimal values characterized by a score function
to  be  optimized.  To  this  end  we  have  developed  the  package  Sequentica.  With
Sequentica  the  Mathematica  programmers  and  users  get  additional  support  for  defining
functions  and  transformation  rules  in  an  easy  and  convenient  way.  We  outline  the
algorithmic  difficulties  to  support  these  extensions  and  describe  how  they  are
implemented in Sequentica. The usefulness of these extensions is illustrated with various
examples.  We  regard  these  extensions  as  a  first  step  towards  identifying  a  new
programming style:  programming with sequence variables. Such  a programming style is
useful  to  solve  problems  based  on  sequence  analysis  such  as  bio-informatics,
cryptography or data mining. 

2 Motivation

The  concept  of  sequence  variable  has  proved  useful  in  many  areas,  such  as  symbolic
computation, theorem proving [2], term rewriting [1], unification [5] and computational



logic  [4].  We  feel  that  the  expressive  power  of  this  concept  is  not  yet  completely
understood  and  that  a  better  formalization  is  still  desirable.  It  is  obvious  that  sequence
variables,  as defined in  Mathematica,  are very powerful  and useful  for  proving,  solving
and  computing.  Still,  the  expressive  power  of  this  concept  is  superior  to  what
Mathematica provides. To emphasize this fact, we mention:

1. Matching against patterns with sequence variables is in general not unique. There is no
way  to  specify  which  matcher  to  choose  but  to  accept  the  matcher  chosen  by  the
underlying interpreter. Often, the programmer wants to control this choice.
Example  1.  Assume  we  want  to  define  a  function  which  returns  the  longest  run  of
successive integers in a sequence. This may become possible if we could write:

GetMaxSublist!___, x___Integer, ___D := 8x$

and specify a strategy to choose a matcher which yields the longest sequence binding for
the sequence variable x. Mathematica has no programming support for such definitions.

2.  Another  desirable  feature  is  to  select  the  matcher  which  yields  an  optimum  value,
where  optimum  is  defined  for  a  matcher  which  minimizes  or  maximizes  a  certain
expression. 
Example 2. 

Suppose  we  have  a  list  of  lists  L={{T11, T12, ...},...,{T12,1, T12,2, ...}}  of
temperature measurements during one year, where each sublist contains the temperatures
measured  in  one month.  We want  to  find  the sublist  of temperatures  of the month  with
largest variation. It would be convenient to be able to write something like

GetMaxVariation[___,{Ts___Real},___]:={Ts}

where Max[Ts]-Min[Ts] is maximum

to  search  among  all  matchers  and  keep  the  value  of  {Ts}  for  which  the  difference
Max[Ts]-Min[Ts] is maximum. There is no direct support for such specifications.

3. There is no means to control the lengths of sequences in Mathematica. Interval bounds
for  sequences  are  supported   in  the  specification  of  regular  expressions  and   by  many
tools and languages based on their specification. 
Example 3. Assume L is a list of daily temperature measurements during a long period of



time,  and  we  want  to  find  the  week  with  highest  average  temperature  by  calling
HotWeek[L]. In this case, we want to write something like

HotWeek[x___,y___,___]/;
And[Length[{y}]==7,Mod[Length[{x}],7]==0]:=

Quotient[Length[{x},7],1] 
for which Plus[y]/7 is maximum

There is no adequate programming support to specify such a function in Mathematica.

To  overcome  these  limitations,  we  propose  a  couple  of  new  Mathematica  syntactic
constructs  for  programming  with  sequence  variables  and  give  an  account  to  their
Mathematica  implementation.  To  this  end  we  have  developed  the  package  Sequentica
which supports the extensions reported in this paper. 

3 Pattern Matching With Sequences in Mathematica
Pattern  matching  is  the  core  of  the  definitional  mechanisms  of  modern  functional
languages  [7]  and  has  wide  applications  in  areas  such  as  cryptography,  computational
biology,  combinatorics,  and  parallel  algorithms  [6].  Pattern  matching  with  sequences
extends conventional pattern matching with a new syntactic category: sequence variables.
In Mathematica, a sequence variable is a placeholder of a sequence of expressions which
are spliced automatically in the body of the function being defined.
We  have  already  mentioned  that  matching  against  patterns  which  contain  sequence
variables  is  in  general  not  unique.  For  example,  matching  f[1,2,3]  against
f[x___,y__] yields 3 possible matchers, as witnessed by the call:

In[6]:= ReplaceList!f!1, 2, 3D, f!x___, y__D :> 88x$, 8y$$D

Out[6]= 888<, 81, 2, 3<<, 881<, 82, 3<<, 881, 2<, 83<<<
Because  of  this  situation,  when  we  define  functions  with  sequence  variables  we  must
specify the  matcher  which is  being considered.  The interpreter  of Mathematica  chooses
the  matcher  which  assigns  the  shortest  sequences  of  arguments  to  the  first  sequence
variables that show up when traversing the pattern in a leftmost-innermost manner, e.g. 



In[9]:= f!x___, y__D := 88x$, 8y$$; f!1, 2, 3D

Out[10]= 88<, 81, 2, 3<<
4 Extensions
Sequentica  [8] is a Mathematica  package which extends the capabilities of Mathematica
with constructs for programming with sequence variables. After loading the package with
Get["Sequentica.m"], the user can define new functions fi  by calling

Sequentica[...; fi[arg1,...,argn]:=<body_i>;...;]

or  sets R of transformation rules by calling

R=Sequentica[{f[arg1,...,argn]!<body>,...}]

The  novelty  is  that  the  user  can  control  the  pattern  matching  mechanism  and  the
computation  with  sequence  variables  by  annotating  the  arguments  and  body  of
definitions and transformation rules.  The following two sections explain how these new
programming features.

Extension 1
This extension addresses the possibilities to (1) control the choice of a particular matcher
instead of relying on some built-in  pattern matching strategy;  (2)  confine the lengths of
sequence  variable  bindings  to  certain  intervals;  and  (3)  impose  equality  constraints
between  the  lengths  of  bindings  of  sequence  variables.  This  can  be  achieved  by
annotating  sequence  variables  with  binding  priorities  which  specify  the  order  in  which
the sequences  are  assigned  bindings  upon  pattern  matching,  and  bounds  for  the lengths
of their bindings. We propose to extend sequence annotations with the construct patt"
{p,m,M}  to  denote  a  sequence  with  priority  p  and  length  varying  from m  to  M.  The
bindings  assigned  to  the  sequence  variables  (such  as  patt)  are  computed   in  the
increasing  order  of  their  priorities,  by  looking  for  the  first  matcher  that  is  obtained  by
varying the sequence length from m to M.  For example, the call



Sequentica[GetSubsequence[x___"{2,0,#},y__"{1,#

,1},y__,z___"{3,0,#}]:={y}]

defines  the  function  GetSubsequence[]  which  computes  the  list  of  the  longest
nonempty subsequence in the input, which occurs repeatedly at least twice. The assigned
priorities  are:  1  for  y,  2  for  x  and  3  for  z,  and  thus  we  first  try  to  bind  the  sequence
variable  y,  next  x,  and  finally  z.  The  bindings  for  y  are  looked  up  starting  from  the
largest possible length (denoted here by ¶) down to length 1.

Example 5. It is convenient to be able to constrain different sequences to have the same
length. We achieve this by imposing the condition that sequence variables annotated with
same priority denote sequences of same length. The function

Sequentica!
GetPalindrome!x___ ! 82, 0, "$, y__ ! 81, ", 1$,

u_, z__ ! 81, ", 1$, t__ ! 83, 0, "$D %;
8y$ === Reverse!8z$D := 8y, u, z$D

computes the longest palindrome of odd length contained in the input sequence.

To  avoid  excessive  annotations,  we  will  assume that  (1)  it  is  sufficient  to  annotate  one
occurrence of a sequence variable;  all  other occurrences of that  variable are assumed to
have  the  same  annotation,  (2)  anonymous  sequence  variables  have  assigned  distinct
names, and (3) a sequence variable y__ (resp. y___) which is not explicitly annotated has
an  implicit  sequence  annotation  of  the  form  !{p,1,"}  (resp.  !{p,0,"}).  The
default  priorities p  are assigned  in  a  leftmost-innermost  manner,  and are  assumed to  be
larger  than  the  priorities  given  explicitly.  This  means  that  the  non-annotated  sequence
variables are the last ones which get assigned bindings. With these assumptions in mind,
the function GetMaxSublist[] from Example 1 can be defined by

Sequentica!GetMaxSublist!___, x___Integer, ___D := 8x$D



Extension 2
Our  second  extension  addresses  the  possibility  to  select  matching  substitutions  which
render  an  expression  optimal.  To  illustrate,  let  us  reconsider  Example  2:  we  want  to
select  the  sublist  of  a  list  which  has  a  maximum  variation  of  values.  In  particular,  we
suggest the following syntax:

Sequentica!GetMaxVariation!___, 8x___Real$, ___D :=

BestFit!8x$, Max!xD # Min!xD, GreaterDD

to find the list {x} computed by a matching against {___,{x___Real},___} which
produces the greatest value of the expression Max[x]-Min[x].

We suggest the following new definitional mechanisms inside Sequentica[] calls:

f[patts]:=BestFit[expr,optim,test]

f[patts]:=BestFits[n,expr,optim,test]

The  first  call  defines  a  partial  function  f  which  associates  a  call  f[a1,…,am]  to  the
output  $(expr)  produced  by  the  matcher  $  between  f[a1,…,an]  and  f[patts]
which  satisfies  test($(optim),%(optim))=True  for  all  other  matchers  %
between f[a1,…,am]  and f[patts]. 
The second call assumes n>0 and defines a function f which associates to a call f[a1,…
,am] the list of instances {$i(expr)|1&i&k}  produced by the longest list of distinct
matchers {$1,…,$k} between such that  k§n and
1. test[ $j(optim),$j+1 (optim)]=True if 1§j<k,
2. test[ $k(optim),$(optim)]=True for all matchers $'{$1 ,…, $k}.

In both cases, test[] is assumed to define a total order on the set of values $(optim)
generated by the matchers $ of arbitrary expressions against f[patts].

Example 3 revisited. We can now define HotWeek[] as follows:

Sequentica!HotWeek!x___, y___ ! 81, 7, 7$, ___D %;
Mod!Length!8x$D, 7D == 0 := BestFit!
Quotient!Length!8x$D, 7D + 1, Plus!yD%7, GreaterDD;



5 Algorithmic Aspects and Implementation Issues

Matchers are computed by traversing the sequence pattern outside-in and computing the
bindings  of the  sequence  variables  in  the  order  given  by their  priorities  and  by varying
the bindings of their lengths between their specified limits. For example 

In[29]:= Sequentica!f!Hx__IntegerL ! 81, ", 2$, z___,

x___, y__ ! 82, ", 1$D := 88x$, 8y$, 8z$$D;
f!1, 2, 1, 1, 2, 1, 2, 2D

yields  {{1,2,1},{2,2},{}}  because  {x!Sequence[1,2,1],y!

Sequence[]}  is the first matcher encountered by varying the length of the binding of
x from ¶ down to 2 and next the length of y from ¶ down to 1. .

In[32]:= Sequentica!f!Hx__IntegerL ! 81, ", 2$, z___,

x___, y__ ! 82, ", 1$D := 88x$, 8y$, 8z$$D;

If we redefine f and call

In[34]:= Sequentica!f!Hx__IntegerL ! 81, 1, "$, z___,

x___, y__ ! 82, ", 1$D := 88x$, 8y$, 8z$$D;
f!1, 2, 1, 1, 2, 1, 2, 2D

then  we  obtain  {{1},{1,2,1,2,2},{2}}  because  we  have  changed  the  order  to
look up for a matcher. 

The  implementation  of  such  a  pattern  matching  algorithm  enumerates  the  possible
lengths  of  bindings  in  the  order  specified  by  sequence  annotations,  detects  the  first
combination  of  lengths  for  which  a  matcher  exists,  and  evaluates  the  body  of  the
corresponding function (or transformation rule) for the computed matcher. Note that the
algorithm must be recursive on the structure of matchers, because sequence variables can
occur at different depths in the pattern specified by the user. 
Of crucial importance is the identification of an efficient algorithm which enumerates the
possible lengths of sequence variables. For this purpose, Sequentica  relies heavily on an
iterative solver for systems of linear diophantine constraints over finite domains [3]. This
means that the solver does not compute all solutions at once, but enumerates them in the
order imposed by the sequence annotations. Actually, it would be unreasonable to rely on



a solver for linear diophantine constraints which computes all solutions at once because
(1) the space of solutions can be very large, and (2) we are not interested in all solutions
but only in the first one which realizes a matching (where first is defined w.r.t. the order
inferred from the priorities attached to sequence variables).
The second extension is of a slightly different nature: here the sequence annotations are
irrelevant  since  the  evaluation  must  check  all  possible  matchers  and  resume  the
computation  for  the  matchers  which  fulfill  the  requirements  of  the  score  function
specified by the user. In this case, Sequentica  generates a Mathematica  definition which
accumulates the optimum value during an exhaustive search of all possible matchers.

6 Conclusion and Further Work
We  believe  that  the  support  for  programming  with  sequence  variables  can  be  further
enhanced.  We  will  continue  to  look  for  such  useful  programming  idioms  and  will
integrate  them  in  the  Sequentica  package  which  can  be  downloaded  from
http://www.score.is.tsukuba.ac.jp/~mmarin/Sequentica.
Further  implementation  details  of  Sequentica  are  available  from
http://www.score.is.tsukuba.ac.jp/~mmarin/Sequentica/sequentica.ps.

(Mircea Marin is supported by the Austrian Academy of Sciences)

References
[1]  B.  Buchberger.  Mathematica  as  a  Rewrite  Language.  In  T.  Ida,  A.  Ohori,  and  M.

Takeichi, editors, Proceedings of the 2nd Fuji International Workshop on Functional
and Logic Programming, Shonnan Village Center, 1996.

[2]  B.  Buchberger,  T.  Jebelean,  F.  Kriftner,  M.  Marin,  and D.  Vasaru.  An Overview of
the Theorema Project. In Proc. of ISSAC'97, pp. 384-391, Maui, Hawaii, 1997. ACM
Press.

[3] E. Contejean. Solving Linear Diophantine Constraints Incrementally. In D.S. Warren,
editor, Proc.  of the 10th Intl.  Conf. on Logic Programming,  pp. 532-549, Budapest,
Hungary 1993. MIT Press.

[4]  The  Logic  Group.  Knowledge  Interchange  Format.  Technical  report,  Stanford
University, http://logic.stanford.edu/kif/kif.html, 2002.

[5] T. Kutsia. Solving and Proving in Equational Theories with Sequence Variables and
Flexible Arity Symbols. PhD thesis, Institute RISC-Linz, Johannes Kepler University,
Hagenberg, Austria, June 2002.

[6] Pattern Matching Pointers. http://www.dei.unipd.it/~stelo/pattern.html.



[7]  S.  Thompson.  Haskell:  The  craft  of  functional  programming.  Addison-Wesley,
second edition, 1999.

[8] The Sequentica Package. http://www.score.is.tsukuba.ac.jp/~mmarin/Sequentica.


