
IEICE TRANS. INF. & SYST., VOL.E1–D, NO.1 JANUARY 1918
1

PAPER

Collaborative Constraint Functional Logic Programming
System in an Open Environment

Norio KOBAYASHI†, Mircea MARIN††, Nonmembers, and Tetsuo IDA††, Regular Member

SUMMARY In this paper we describe collaborative con-
straint functional logic programming and the system called Open
CFLP that supports this programming paradigm. The system
solves equations by collaboration of various equational constraint
solvers. The solvers include higher-order lazy narrowing cal-
culi that serve as the interpreter of higher-order functional logic
programming, and specialized solvers for solving equations over
specific domains, such as a polynomial solver and a differential
equation solver. The constraint solvers are distributed in an
open environment such as the Internet. They act as providers
of constraint solving services. The collaboration between solvers
is programmed in a coordination language embedded in a host
language. In Open CFLP the user can solve equations in a higher-
order functional logic programming style and yet exploit solving
resources in the Internet without giving low-level programs of
distributions of resources or specifying details of solvers deployed
in the Internet.
key words: equational solving, functional logic programming,
solver collaboration, constraint solving, CORBA

1. Introduction

In our previous work [12], we presented a constraint
functional logic programming system called CFLP,
where the higher-order lazy narrowing calculus [11] and
built-in constraint solvers collaborate to solve equa-
tional goals. Constraint functional logic programming
is an integration of constraint programming, and func-
tional and logic programming (FLP for short).∗

An important observation to be made here is that
FLP is a paradigm of solving equations over the do-
main of terms. In other words, FLP itself is also con-
straint programming aiming at solving constraints over
domains described by rewrite systems. FLP holds a
distinguished position in programming, since it ma-
nipulates terms directly without giving special mean-
ing to terms. FLP alone, however, is not sufficient to
solve equations modelling practical scientific problems.
In real world applications, equations are often defined
over several domains with terms interpreted specially

Manuscript received January 4, 2002.
Manuscript revised September 10, 2002.

†Doctoral Program in Engineering, University of
Tsukuba, Japan.

††Institute of Information Sciences and Electronics, Uni-
versity of Tsukuba, Japan.

∗Functional and Logic programming is also an integra-
tion of functional programming and logic programming, but
in this paper we take this integration for granted as the
paradigm of functional and logic programming is amply dis-
cussed elsewhere [6].

in each domain. Each equation defined over a specific
domain requires a dedicated constraint solver. Here the
paradigm of constraint programming, which was orig-
inally proposed to extend the capability of logic pro-
gramming, naturally comes into play. Constraint FLP
is thus general constraint programming, where various
constraint solvers interplay.

The language of FLP consists of equational goals
and a set of rewrite rules. From programming language
point of view, we need no extra linguistic constructs for
constraint programming. In addition, constraint FLP
requires constructs which specify how the constraint
solvers collaborate to solve equations. These constructs
add a new dimension to programming, i.e., program-
ming of collaboration of solvers. This fits very well in
the advocated slogan [5]: programming = computation
+ coordination, where in our case coordination is col-
laboration of constraint solvers. A similar argument
focusing on constraint solving has been made in [13].

In this paper, we present a new version of CFLP
running in an open environment, where we program
collaborations of solvers in addition to FLP. We call
the new system Open CFLP since solvers are not fixed
a priori and should be obtained dynamically from the
open environment. Our work is based on the service
model where solvers are distributed over the network
and that they are not downloadable to the clients. The
reasons for taking this premise are as follows:

• solvers evolve over time; sophisticated algorithms
may require long time efforts for their perfection,

• solvers may be big and require specialized re-
sources which are not downloadable,

• solvers are willing to provide services, but not nec-
essarily willing to allow the clients to copy the pro-
grams to protect the intelligent and copy rights,

• solvers and the clients that use those services are
independent and only communicate with the stan-
dardized protocol, and

• solving services may be deployed dynamically, in-
dependent of the plan of the potential clients.

The focus of the paper is the programming
paradigm with Open CFLP, and on the architecture
of Open CFLP. The rest of this paper is structured as
follows. In Sect. 2 we describe a programming example
that illustrates collaborative constraint programming.
In Sect. 3 we describe the languages of our system.



2
IEICE TRANS. INF. & SYST., VOL.E1–D, NO.1 JANUARY 1918

In Sect. 4 and 5 we describe the architecture of Open
CFLP. Finally, in Sect. 6 we draw conclusions.

2. Motivating example

We begin by a small motivating example to illustrate
how we solve a problem with Open CFLP. The exam-
ple is taken from [8]. The following presentation may
appear a bit contrived to make clear the essence of our
collaborative constraint functional logic programming.
Let us consider the problem of solving the equations

y′(t) = k y(t), y(0) = 1, y(2) = 3, y(T ) = 5

for variables y, k and T . Let us assume that we are
functional programmers, and we decide to use the defi-
nition of map to make the program succinct. We further
assume that map is not a built-in function, and so we
write down its definition.

Our system is built on top of the Mathematica
system [14], and we write the program in the language
of Mathematica in a Mathematica notebook. Function
FLPProgram, shown below, is a special function that
treats its arguments as a FLP program. The result of
the evaluation of the function call is the internal repre-
sentation of the FLP program. The language of CFLP
[12] is that of (conditional) pattern rewrite systems ex-
pressed in the syntax of Mathematica. The terms are
simply-typed λ terms in βη−1 normal form. The sym-
bols on the left-hand side of the rewrite rules are un-
derlined if they are free variables.

(* FLP program declaration *)
R = FLPProgram[

{map[λ[{t}, f[t]], {}]→ {},
map[λ[{t}, f[t]], [H | T]]→

[f[H] | map[λ[{t}, f[t]], T]]},
Signature→
{DefinedSymbols→
{map : (R → R)× TyList[R]→ TyList[R]}}]

Next we specify the goal to be solved. Logically
a goal is an existentially quantified formula of con-
junction of equations ∃x1 · · ·xm. e1 ∧ · · · ∧ en, where
e1, . . . , en are equations. In the language of CFLP, we
write it as exists[{x1, . . . , xm}, {e1, . . . , en}]. There are
three kinds of equations; oriented equation s ! t, un-
oriented equation s == t and strict unoriented equa-
tion s === t. The former two are relevant to the
present discussion. If the equation s ! t or s == t
is in solved form, it is written as s %→ t. The variables
occurring in the formula can be type-annotated. Thus,
the goal to be solved is as follows.

(* Goal specification *)
G = exists[{y : R → R, k : R, T : R},

{λ[{t}, y′[t]] == λ[{t}, k y[t]],
map[λ[{t}, y[t]], {0, 2, T}] == {1, 3, 5}}]

We now have to find solvers in the open environ-
ment. We may have solvers in our local computer, but
here let us assume that the necessary solvers are on the
Internet. Our computing model is that we are not al-
lowed to download the solvers, but are allowed only to
use the service of the solvers. We only know the names
of the services that are available somewhere on the net-
work. In order to uniquely identify the solving service,
we use URI to name the service. For example, the URI
http://www.score.is.tsukuba.ac.jp/OCFLP/HOLN is
the name of the service of solving equations over the
domain of higher-order terms using Higher-Order Lazy
Narrowing Calculus HOLN [11]. FindSolvers[
"http://www.score.is.tsukuba.ac.jp/OCFLP/HOLN"] will
find the solvers that offer the service of HOLN by the
help of the broker of Open CFLP (cf. Sect. 5.2). Simi-
larly, we will find the solvers for systems of differential
equations and systems of linear equations.

(* Find solvers *)
aHOLN = FindSolvers[

"http://www.score.is.tsukuba.ac.jp/OCFLP/HOLN"]
aDeriv = FindSolvers[

"http://www.score.is.tsukuba.ac.jp/OCFLP/Deriv"]
aLinear = FindSolvers[

"http://www.score.is.tsukuba.ac.jp/OCFLP/Linear"]

FindSolvers returns the entity elementary collabora-
tive. An elementary collaborative is a collection of ba-
sic solvers that perform the same solving service. In
Sect. 5.2, we will explain the mechanism of finding
such solvers. An elementary collaborative can be con-
figured by ConfigSolvers to work on specific prob-
lems more effectively by supplying additional parame-
ters. To some solvers, configuration is essential to equip
them with necessary solving power. For example, in the
case of HOLN solvers, we need to supply a FLP pro-
gram R to solve equations with respect to R. Thus, we
configure the HOLN solvers as follows.

(* Configure solvers *)
aHOLN = ConfigSolvers[aHOLN, Prog→ R]

The solvers of other two services need not be configured
since we use their standard services.

The next step of programming is the impor-
tant one in Open CFLP. We program a collabora-
tive solver. In CFLP, collaboration of solvers is fixed
and is hard-wired to CFLP system. For this exam-
ple, we define a collaborative solver in which elemen-
tary collaboratives aHOLN, aDeriv and aLinear col-
laborate. First, we want to apply the goal to these
elementary collaboratives sequentially in the order of
aHOLN, aDeriv and aLinear. This is programmed
as seq[{aHOLN, aDeriv, aLinear}]. Furthermore, we
apply the goal to seq[{aHOLN, aDeriv, aLinear}] re-
peatedly until the goal reaches the fixed-point. Thus
we have a collaborative definition repeat[seq[{aHOLN,



KOBAYASHI et al.: COLLABORATIVE CFLP IN AN OPEN ENVIRONMENT
3

aDeriv, aLinear}]]. The definition is given to the sys-
tem using a special function NewCollaborative.

(* Collaborative specification *)
aCollabo = NewCollaborative[

repeat[seq[{aHOLN, aDeriv, aLinear}]]]

NewCollaborative returns the entity collaborative.
Finally, we apply the goal G to the collaborative

aCollabo:

(* Invoke collaborative *)
ApplyCollaborative[aCollabo, {G}]

and obtain the following solution.

{{y %→ λ[{t}, eLog[3] t/2], k %→ Log[3]/2,
T %→ 2 Log[5]/Log[3]}}

The following transformation of goals took place
during the solving process of the initial goal G.

{G}⇒aHOLN {G1}⇒aDeriv {G2}⇒aLinear {G3}
⇒aHOLN {G3}⇒aDeriv {G3}⇒aLinear {G3}

where †

{G1} = {exists[{h, T1}, {y %→ λ[{t}, h[t]],
T %→ T1,λ[{t}, h′[t]] == λ[{t}, k h[t]],
h[0] == 1, h[2] == 3, h[T1] == 5, . . .}]},

{G2} = {exists[{c, k, T1}, {h %→ λ[{t}, c ek t],
T %→ T1, y %→ λ[{t}, c ek t],
c == 1, c e2 k == 3, c ek T1 == 5, . . .}]},

{G3} = {{c %→ 1, T1 %→ 2 Log[5]/Log[3], k %→ Log[3]/2,
h %→ λ[{t}, eLog[3] t/2], y %→ λ[{t}, eLog[3] t/2],
T %→ 2 Log[5]/Log[3], . . .}}.

Note that the collaborative operates on a list of
goals and returns a list of goals and that {G1}
can be obtained if we evaluate ApplyCollaborative[
NewCollaborative[aHOLN], {G}].

3. Languages of Open CFLP

From the example in the previous section we see that
collaborative constraint functional logic programming
proceeds in the following steps:

1. Define a FLP program R.
2. Define a goal G to be solved.
3. Obtain sets C1, . . . , Cn of elementary collabora-

tives.
4. Define a new collaborative C by specifying a col-

laboration of elementary collaboratives C1, . . . , Cn.
5. Apply the collaborative C to G.

†HOLN introduces extra variables that are irrelevant in
this illustration. We have abbreviated their bindings in G1,
G2 and G3 by . . ..

In the scientific problem solving the above process
is often interactive. For instance the obtained solution
may become new goals after inspecting and editing it.
Furthermore even if the FLP program R is completed,
the steps 2 to 5 are repeated. This requires the collabo-
ration of solvers to be re-programmed since some com-
bination of solvers may not deliver a desired solution.
Therefore, our language should also have the power of
modern programming languages such as graphics and
interactive debugging. This observation leads to the
following design decision.

3.1 Language M

The language of Open CFLP is built on top of Math-
ematica. We decided to use Mathematica as a base
language since we need to make use of its built-in math-
ematical knowledge and symbolic processing capability.
Let us denote our language by M in this paper. Since
the syntax of the language of Mathematica is universal
in that a form of functional application like f [s1, . . . , sn]
is a basic building block, extending the functionalities
that we have shown in the previous section can be
made simply by providing special functions to Math-
ematica. We have seen functions like FindSolvers,
NewCollaborative and ApplyCollaborative in our
example. Functions FindSolvers, NewCollaborative
and ApplyCollaborative are by no means trivially im-
plemented by Mathematica programs. Rather they are
realized by sophisticated software components that we
have built for Open CFLP.

A collaborative is programmed in a coordination
language embedded in M. The language is denoted
by L in this paper. For the definition of a collabora-
tive in M, we use function NewCollaborative whose
argument is a collaborative expression in L.

3.2 Coordination Language L

Open CFLP system has a software component called
coordinator . The coordinator, as the name suggests,
coordinates the activities of solvers. The coordina-
tor evaluates the program of L. An element of L is
collaborative. The collaborative C and the list G of
goals are sent from the user frontend of the system
(cf. Sect. 4.1) in the form of a function application
ApplyCollaborative[C, G].

Language L allows us to define a new solver by
combining various solvers using collaboration combina-
tors seq, if, choice and repeat. A collaborative C is
inductively defined as follows:

C ::=B elementary collaborative

| X locally defined collaborative

| seq[{C1, . . . , Cn}] sequential

| if[φ, C1, C2] conditional

| choice[ψ, {C1, . . . ,Cn}] concurrency and choice

| repeat[C] repetition



4
IEICE TRANS. INF. & SYST., VOL.E1–D, NO.1 JANUARY 1918

A collaborative receives a list of goals. All the solutions
of the goals are collected and is returned as the solution
of the given list of the goals.

We will give informal semantics of the language.
Suppose a collaborative C and a list G of goals are
given initially.

• When C is an elementary collaborative, C is ap-
plied to G directly.

• When C is a locally defined collaborative, where
‘locally defined’ means that C is defined as a Math-
ematica function, the definition of C is interpreted
by the user frontend.

• When C is seq[{C1, . . . , Cn}], we distinguish the
following two cases. If n = 1, seq[{C1}] is the same
as C1. Otherwise, seq[{C2, . . . , Cn}] is applied to
the result of application of C1 to G.

• When C is if[φ, C1, C2], the following takes place.
φ(G) is computed first. Function φ probes the
list of goals G and checks whether each goal of
G possesses a certain property, e.g., size or linear-
ity. φ(G) returns a list {GT , GF }, where GT is a
list of goals which satisfy the property, and GF is
a list of goals which do not satisfy it. Finally the
collaboratives C1 and C2 are applied to GT and
GF respectively.

• When C is choice[ψ, {C1, . . . , Cn}], the collabo-
ratives C1, . . . , Cn are applied to G simultaneously
and ψ selects one of the results.

• When C is repeat[C], the collaborative C is re-
peatedly applied to the goal list (initially G) until
no further transformation of the goal list is possible
by C.

Language L is designed to be a small language with
primitives for coordination of solvers. It is a very basic
language for two reasons. First, L is a language embed-
ded in a powerful language M. Secondly, additional
functionalities that may be desired for full-fledged co-
ordination languages can be provided by M. For exam-
ple, repeat can be easily programmed in M using the
built-in higher-order function FixedPoint, as follows.

Repeat[collabo ] := Function[GList,
FixedPoint[Function[x,

ApplyCollaborative[collabo, x]], GList]]

For efficiency reasons, repeat is provided as primitive,
however.

Similarly, we show that the sequential version of
conditional collaboration CondCollabo can be defined
as a Mathematica function.

CondCollabo[Choice , collabo1 , collabo2 ]
:= Function[GList, Union[

ApplyCollaborative[collabo1,
Choice[GList][[1]]],

ApplyCollaborative[collabo2,
Choice[GList][[2]]]]];

User frontend

Coordinator

Proxy Proxy

Evaluator

Solver
Solving
Agent

Solving
Agent

...

Solver

...

...

Broker
MAXCOR

(Mathematica Notebook)

MathKernel

Solving
Agent

Solving
Agent

...

Fig. 1 The architecture of Open CFLP

aCondCollaboM
:= CondCollabo[aChoice, aCollabo1, aCollabo2]

delivers the same result as the collaborative defined by

aCondCollaboL
= NewCollaborative[

if[aChoice, aCollabo1, aCollabo2]],

although aCondCollaboL is more efficiently executed,
because expression aCondCollaboM[GList] is inter-
preted by the user frontend, whereas
ApplyCollaboarive[aCondCollaboL, GList] is inter-
preted by the coordinator.

If the choice function aChoice in aCondCollaboL
is provided as the primitive in L, running in the co-
ordinator, the performance difference is even greater.
However, there are cases where simplicity and flex-
ibility outweigh the execution efficiency, in which
case CondCollabo defined as the higher-order function
of Mathematica would be preferable. For example,
aChoice that checks whether each goal is a system of
linear equations can be programmed much more easily
with Mathematica.

Language L can be seen as a core of coordination
languages that have been studied by several researchers
(cf. [9], for a good survey).

4. Architecture of Open CFLP

The discussion about the program in Sect. 2 has re-
vealed the following ingredients of Open CFLP:

• user frontend,
• coordinator,
• open framework for solver collaboration, and
• solvers.

These ingredients are realized by software components
called user frontend, coordinator, broker and solver.



KOBAYASHI et al.: COLLABORATIVE CFLP IN AN OPEN ENVIRONMENT
5

User
frontendUser

Coordinator Broker Solver-1

FindSolvers FindSolvers

ConfigSolvers
NewCollaborative
ApplyCollaborative ApplyCollaborative AllocateAgents

Solver-n

GetNumberOfAgents

...

GetNumberOfAgents

Solve

Solve

agent allocation list

solution

...

...

solution

elementary collaborative

Fig. 2 Interaction between components of Open CFLP

Figure 1 shows the architecture of Open CFLP. Fig-
ure 2 is a sequence diagram that shows how the com-
ponents interact one another. Functionally, the broker
and the solvers are grouped together to form a frame-
work called MAXCOR(MAth eXchange for CORBA).
Since MAXCOR has many functionalities, we discuss
the detail of MAXCOR separately in Sect. 5. In the
following subsections we will explain each component
in more detail.

4.1 User frontend

The user frontend (frontend for short) is a user in-
terface to Open CFLP. It is a Mathematica notebook
equipped with the MathKernel and allows the user to
define CFLP programs in M, as well as to interact with
the Mathematica system. The MathKernel executes lo-
cally defined collaboratives as well as Mathematica pro-
grams that run with Open CFLP. The interface com-
ponent called palette is also provided to facilitate the
input of CFLP expressions and commands.

4.2 Solver

A solver is a solving service provider. It implements
a solving algorithm such as higher-order lazy narrow-
ing, Gaussian elimination method and Gröbner basis
algorithm. When the operation Solve is invoked by
the coordinator (cf. Fig. 2), the solver creates (possibly
multiple) solving processes. We call the solving pro-
cesses solving agents. The solving agents of a solver
execute the same solving algorithm in parallel.

4.3 Coordinator

The coordinator is in charge of evaluating the program
of L. The evaluation consists in creating the proxies
for the solvers and in interpreting the collaboratives as
described in Sect. 3.2. The main component of the
coordinator is the evaluator . It communicates with

the frontend and the broker. When the evaluator re-
ceives a collaborative C and a list G of goals from the
frontend, it creates a buffer U where the solutions are
stored and then executes the procedure Collabo given
in Appendix. When the execution of the procedure
Collabo is completed, the evaluator fetches the solu-
tion stored on U and returns it to the frontend.

We will explain the procedure Collabo when C is
an elementary collaborative. The procedure in other
cases is a straightforward translation of the informal
semantics explained in Sect. 3.2.

The important design issue here is how to exploit
the parallelism. Note that C is a collection of basic
solvers s1, . . . , sm and G is a list of goals G1, . . . , Gn.
Each solver si can spawn τi solving agents. Ideally, n
goals are solved in parallel by n solving agents. The
procedure Collabo will exploit parallelism afforded in
the open environment in the following way.

1. Contact the broker and obtain the number τ ′i of
currently assignable solving agents for each solver
si, i = 1, . . . , m such that τ ′i ≤ τi and τ ′1 + · · · +
τ ′m = n′ ≤ n.

2. Create a proxy of each solver si if τ ′i (= 0, for i =
1, . . . , m.

3. Distribute n goals among n′ solving agents via the
proxies.

4. Configure the solving agents if necessary and then
trigger the n′ solving agents to solve the given goals
via their proxies.

5. Probe the states of the computations via the prox-
ies. Delete the proxies if all the computations are
completed, and send the request to the broker to
de-allocate all the n′ involved solving agents.

6. Return the solution to the frontend.

Here, The procedure Collabo exploits n′-fold paral-
lelism. Figure 2 shows the sequence of actions taken
by the coordinator, the broker and the solvers.

We illustrate the behavior of the coordinator by
the example of Sect. 2. When ApplyCollaborative[



6
IEICE TRANS. INF. & SYST., VOL.E1–D, NO.1 JANUARY 1918

aCollabo, {G}] that is the operation defined in the
coordinator is evaluated, aCollabo is first evalu-
ated to repeat[seq[{aHOLN, aDeriv, aLinear}]] then
ApplyCollaborative[repeat[seq[{aHOLN, aDeriv,
aLinear}]], {G}] is sent to the coordinator.

1. The evaluator creates a buffer U0.
2. The evaluator calls the procedure Collabo

with the parameters repeat[seq[{aHOLN, aDeriv,
aLinear}]], {G} and U0.

3. Collabo creates a buffer U1 and recursively calls
Collabo with the parameters seq[{aHOLN, aDeriv,
aLinear}]], {G} and U1.

3.1. Collabo creates a buffer U2.
3.2. Collabo obtains a solving agent HOLN from the

broker and creates the proxy of the solver of
HOLN.

3.3. The proxy sends the FLP program R for con-
figuring this solver and sends {G} to this solver
by invoking Solve operation.

3.4. HOLN agent solves {G} and appends the solu-
tion {G1} to U2.

3.5. Similarly, Deriv agent and Linear agent solve
their goals in this order.

4. The result {G3} of Step 3 is appended to the buffer
U1, and the evaluator compares U1 and {G}.

5. Steps 2–4 are obeyed once more with the parame-
ters repeat[seq[{aHOLN, aDeriv, aLinear}]], {G3}
and U0.

6. Finally, the solution {G3} is appended to U0.

We assume that a solving agent returns finite num-
ber of solutions, since the evaluation is call-by-value,
following the default evaluation mode of Mathematica.
The coordinator can display the progress of solving. In
the case the computation appears be non-terminating,
the user can interrupt the computation.

Furthermore, for efficiency the coordinator has a
cache of solving agents, although the description of the
cache is not explicit in the procedure Collabo. The
cached solving agents are reused until the CFLP session
is over.

5. MAXCOR

MAXCOR is designed to be a framework which realizes
transparent communication between solvers. It consists
of object wrappers for those solvers and the broker.

We often want to use various existing solvers such
as HOLN and polynomial solvers integrated to Math-
ematica and integer programming solver CPLEX [2].
These solvers may be heterogeneous, i.e., they are im-
plemented in different programming languages, run on
different platforms and have different data formats for
describing constraints. Object wrappers are used to
hide the heterogeneity of such solvers. To realize this

Data Converter

Bare Solver
Bare Solver Interface

Common Interface
CORBA ORB

Object Wrapper
Solver

Fig. 3 The architecture of the object wrapper

functionality, we need a common data format for com-
munication and a common communication protocol.
We adopted MathML for the common data format and
CORBA for the communication protocol. An object
wrapper thus has the functionalities of data conversion
between MathML and the solvers’ own data formats,
and of mediation of solvers’ operations.

An object wrapper alone is not sufficient to realize
the intended transparent communication with the co-
ordinator. MAXCOR has to provide the facilities for
finding the solvers. We are going to discuss in more
detail about these components.

5.1 Object Wrappers

Figure 3 shows the architecture of the object wrapper.
It provides CORBA compliant common interface for
solvers and realizes a solver using a bare solver. The ob-
ject wrapper transmits MathML data, more specifically
valuetype objects of XML DOM (Document Object
Model) [1], the standard allowing solvers to transmit
mathematical formulas written in MathML on CORBA
ORB. The object wrapper is equipped with the data
converter between MathML and the bare solver’s own
internal representation of mathematical formulas. We
have implemented object wrappers for Mathematica
and CPLEX.

5.2 Broker

The scheme of broker–provider coordination is a well
understood design pattern [10], and we follow the
scheme for broker–solver coordination. Solvers are
providers that offer solving services and the broker finds
the appropriate service to its clients. Here the clients
are proxies created by the coordinator.

The broker communicates with the frontend
and the coordinator. It receives the command
FindSolvers[uri ] from the frontend, where uri is a
name of the service. Recall that the service of solving a
goal is given a unique name in the format of URI. From
the coordinator, it receives the request of the process
allocation for running the solving agent.

(1) Search of solvers

When the broker receives FindSolvers[uri ], it accesses



KOBAYASHI et al.: COLLABORATIVE CFLP IN AN OPEN ENVIRONMENT
7

a service table and then by simple look-up with uri it
finds a list of solvers associated with uri . This list will
be returned to the frontend. The broker maintains the
service table with entries of the name of the service
and a list of solvers whose agents perform the service. A
solver published the availability of service by requesting
the broker the registration of the solver with the name
of the service in the service table.

(2) Agent allocation

When the coordinator requests n solving agents for the
elementary collaborative C by invoking the operation
AllocateAgents[C, n](cf. Fig. 2), the broker returns at
most n solving agents in the following way:

1. The broker asks each solver s1, . . . , sm collected
in C the number of solving agents it can give
to the coordinator by invoking the operation
GetNumberOfAgents.

2. Solver si returns the number τi, for i = 1, . . . , m.
3. Based on τi, the broker distributes n solving agents

among m solvers according to its load balancing
policy. Let n′ = min(n, τ1 + · · ·+ τn). The broker
decides τ ′i for each si such that τ ′i ≤ τi and τ ′1 +
· · ·+ τ ′m = n′.

4. The broker informs each solver s1, . . . , sm that the
broker reserves τ ′1, . . . , τ

′
m solving agents.

5. The broker returns an agent allocation list
{{s1, τ ′1}, · · · , {sm, τ ′m}} to the coordinator.

5.3 Features of MAXCOR

MAXCOR is designed as an application of CORBA.
The broker and the solvers are CORBA servers, and the
frontend and the proxies in the coordinator are CORBA
clients. Combined with the features of CORBA, we
have achieved the following properties:

• portability—language and platform independence
among solvers,

• data interoperability—MathML documents,
• operation interoperability among solvers,
• scalability and modularity—solvers implemented

as CORBA servers, and
• location independence of solvers.

Furthermore, we can easily extend our system with rich
CORBA common services such as the security service.

In addition, we implemented the broker that
CORBA does not offer to achieve dynamic solver de-
ployment. It has the functionalities of searching solvers
and allocating solving agents. Furthermore, our broker
implements a load balancing policy for the allocation of
solving agents, hence realizes efficient use of distributed
resources.

6. Conclusions

We have described collaborative constraint functional

logic programming and a system that supports this
paradigm. The system is open in the sense that it can
access via a brokering service the constraint solving re-
sources available in an open environment.

The language of Open CFLP is multi-tiered. The
notions of constraint solving, coordination program-
ming and symbolic computation are separable in de-
veloping programs, and such a separation leads to a
succinct and modular programming style. Yet, each
activity is supported by existing programming capabil-
ities. Our languages M and L are embedded into the
language of Mathematica. This flexibility allows us to
make our coordination language L small. L is essen-
tially a core of the coordination language BALI [3],
[13].

In [3], [13], an implementation model of BALI
with MANIFOLD is discussed. Our coordinator and
MANIFOLD are based on a control-driven coordination
model such as ConCoord [7] and TOOLBUS [4]. The
distinctive feature of Open CFLP is that it has been im-
plemented using middleware technology CORBA and
further has realized broker-provider scheme needed for
open collaborative constraint solving. By this ap-
proach, we have achieved openness and extensibility of
the system. As far as we know, a collaborative con-
straint system fully implemented with open technolo-
gies, CORBA and MathML, with clear design goals of
scientific problem solving is our new contribution in this
field of collaborative constraint programming.

References

[1] http://cgi.omg.org/xml.
[2] Using the CPLEX Callable Library, CPLEX Optimization,

Inc., USA, 1995.
[3] F. Arbab and E. Monfroy, “Coordination of heterogeneous

distributed cooperative constraint solving,”, Applied Com-
puting Review, SIGAPP. ACM, vol.6, pp.4–17, 1998.

[4] J. Bergstra and P. Klint, “The TOOLBUS coordination
architecture,” in 1st Int’l Conf. Coordination Models, Lan-
guages and Applications (Coordination’96), ed. P. Ciancar-
ini and C. Hankin, LNCS, vol.1061, pp.75–88, Springer-
Verlag, 1996.

[5] D. Gelernter and N. Carriero, “Coordination languages
and their significance: From theory to practice,” Commun.
ACM, vol.35, no.2, pp.97–107, 1992.

[6] M. Hanus, “The integration of functions into logic program-
ming: From theory to practice,” Journal of Logic Program-
ming, no.19&20, pp.583–628, 1994.

[7] A. Holzbacher, “A software environment for concurrent co-
ordinated programming,” in 1st Int’l Conf. Coordination
Models, Languages and Applications (Coordination’96), ed.
P. Ciancarini and C. Hankin, LNCS, vol.1061, pp.249–266,
Springer-Verlag, 1996.

[8] H. Hong, “RISC-CLP(CF) Constraint logic programming
over complex functions,” Logic Programming and Auto-
mated Reasoning, Proc. of the 5th Int’l Conf., LPAR’94,
ed. F. Pfennig, pp.99–113, Springer-Verlag, 1994.

[9] A. Omicini and F. Zambonelli,ed., Coordination of Internet
Agents, Springer-Verlag, 2001.

[10] M. Klusch and K. Sycara, “Brokering and matchmaking
for coordination of agent societies: A survey,” in Coordina-



8
IEICE TRANS. INF. & SYST., VOL.E1–D, NO.1 JANUARY 1918

tion of Internet Agents, ed. A. Omicini and F. Zambonelli,
pp.197–224, Springer-Verlag, 2001.

[11] M. Marin, T. Ida, and T. Suzuki, “Higher-order lazy nar-
rowing calculus: A solver for higher-order equations,” in
Proc. 8th Int’l Conf. Computer Aided Systems (EuroCAST
2001), LNCS, vol.2178, pp.478–493, Springer-Verlag, 2001.

[12] M. Marin, T. Ida, and W. Schreiner, “CFLP: Distributed
constraint solving system,” The Mathematica Journal,
vol.8, no.2, pp.287–300, 2001.

[13] E. Monfroy and F. Arbab, “Constraints solving as the co-
ordination of inference engines,” in Coordination of Inter-
net Agents, ed. A. Omicini and F. Zambonelli, pp.399–419,
Springer-Verlag, 2001.

[14] S. Wolfram, The Mathematica Book, 4th Edition, Wolfram
Media Inc. Champaign, Illinois, USA, and Cambridge Uni-
versity Press, 1999.

Appendix: Procedure Collabo

procedure Collabo(C, L,U)

{Inputs are collaborative C, a list L of n
goals and a buffer U .}

case C is an elementary collaborative
begin

Obtain the agent allocation list
{{s1, τ ′1}, . . . , {sm, τ ′m}} from the broker, where
s1, . . . , sm are solvers of C;
for i = 1, . . . ,m do

if τ ′i (= 0 then Create a proxy of si;
Distribute L to the proxies;
Send configuration requests if C includes
parameters for configuration, and solving
requests to the proxies;
Obtain the solutions from the proxies;
Append each solution to U ;
Delete the proxies and issue a request to the
broker to de-allocate the solving agents;

end;
case C is a locally defined collaborative X

begin
Send L to the frontend;
{The frontend evaluates X[L].}
Append to U the result sent from the frontend;

end;
case C = seq[{C1, . . . ,Ck}]

if k = 1 then call Collabo(C1, L, U);
else

begin
Create a buffer U ′;
call Collabo(C1, L, U ′);
call Collabo(seq[{C2, . . . ,Ck}], U ′, U);

end;
case C = if[φ,C1,C2]

begin
Let {LT , LF } = φ(L);
call Collabo(C1, LT , U) and
call Collabo(C2, LF , U) simultaneously;

end;
case C = choice[ψ, {C1, . . . ,Ck}]

begin
Create k buffers U1, . . . , Uk;
call Collabo(C1, L, U1), . . . ,
call Collabo(Ck, L, Uk) simultaneously;
Append ψ(U1, . . . , Uk) to U ;

end;
case C = repeat[Cr]

begin
Create a buffer U ′;
call Collabo(Cr, L, U ′);
if the contents of the buffer U ′ and L are the
same then Append L to U ;
else call Collabo(C, U ′, U);

end;
end of collabo;

Norio Kobayashi is currently a doc-
tor course graduate student in engineer-
ing, University of Tsukuba. His research
interests include scientific equational solv-
ing and open computing model for collab-
orative equational solving. He received
the B.Sc. degree in physics from Science
University of Tokyo and M.E. degree in
information sciences and electronics from
University of Tsukuba in 1997 and 1999,
respectively.

Mircea Marin is a visiting researcher
at the University of Tsukuba. His cur-
rent research interests include integration
of functional logic programming with con-
straint solving, and coordination models
for collaborative constraint solving. He
holds a Ph.D. in Computer Science from
the Johannes Kepler University of Linz,
Austria.

Tetsuo Ida is a professor at the
University of Tsukuba, where he leads a
research group of symbolic computation
(SCORE) in the institute of information
sciences and electronics. His research in-
cludes distributed symbolic computation,
integration of functional and logic pro-
gramming and term rewriting. He is an
editor of the Journal of Symbolic Compu-
tation and the Journal of Functional and
Logic Programming. He is a member of

the IEICE, the IPSJ, the JSSST, the ACM and the IEEE Com-
puter Society. He received a Doctor of Science from the Univer-
sity of Tokyo.


