On Reducing the Search Space of Higher-Order
Lazy Narrowing*

Mircea Marin!, Tetsuo Ida?, and Taro Suzuki®

! Institute RISC-Linz
Johannes Kepler University, A-4232 Linz, Austria
Mircea.Marin@risc.uni-linz.ac.at
2 Institute of Information Sciences and Electronics
University of Tsukuba, Tsukuba 305-8573, Japan
ida@score.is.tsukuba.ac. jp
3 School of Information Science,
JAIST Hokuriku, 923-1292, Japan
t_suzuki@jaist.ac. jp

Abstract. Higher-order lazy narrowing is a general method for solving
E-unification problems in theories presented as sets of rewrite rules. In
this paper we study the possibility of improving the search for normalized
solutions of a higher-order lazy narrowing calculus LN. We introduce a
new calculus, LNg, obtained by extending LN and define an equation
selection strategy S, such that LNg with strategy S, is complete. The
main advantages of using LNg with strategy S, instead of LN include
the possibility of restricting the application of outermost narrowing at
variable position, and the computation of more specific solutions because
of additional inference rules for solving flex-flex equations. We also show
that for orthogonal pattern rewrite systems we can adopt an eager vari-
able elimination strategy that makes the calculus LNg with strategy S,
even more deterministic.

1 Introduction

Lazy narrowing is a method for solving E-unification problems in equational
theories represented as sets of rewrite rules. It has been shown [2] that the lazy
narrowing calculus forms a basis of functional logic programming. In recent years,
various extensions of the lazy narrowing calculus to higher order equational
theories have been proposed [3,4,14] in an attempt to define a suitable model
for the design of an equational programming language. One such calculus is the
calculus HLNC (Higher-order Lazy Narrowing Calculus) proposed by Suzuki,
Nakagawa and Ida [14]. HLNC is based on the idea of combining the S-reduction

* This work is partially supported by Grant-in-Aid for Scientific Research on Prior-
ity Areas ”Research on the Principles for Constructing Software with Evolutionary
Mechanisms”, Grant-in-Aid for Scientific Research (B) 10480053, and Grant-in-Aid
for Encouragement of Young Scientists 11780204, Ministry of Education, Science,
Sports and Culture, Government of Japan.

of the lambda calculus and the first-order narrowing calculus LNC [6]. Based
on HLNC, a programming system called CFLP (Constraint Functional Logic
Programming) has been designed and implemented [5]. Independently, Prehofer
studied higher-order lazy narrowing based on the higher-order rewrite system of
Nipkow [9] and introduced the calculus LN [11].

Both calculi HLNC and LN are highly nondeterministic and they create a
huge search space for solutions. In order to guarantee completeness, we must
take into account all possible choices of (1) the equation in the current goal to
be solved, (2) the inference rule of the calculus to be applied, and (3) the rewrite
rule to be considered for outermost narrowing. For first-order lazy narrowing,
research in reducing this non-determinism has brought important results [6,7,
1] and gives an insight to how to eliminate some sources of the non-determinism
in higher-order lazy narrowing.

In this paper we tackle the problem of reducing the non-determinism of
computing substitutions that subsume all the normalized solutions of a given
higher-order goal. Our main contribution in this paper is the following.

(a) We present a new higher-order lazy narrowing calculus LNg by extending
LN.

(b) We introduce an equation selection strategy S, that restricts the application
of outermost narrowing at variable position and enables the application of
the inference rules that can solve certain flex-flex equations.

(c) We prove that LNg with strategy S, is complete (with respect to normalized
solutions).

(d) We show that an eager variable elimination strategy makes our calculus even
more deterministic for orthogonal pattern rewrite systems.

As a result we successfully reduce the search space of normalized solutions and
compute more specific solutions than with LN.

The rest of this paper is structured as follows. In Sect. 2 we introduce some
preliminary notions and notations. In Sect. 3 we recall some theoretical results
about preunification and pattern unification. In Sect. 4 we introduce the un-
oriented higher-order lazy narrowing calculus LN and state the completeness
result. In Sect. 5 we define our main calculus LNg. In Sect. 6 we define the
equation strategy S, and the class of normal LNg-refutations, and prove that
all the normalized solutions of a goal are subsumed by substitutions computable
with normal LNg-refutations. In Sect. 7 we extend our completeness result with
an eager variable elimination strategy for solving parameter-passing equations.
Finally we draw some conclusions and directions for further research.

2 Preliminaries

We employ the notation a,,, for a sequence a,,am+1,...,a,. We write a,
instead of aj; ;. If the length of a sequence is irrelevant then we may omit the
indices and write, e.g., a for an arbitrary (including the empty) sequence of a’s.
We sometimes denote an empty sequence by the symbol O.

A term is a simply typed lambda-term over a signature F. We distinguish
bound and free variables at the syntax level; we use uppercase letters X, Y,
Z, H for free variables, lowercase letters x, y for bound variables, and letters
l,r,s,t,u,v,w for terms if not stated otherwise. We extend this convention to
sequences; For instance, x denotes a sequence of bound variables, whereas s,
denotes the sequence of terms sy, ..., s,. We denote by FV the set of free vari-
ables, and by V(t) the set of free variables occurring in a term ¢. A flex term is a
term of the form Ax.X (s). A rigid term is a term which is not flex. A pattern is a
term with the property that all its flex sub-terms are of the form Ax.X (y) with
y distinct bound variables. We consider two terms s and t equal, notation s = ¢,
if they are afn-equivalent. This notion of equality is extended to substitutions.
In the sequel we represent terms in long Sn-normal form.

Definition 1 (pattern rewrite system) A pattern rewrite system (PRS for
short) is a set of rewrite rules of the form f(1) — r with f € F, f(1), r terms of
the same base type, V(f(1)) 2 V(r) and f(1) a pattern.

Given a PRS R, we denote by — the rewrite relation induced by R. The
relations —*, +* and | are defined as usual.

Definition 2 (equation) An unoriented equation is a pair s = t of terms s
and t of the same type. An oriented equation is a pair s >t of terms s and ¢
of the same type. An equation is either an unoriented or an oriented equation.
A flex-flex equation is an equation between flex terms. A flez-rigid equation is
an equation between a flex and a rigid term. A pattern equation is an equation
between patterns. A goal is a finite sequence of equations. A flez-flex goal is a
goal consisting of flex-flex equations.

Let 0 be a substitution. We define the domain of 6 as D(8) def {XeFV|X0#

X} and the codomain of 6 as Z(8) def {X68|X € D(0)}.If 01,65 are substitutions

and V is a set of variables, we write 8, < 0y [V] if 6,0 [v= 65 [v for some 4.

Definition 3 (unifier and solution) A substitution 6 is a unifier of two terms
s and t if s@ = tf. A substitution @ is a wunifier of a goal G if s6 = tf for every
equation s & t or s>t in G. 6 is a solution of an equation s = ¢ if s <* t6. 0
is a solution of an equation s>t if s —* t6. 0 is a solution of a goal G if 6 is a
solution of all equations in G.

We will make use of the following important property of patterns. Given a PRS
R and a substitution €, we say that 6 is R-normalized if every term in Z(9) is
R-normalized.

Lemma 1 If R is a PRS, X a free variable, y,,, distinct bound variables and 6
a substitution then Ax;.X60(y,,) is R-normalized iff X6 is R-normalized.

In the sequel, if not stated otherwise, R is a confluent PRS. We will often
omit the prefix R- when R is understood from the context. We denote by R the
PRS R extended with the rules {X ~ X — true, X » X — true}. s ~ ¢ stands

for either s ~ t or t &~ s. We extend the notation of the binary relations between
terms to componentwise relations between sequences of terms. For example,
sp > t, stands for sy >tq,..., s, >t,. We denote sequences of equations by E, F
and G, possibly subscripted.

3 Higher-Order Unification

We start our discussion with the general higher-order unification system PT.

The system PT. PT is a version of the preunification system proposed by
Snyder and Gallier [12]. We omit the variable elimination rule in PT since it is
not necessary for our completeness results. The inference rules for higher-order
unification are:

[del], Deletion
El, it~ t, E2
E17 EZ

decl].. Decomposition
[D

~
~

Ey, Ax.0(sy) & Ax.0(ty,), Ea
Ey,Ax.s, & AX.t,, F>

where v € F U {x}.
[i]~ Imitation
B, x. X (sp,) B Ax. f(tm), Eo Ey,) x.f(tm) = Ax. X (sn), B
Ei0, xx.H,;,(sp0) = AXx.t,;,0, F20 E16, \x.t,,0 =~ Ax.H,,,(s,0), E20

it f € F where 6 = {X — Ax,,.f(Hp(xp))}-
[p]~ Projection

Ey, Ax. X (sy,) = Ax.t, Es Ey, \x.t =~ Ax. X (sy,), B2
Ey 9, Xx.(5:0)(Hp(spd)) = Ax.t0, B2 E10, Ax.t0 &~ AxX.(5;0)(H,(8,0)), E26

if Ax.t is rigid, where § = {X +— Axp.2;(Hp(x,))}.

In the inference rules [i]x and [p], H; are distinct fresh variables.

. . Gi . . .
Notation. We write G; =-4,5 G2 whenever G—l is an instance of a PT inference

rule a which computes §. The label can be gmitted if it is not relevant or it
is clear from the context. We sometimes distinguish the selected equation in a
PT-step by underlining it. The same conventions will be used later when we
introduce other calculi.

The following completeness result is known for PT:

Theorem 1 (Completeness of PT) Let 6 be a unifier of a goal G and V' D
V(G) UD(6). There exist substitutions §, ' and a PT-derivation G =} F such
that: (a) F is a flex-flex goal, and (b) §8' =6 [V].

A proof of this theorem can be found in [11]. We note here that PT is strongly
complete, i.e. Theorem 1 holds regardless of the order of selecting equations in
the goal.

The system PU. It is well-known that two unifiable patterns have a unique
(modulo variable renaming) most general unifier. PU is a transformation system
for pattern unification. It consists of all the inference rules of the system PT and
the following two inference rules:

[ffs], Flex-flex same equation

E,x.X(y,,) =~ Xx.X(y),), E
(El) EQ)(S

where 6 = {X — Ay,,.H(zp)} with {z,} ={y; | 1 <i <m and y; = y}}.
[ffd], Flex-flex different equation

By, x.X(y,,) = Ax.Y(y"), Ea
(El) E2)6

where § = {X — Axp,.H(z,),Y = Ay, .H(zp)} with {z,} = {y,,} N {y,}-

H is here a fresh variable, and y, y' are sequences of distinct bound variables.
We denote by PU, the system consisting of the inference rules of PU with
E, = 0. PUy is of interest because of the following property (cf.[8]):

Theorem 2 (Completeness of PU,) Let s, t be two unifiable patterns. Then
there exists a PUg-derivation of the form s ~ ¢t =} O with 6 a most general
unifier of s and ¢.

4 Higher-Order Lazy Narrowing

Lazy narrowing is a goal-directed method for solving goals in equational theories
presented by a confluent term rewriting system. In the first-order case a calculus
called LNC [7] has been defined. LNC is sound and complete with respect to the
leftmost equation selection strategy and several refinements have been proposed
to reduce its non-determinism. The calculus LN introduced by Prehofer [11] is
an approach for solving higher-order equations with respect to confluent PRSs.
Since the calculus LN restricted to first-order terms has many similarities with
LNC, one could expect that some of the deterministic refinements of LNC can
be carried over to LN. Our starting point of investigation is the calculus LN
defined below. It is a generalization of Prehofer’s calculus LN in that we allow
both unoriented and oriented equations in goals.

In order to handle oriented equations, we will introduce the following infer-
ence rules for oriented equations: [dec],, [del],, [i]s, [p]s, [ffs], and [ffd],. They
are distinguished from the corresponding rules of PU for unoriented equations
by subscripting them with the equality symbol >. Each new rule differs from the
corresponding one only in that it treats oriented equations. For instance, the
decomposition rule [dec], is the same as [dec], except that all the occurrences
of & in the inference rule of [dec] are replaced by ».

~
~

The Calculus LN. LN consists of the inference rules [dec], [del], [i]~, [P]~,
[dec],, [del],, [i]s, [p]», plus the narrowing rules [of]., [ov]., [of],, [ov], defined
below:

[of]. outermost narrowing for unoriented equations

Ey, Ax.f(sp) ~ Ax.t, By
Ep Ax.s, b Ax.],, Ax.r & Ax.t, E»

[ov]. outermost narrowing at variable position for unoriented equations

Ey, \x.H(sy,) ~ \x.t, Ey
Ey 6, x.H,,(s,0) > Ax.1,,, \x.r & Ax.t0, E20

if Ax.t is rigid, where § = {H — A\x,,.f(H,,(x,))}.
[of], outermost narrowing for oriented equations

Ey, 2x.f(sp) > Ax.t, B
Ey,\x.s, > Ax.1,, Ax.r > Ax.t, By

[ov], outermost narrowing at variable position for oriented equations

Ey, A\x.H(sy) > Ax.t, Ey
E 0, x.H,,(s,0) > Ax.1,, Ax.r > Ax.10, E26

if Ax.t is rigid, where § = {H — A\x,,.f(H,,(x,))}.

In these inference rules H,, are distinct fresh variables and f(1,,) — r is a fresh
variant of an x-lifted rule (see [11] for the definition of x-lifting). We write [of]
to denote [of] ., or [of],, and [ov] to denote [ov]. or [ov],. [o] denotes [of] or [ov].
We use letter 7 to denote an LN-step and II to denote an LN-derivation.

It can be easily verified that the calculus LN is sound, i.e. if G; =4,5 G2 and
0 is a solution of G5 then 46 is a solution of G;.

In the sequel we use {...} to denote multisets and >,,,; for the multiset
ordering on sets of non-negative integers. The expression |e| may denote: (a) the
length of e if e is a derivation, or (b) the size of e if e is an equation or a term.

The use of LN in solving higher-order goals is justified by the following com-
pleteness result:

Theorem 3 (Completeness of LN) Let R be a confluent PRS and G a goal
with solution 6. Then there exists an LN-derivation I : G =} F such that
d <6 [V(G)] and F is a flex-flex goal.

Proof. (Sketch) The proof of this theorem is along the following lines. We first
define a suitable well-founded ordering on some structures that encode the fact
that a substitution is a solution of a goal.

Definition 4 Let G = e, be a goal. We define Repr(G) as the set of triples
of the form (G,8,R,) with 8 solution of G and R,, a sequence of reduction
derivations of the form R; : ej6 =% true.

On such triples we define the following well-founded orderings:

- (en,e, Rn>>A<e;naelv R;n> if {|R1|7 SRR |Rn|}>mM{|RI1|7] |R;n|}7
— (en, 0, Ru)>p(er,, 0", Ry i {[t] | £ € Z(OTv(en)) }>mudlt'| |1 € Z(0' (e))

- (en,e, Rn>>C<eIm50’v R;n> if {|61|7] |en|}>mM{|eI1|v R |elm|}7
— > is the lexicographic combination of >4, >p,>¢.

Next we prove the following lemma, which is also used in the proof of Lemma 4:

Lemma 2 Let Gy = Ei, e, Es be a goal with solution 6y and non-flex-flex equa-
tion e. Assume V D V(Go)UD(y). Then for any triple (Go, 6y, R°) € Repr(Gy)
there exists an LN-step 7 : Go = Fi,¢, By =45 G1 and a triple (G1,6;,R") €
Repr(G1) such that: (a) (Go, 60, R°) = (G1,0:,R"), and (b) 6y = 66, [V].

We omit the proof of this lemma since it is similar to the proof of Theorem 6.1.1

in [11].
Finally, we note that repeated applications of Lemma 2 starting from a triple
(Go, 00, R%) € Repr(Gy) produces the desired LN-derivation. a

Remark 1 1. The substitution 6 in Theorem 3 is a pattern substitution®, since
it is a composition of pattern substitutions.
2. LN is strongly complete, namely it does not depend on the order of selecting
the non-flex-flex equations in the goal.

5 The Calculus LNg

In this section we introduce our main calculus.

The calculus LNg. LNg consists of the inference rules of LN and the rules
s,] , [., [fEd),.

In the sequel we omit the subscripts ~ and > of inference rules ar and «;
and write o when we treat the inference rules collectively.

We now obtain a more powerful calculus since all the rules for pattern unifica-
tion are available. Unfortunately the calculus LNg is no longer strongly complete
as we can see from the example below:

Ezample 1. Let R = {f(X,a) — b} and the goal
Go=f(X,a)p Z,Z=Y,b>Y,Z> f(X,a)

with solution § = {Z — f(X,a),Y — b}. If we select the equation Z =~ Y
to solve the goal Gy then the only applicable rule is [ffd]~. Hence we have the
following derivation:

Go = [fde, {28y -1y G1 = f(X,a)>H,b>H,H > f(X,a)

It can be easily seen that the goal G; has no solution. Hence, LNg is not strongly
complete. O

LA substitution 6 is a pattern substitution if every term in Z() is a pattern.

Note that the previous example does not refute the strong completeness of LN
because no rule of LN can act on the flex-flex equation Z ~ Y.

In the following we show that there exists an equation selection strategy S,
with respect to which the calculus LNg is complete. Actually we show a stronger
result: by adopting the calculus LNg with strategy S,, we achieve two important
desiderata:

1. We eliminate the nondeterminism due to the choice of the equation in a goal
to be solved next,

2. We restrict the application of outermost narrowing at variable position; as
a consequence, a smaller search space for solutions is created.

The steps of our investigation can be summarized as follows:

1. We first observe that if we know that the solution of a goal is normalized
with respect to certain variables then we can apply the rules [ffs] and [ffd] to
certain pattern equations and safely avoid the application of [ov] to certain
flex-rigid or rigid-flex equations (Lemma 3 and Lemma 4).

2. We identify sufficient conditions which guarantee that the solution of a goal
is normalized with respect to certain variables (Lemma 5).

3. Based on 2., we define a strategy S,. For the calculus LNg with the strat-
egy S, we identify the class of normal LNg-refutations and prove that any
normalized solution of a goal G is subsumed by a substitution which is com-
putable with a normal LNg-refutation that starts from G (Theorem 4).

Before starting to describe in detail the steps mentioned above, we note some
similarities between the calculi LNC and LNg when we restrict ourselves to
first-order terms:

1. Tt can be verified that LNg subsumes LNC with the rule [v] restricted to
equations between variables.

2. A [v]-step in LNC can be simulated in LNg by a sequence of [i]-, [p]-,[fs]-,
and [ffd]-steps. Since LNC with leftmost equation selection strategy Sief; is
complete [7], we conclude that the calculus LNg without [ov]-rules is com-
plete if we adopt the strategy Sief-

3. Middeldorp et al. [7] conjecture that LNC is complete with respect to any
strategy that never selects descendants of an equation created by an outer-
most narrowing step before all descendants of the corresponding parameter-
passing equations created in that step have been selected. If this conjecture
holds then we can replace Sjery with such a strategy and retain the complete-
ness of LNg without [ov]-rules.

Note that the substitution # in Example 1 is not normalized. We noticed that
the normalization of substitutions restricted to the so called critical variables is
crucial to restore completeness of LNg.

Definition 5 (critical variable) The set V. (e) of critical variables of an equa-
tion e is V(s) UV(t) if e=s ~ t and V(s) if e = s> t.

We first prove the following technical lemma.

Lemma 3 If Go = Ei,e, B> =5, G1, and 0y [y, (¢) is normalized then for
any (GO,GO,RO) € Repr(Gy) there exists a solution 8; of G; and (G1,01,R1> €
Repr(G1) such that: (a) (Go, 60, R") = (G1,61,R'), and (b) 8y = 6ob;.

Proof. Let (Go,0,R") € Repr(Go). The proof is by case distinction on the
shape of e.
(i) If e = Ax. X (y,,,) = Ax.Y (y!},) then Ax.X(y,,)00 4 \x.Y (y],)80 because 6, is
a solution of e. In this case V.(e) = {X,Y} and therefore the terms X6, and
Y6y are normalized. By Lemma 1 the terms Ax.X (y,,)f0 and Ax.Y (y!,)6o are
also normalized. Hence the equality Ax.X (y,,)f00 = Ax.Y (y},)0o holds, i.e. b is
a unifier of Ax.X (y,,,), Ax.Y (y},). Since Jp is a most general unifier of Ax.X (y,,)
and Ax.Y (y!,) there exists a solution ; of G; such that 6y = 66,. The construc-
tion of R' such that (Go, 6o, R®)=4(G1,60:,R") and (G, 00, R°)>p(G1,60;,R")
is straightforward. Therefore, (a) holds as well.
(ii) The case when e = Ax.X (y,,) =~ Ax.X (y!,,) can be proved in a similar way.
(iii) Let e = Ax.X(y,,) > Ax.Y(y},). Because 6y is a solution of A\x.X(y,,) >
Ax.Y(y!,), we have Ax. X (y,,)00 —=* Ax.Y (y!,)0o. In this case we have V.(e) =
{X} and thus X6, is normalized. By Lemma 1 the term Ax.X(y,,)fo is also
normalized. Therefore 6 is a unifier of the terms Ax.X (y,,)fo and Ax.Y (y!,)6o.
Since &y is a most general unifier of Ax.X (y,,) and Ax.Y (y},) there exists a solu-
tion 6, of Gy such that 8y, = 66, . The construction of R* such that (Go, b0, RO):A
(G1,01,RY) and (Go, 600, R°)>p5(G1,0;,R") is straightforward. Therefore, (a)
holds as well.
(iv) The case when e = Ax.X(y,,,) > Ax.X (y/,,) can be proved in a similar way.
We next investigate restrictions under which the rules [ov],, [ov], can be
eliminated without losing the completeness of LNg. The next example illustrates
that in general we can not drop [ov] without loss of completeness.

Ezample 2. Consider the PRS R = {f(g(X)) — X} and the goal Z(g(a)) ~ a.
Obviously the normalized answer {Z — Az.f(z)} could not be computed by
LNg if we dropped the [ov]-rule. a

Lemma 4 Let 6y be a solution of a goal Gy = E1, e, B> with e = Ax. X (y) ~ ¢t
or e = Ax.X(y) > t, where ¢ is a rigid term and Ax.X(y) is a pattern. Assume
V D V(Go) UD(8). If X6, is normalized then for any (Go, 6y, R®) € Repr(Gy)
there exists an LNg-step 7 : Go = Ei, e, Ex =45, G1 with a # [ov] such that:
(a) (Go, 00, R%) > (G1,6:,R"), and (b) 8y = dob: [V].

Proof. By Lemma 2, there exists an LN-step 7w which satisfies conditions (a)
and (b). If & = [ov] then the term Ax.X (y)#p is reducible. This implies that X6,
is reducible, which contradicts our hypothesis. Hence a # [ov]. o

6 Normal LNg-refutations

We will use the results of Lemmata 3 and 4 in order to define a suitable equa-
tion selection strategy &, with respect to which the calculus LNg is complete.

The success of defining such a strategy depends on the possibility to determine
whether the solution of an equation is normalized with respect to certain vari-
ables. In the sequel we look for such normalization criteria.

The notions of immediate linear descendant (ILD for short) and of immediate
descendant of the selected equation in an LNg-step are defined as shown in the
table below. In the table, the symbol =7 stands for either ~ or > (but the same
in the same row). The superscripts 1 and 2 on [i] and [p] distinguish the first
and the second case of the corresponding inference rule.

| rule | ILD | immediate descendant |
[of] Ax.r =7 Ax.t XS, > Ax.1,, Ax.r =7 Ax.t
[ov] Ax.r =7 AX.t Ax.H,,(s,0) > Ax.1,,, \x.r =7 Ax.t0
[dec] AX.S, =@ AX.t, AX.S, = AX.t,
[i]* Ax.H,,(s,6) =" A\xX.t,,0 Ax.H,,(5,6) =" A\x.t,,0
[i]2 Xt 6 =" Ax.H,,(s,9) M.t 6 =" Ax.H,,(s,9)

pl' [Ax.(5:6)(Hp(sn0)) =7 Ax.v(t,08)] Ax.(5:0)(Hp(s,0)) =7 Ax.v(t,0)
[p 2] Ax.0(tm0) = Ax.(5;0)(Hp(s,0))] Ax.0(tmd) =7 Ax.(5;0)(H,(s,0))
del - -

[ffs], [ffd]

Descendants and ILDs of non-selected equations are defined as expected. The
equations Ax.sy, > Ax.1,, and Ax.H,,(s,0) > Ax.1, created in an [of]-step and [ov]-
step respectively, are called parameter passing equations created by that step.

The notion of descendant is obtained from that of immediate descendant by
reflexivity and transitivity. The ancestor relation is defined as the inverse of the
descendant relation.

Definition 6 (precursor) Let II : Gy =* Ey,e1, E2,e2, E3 be an LNg-deriv-
ation. ey is a precursor of es in IT if there exists an equation e which is subjected
to an [o]-step 7w in IT such that (a) e; is a descendant of a parameter passing-
equation created by 7, and (b) ey is a descendant of the ILD of e in 7.

Given an LNg-derivation IT : Gy = G = Ey, e, E», we denote by prec;(e)
the sub-sequence of equations of G that are precursors of e in IT.

Definition 7 (regular transformation) Let G, G be goals with (Go, 6o, R")
€ Repr(Gy), Go = Ei,e, By and (Gy,60;,R) € Repr(G). Assume V D V(Gp) U
D(#y). A transformation step (Go, 6o, R®) = (G1,60:,R") is regular if:

— eis anon-flex-flex equation and there exists an LN-step 7 : Fy, e, Fx =45 G1
such that the conditions (a) and (b) of Lemma 2 hold, or

— 6o [v.(e) is normalized, Go = Ei, e, B> =g, s G1 and the conditions (a) and
(b) of Lemma 3 hold.

Lemma 5 Let Gy be a goal with normalized solution 6y and (Gy,6y, R") €
Repr(Go). If (Go,00,R%) = ... = (Gn,0n,RY) is a sequence of regular trans-
formation steps and II : Gy =5, G1 =4, - =sn_, GnN is the corresponding
LNg-derivation then for any e € Gy with precj;(e) = O we have that Oy [y, ()
is normalized.

Proof. Let e; be the ancestor of e in G; and v; = 0;0;+1...0n—1 (0 < i < N).
We prove a slightly stronger result: OnTy,(c;,) is normalized for any 0 <i < N.
It is easy to see that this implies the normalization of On[y,_(e)-

We first introduce the notion of [o]-ancestor. We say that an ancestor e’ of e
is an [o]-ancestor of e if we have

II:G ="~ Elae_la E, :>[0],0' Elga E376”7E20 =" EiaeaEé'

(That is, an [o]-step is applied to e’ and e descends from the ILD of e'.) We
prove by induction on i (0 <4 < N) that Ox [y, (e;;) is normalized. Let m; be
the ¢-th step of II.

If i = 0 then Ox [y, (eone) is normalized because Y00y = 6o [Ve(eo)] and 6 is
normalized.

We next show that On [y, (e;11v:41) 18 normalized if On [y, (e;~,) is normalized.

Suppose e; is not an [o]-ancestor. We show V.(e;+1) C V.(e;d;) by the follow-
ing case distinction.

(a) m; is an [o]-step. Since e; is not an [o]-ancestor, we have that e;y; is a
parameter-passing equation created by the i-th step of II and therefore
Ve(eir1) € Ve(eidi).

(b) m; is not an [o]-step. If e; is unoriented then Ve(e;11) = V(ei+1) C V(eid;) =
V.(e;0;). If e; is of the form s> ¢ then it can be shown by case distinction on
m; that Ve(eir1) C V(sd) = Ve(eid).

The induction hypothesis yields the normalization of 6x | . Hence
the above inclusion implies the normalization of On [v,_(e;;17vi41)-
Suppose e; is an [o]-ancestor. Then e; = Ax.h(s,) =" Ax.t or e; = Ax.t ~

Ax.h(sy) and IT is of the form

Ve(eidivitt)

IT:Go =5, 5., Gi= Ee By
=10],f (1)—7,5; Git1 = E16;, AXxowy, > Ax.], Ax.r =! Ax.t0;, Ead;
T Gy = Ele, B,
it1-0N—1

Since prec;(e) = O we have
(AX.Wy D AX L) 0541 . O = T
We show that the following relation holds:
evi = (AX.r =" AK.40;) Vi1 (1)

If h = f then we have §; = ¢, n = m and Ax.w,, = Ax.s,. Since d;11...dn_1
is a solution of Ax.s, > Ax.l, we learn that Ax.s;vi+1 =" x.l;7;41 for 1 <j<n
and therefore Ax.h(sp)vi =* Ax.f(Lyyit1) = AX1Yig1.

Otherwise h € FV and in this case we have §; = {h — Ax,.f(H; (%))}
and Ax.w,,, = Ax.H,,(s,d;). Because ~;;1 is a solution of Ax.w,, > Ax.l,, we
have Ax.h(sp)vi=gAX.f(Hm (sndi)vit1) = AX.f(lnvigr1) = XX f(ln)vier —
)\X.T’)/H_l.

Thus in both situations we have Ax.h(s,)vy; —* Ax.rv;11 and hence (1) holds.
It follows that V.(eir17it1) C Ve(eiyi). Since On [y, (e;+;) is normalized, the
substitution On [v_(e;,,4:4,) 1S normalized as well. a

We are ready now to define our equation selection strategy for LNg.

Definition 8 (strategy S,,) An LNg-derivation IT respects the strategy S, if
for any subderivation IT' : Gy =* G, = E1,e, E5 of II we have:

(c1) If [ffs] or [ffd] is applicable to e then prec; (e) = O.
(c2) If e is of the form Ax.X (s) ~ ¢ or Ax.X (s)>¢, with ¢ rigid and prec; (e) # O
then all the selectable equations of Gy, satisfy condition (c2).

Condition (cl) enables the selection of an equation e to which [ffs]- or [ffd]-rules
are applicable only when e has no precursor. Condition (c2) enables the selection
of equations to which [ov]-rules are applicable only when there is no other choice.

Definition 9 (normal LNg-refutation) An LNg-derivation IT : Gy =* F is
a normal LNg-refutation if

1. IT respects S,, and
2. F does not contain equations which are selectable with S,,.

Completeness. We will prove that LNg with strategy S, is complete with
respect, to normalized solutions.

Theorem 4 For any normalized solution 8y of a goal Gy such that V(Gy) U
D(#) C V there exists a normal LNg-refutation I : Gp =} F with 6 <6 [V].

Proof. Assume (Gy, 60, R°) € Repr(Gyp). Let
A:{(Go,00,R%) = (G1,6,,R") = ... = (Gn,0n,RY)

be a maximal sequence of transformation steps starting from (G1,6;,R") such
that the corresponding LNg-step m; : G; = G;41 satisfies strategy S,. The
existence of the sequence A is a consequence of the fact that =C> and > is
terminating. It suffices to show that the LNg-derivation mq - - -y _1 is a normal
LNg-refutation, which is obvious. O

7 Eager variable elimination

We address here the eager variable elimination problem for LNg with respect
to normal LNg-refutations. In the first-order case this problem is related to
the possibility to apply the variable elimination rule prior to other applicable
inference rules. In [6] it is shown that an eager variable elimination strategy for
parameter-passing equations is complete for left-linear confluent TRSs.

The proof is mainly due to the standardization theorem for left-linear con-
fluent TRSs, which roughly states that if a term s is reachable to a term ¢ then
an outside-in reduction derivation from s to ¢ exists.

We will generalize the first-order eager variable elimination strategy to LNg
with the help of outside-in reduction derivations.

Definition 10 An LNg refutation I respects the eager variable elimination
strategy if [o]s is never applied to rigid-flex equations of the form Ax.s> Ax.X (t)
in II.

We say that LNg with eager variable elimination strategy is complete for a
class of PRSs if for any goal G with a solution 6 there exists an LNg refutation
G =7 0O that respects the eager variable elimination strategy with ¢ <z 0,
when R belongs to the class of PRSs.

The notion of outside-in reduction derivations for orthogonal PRSs is carried
over from that of first order TRSs [13] except for the definition of anti-standard
pairs stated below.

Definition 11 (outside-in reduction derivation for orthogonal PRSs)
An R,-reduction derivation by an orthogonal PRS is called outside-in if every
subderivation e —, €9 —p, **+ —p, €n —>qior € satisfies the following condi-
tion: if p > ¢ > € and all p; (1 < i < n) are disjoint from p then p/q is above
or disjoint from any free variable position in [. Here p/q is a position satisfying
p=q-(p/9)-

The only difference from the first-order case given in [6] is disregard for the
bound variables below the free variables. The definition above states that the
subterms headed by free variables in a higher-order pattern, called the binding
holes after Oostrom [10], are regarded as mere variables.

In [10] Oostrom claimed that the following statement holds, which allows us
to concentrate on only the outside-in reduction derivations.

Theorem 5 For any rewrite derivation s = t by an orthogonal PRS R, there
exists an outside-in rewrite derivation from s to . a

We follow the same line of reasoning as in [7] to show that the eager vari-
able elimination strategy for parameter-passing equations preserves completeness
of LNg: first we introduce a property of reduction derivations which holds for
any outside-in reduction derivation starting from a goal consisting of unoriented
equations. Next we show that regular transformations preserve this property.
This result motivates the possibility to inhibit the application of [o] to equations
of the form Ax.s > Ax. X (y).

First we introduce a class of restricted outside-in reduction derivations.

Definition 12 Let R be an orthogonal PRS and s>t —* true an outside-in
R -reduction derivation. Then we say the derivation has property Pgo if every
reduction step in it satisfies the following condition: if a position 1-p is rewritten
in the reduction step and later steps except the final step do not take place above
1 - p, then p is above or disjoint from any free variable position in ¢.

Let (G,0,R) € Repr(G) such that every reduction derivation in R is outside-
in. It is obvious that all the outside-in reduction derivations in R have property
Pro if the goal G consists only of unoriented equations. The following lemma
establishes the preservation of the property Pro during regular transformations.

Lemma 6 Let (G,0,R) € Repr(G) and suppose (G',0',R’) is obtained by a
regular transformation from (G, 6, R). If R only consists of outside-in derivations
with property Pro, then the same holds for R'. |

The proof is done by an easy but tedious case analysis on the regular transfor-
mations.

Theorem 6 LNg with eager variable elimination strategy is complete for or-
thogonal PRSs with respect to normalized solutions for goals consisting of un-
oriented equations.

Proof. Let (G,0,R) € Repr(G), where G consists of unoriented equations, 6 is
a normalized substitution, and R contains an outside-in reduction derivation R.
Note that R has no extended anti-standard pairs. For any (G’,0', R') obtained
by the repeated applications of regular transformations, from Lemma 6 we learn
that if G' includes an equation e of the form Ax.sf’ > Ax.X6'(tf’) then the
corresponding reduction derivation in R’ should be e —. true; otherwise R’
has an extended anti-standard pair. The regular transformation applied to the
equation e never produces an [o]-step. O

Note that once we get outside-in reduction derivations, we no longer need the
restriction on terms to patterns. The restriction, however, becomes crucial for
further eager variable elimination. For instance, [ov], may be applied to a flex-
rigid parameter-passing equation with non-pattern in the left-hand side. On the
other hand, from Lemma 5 and Lemma 6 we infer that normal LNg-refutations
never contain applications of [ov].-steps to flex-rigid parameter-passing equa-
tions with pattern in the left-hand side provided we are interested only in nor-
malized solutions and the precursors of the equation were completely solved. In
practice, we expect that most terms occurring in LNg derivations are patterns
and hence [ov], is rarely employed.

The above remark assures that normal LNg refutations that respect eager
variable elimination strategy enjoy a generalization of the eager variable elimi-
nation strategy in the first order case. Recall that eager variable elimination is
also applicable to parameter-passing equations of the form X > in the first order
case [6]. Since X is obviously a pattern, we can prohibit the application of [ov]
to this equation.

8 Conclusions and Further Research

We identified an equation selection strategy class with respect to which the
calculus LNg is complete. Note that S, does not identify the equation which
must be selected next but specifies a condition which must be satisfied by the
selected equation. Therefore it is possible to define more specific equation selec-
tion strategies for LNg. Such a strategy is the one that always selects an equation
which satisfies S,, and has small nondeterminism due to the selection of the ap-
plicable inference rule. Also, our result confirms the validity of the conjecture of
Middeldorp which we mentioned in Sect. 5.

In Sect. 7 we proved that if we restrict ourselves to an orthogonal PRS then

we can make the calculus LNg even more deterministic by adopting an eager-
variable elimination strategy.

We mention here the result of Prehofer [11] about the possibility to com-

pletely drop the [ov]-rules from LN if we restrict to convergent PRS. The proof
is based on the existence of innermost derivations for such rewriting systems.
However, the termination condition is very strong in practice.

References

1.

10.

11.

12.

13.

14.

M. Hamada, T. Ida. Deterministic and Non-deterministic Lazy Conditional Nar-
rowing and their Implementations. Transactions of Information Processing Society
of Japan, Vol. 39, No. 3, pp. 6566-663, March 1998.

. M. Hanus. The Integration of Functions into Logic Programming: From Theory to

Practice. Journal of Logic Programming, 19&20:583-628, 1994.

K. Nakahara, A. Middeldorp, T. Ida. A Complete Narrowing Calculus for Higher-
order Functional Logic Programming. In Proceedings of the Seventh International
Conference on Programming Languages: Implementations, Logics and Programs 95
(PLILP’95), LNCS 982, 97-114, 1995.

M. Marin, A. Middeldorp, T. Ida, T. Yanagi. LNCA: A Lazy Narrowing Calculus for
Applicative Term Rewriting Systems. Technical Report ISE-TR-99-158, University
of Tsukuba, 1999.

. M. Marin, T. Ida, W. Schreiner. CFLP: a Mathematica Implementation of a Dis-

tributed Constraint Solving System. Third International Mathematica Symposium
(IMS’99), Hagenberg, Austria, August 23-25, 1999. Computational Mechanics Pub-
lications, WIT Press, Southampton, UK.

A. Middeldorp, S. Okui. A Deterministic Lazy Narrowing Calculus. Journal of Sym-
bolic Computation 25(6), pp. 733-757, 1998.

A. Middeldorp, S. Okui, T. Ida. Lazy Narrowing: Strong Completeness and Eager
Variable Elimination. Theoretical Computer Science 167(1,2), pp. 95-130, 1996.

T. Nipkow. Functional Unification of Higher-order Patterns. In Proceedings of 8th
IEEE Symposium on Logic in Computer Science, pp. 64-74, 1993.

T. Nipkow, C. Prehofer. Higher-Order Rewriting and Equational Reasoning. In Au-
tomated Deduction - A Basis for Applications. Volume I. Kluwer, 1998, 399-430.

V. van Oostrom. Higher-order Families. In International Conference on Rewriting
Techniques and Applications 96, LNCS, 1996.

C. Prehofer. Solving Higher-Order Equations. From Logic to Programming.
Birkh&auser Boston, 1998.

W. Snyder, J. Gallier. Higher-order unification revisited: Complete sets of trans-
formations. Journal of Symbolic Computation, 8:101-140, 1989.

T. Suzuki. Standardization Theorem Revisited. In Proceedings of 5th International
Conference, ALP’96, LNCS 1139, pp.122-134, 1996.

T. Suzuki, K. Nakagawa, T. Ida. Higher-Order Lazy Narrowing Calculus: A Com-
putation Model for a Higher-order Functional Logic Language. In Proceedings of
Sizth International Joint Conference, ALP ’97 - HOA ’97, LNCS 1298, pp. 99-113,
September 1997, Southampton.

