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Abstract

We extend order-sorted unification by permitting regular expres-
sion sorts for variables and in the domains of function symbols. The
obtained signature corresponds to a finite bottom-up unranked tree
automaton. We prove that regular expression order-sorted (REOS)
unification is of type infinitary and decidable. The unification prob-
lem generalizes some known problems, such as, e.g., order-sorted uni-
fication for ranked terms, sequence unification, and word unification
with regular constraints. Decidability of REOS unification implies
that sequence unification with regular hedge language constraints is
decidable, generalizing the decidability result of word unification with
regular constraints to terms. A sort weakening algorithm helps to
construct a minimal complete set of REOS unifiers from the solutions
of sequence unification problems. We also give a direct procedure to
compute the minimal complete set of REOS unifiers. Moreover, we
design a complete algorithm for REOS matching, and show that this
problem is NP-complete and the corresponding counting problem is
#P-complete.
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1 Introduction

Order-sorted algebra has been introduced in (Goguen, 1978), motivated by
searching a better way to treat errors in abstract data types and to speed
up certain theorem proving methods. In order-sorted algebras, variables and
arguments of function symbols range over certain subsets of the universe of
terms, specified by the sorts. Walther (1988) gave a syntactic unification
algorithm for order-sorted terms, and characterized the relationship between
sort hierarchies and the cardinality of minimal complete sets of unifiers.

Since the original work by Goguen, several variants of the order-sorted
algebra have been proposed, see (Goguen and Diaconescu, 1994) for a survey.
Some of these variants permit overloaded function symbols. A desirable
property of overloaded order-sorted algebras is the existence of a least sort
for terms. Goguen and Meseguer (1992) gave conditions on the signature
to guarantee the existence of such a sort. Equational unification algorithms
for overloaded order-sorted algebras have been proposed in (Kirchner, 1988;
Meseguer et al., 1989; Boudet, 1992; Hendrix and Meseguer, 2012).
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All the above mentioned work was done for order-sorted algebras over
ranked signatures, where function symbols have a fixed arity. Comon (1989)
observed an interesting relation between such signatures and tree automata:
A finite ranked order-sorted signature is a finite bottom-up ranked tree au-
tomaton. Based on this observation, Comon and Delor (1994) used some
strong properties of regular languages (decision of emptiness and finiteness,
stability by intersection, union and complement) to bring together the order-
sorted framework and simplification of first-order equational formulas.

In this paper, we move from ranked to unranked signatures. Unranked
terms/trees are commonly used as an abstract model of XML documents,
program schemata, multithreaded recursive program configurations with the
unbounded number of parallel processes, variadic functions in programming
languages, etc. Rewriting, programming, model checking, knowledge rep-
resentation techniques over unranked expressions have also been explored.
Solving equations in one form or another is a fundamental problem in these
applications. This is the problem we address in this paper.

More precisely, we generalize unification from ranked order-sorted terms
without overloading to unranked order-sorted terms with overloading. Our
sorts for variables and for function domains are described by regular expres-
sions over basic sorts. Table 1 shows the detailed comparison of our language
with the one in (Walther, 1988). The basic sorts in both papers are partially
ordered. We consider the set RB of regular expressions over a poset (B,�)
of basic sorts, extend the partial order � to RB, and, like Walther, restrict
ourselves to syntactic unification.

The language in (Walther, 1988) The language in this paper

The set of basic sorts B, The finite set of basic sorts B,
partially ordered with �. partially ordered with �.
Sets of variables Vs Sets of variables VR
for each s ∈ B. for each R ∈ RB.
Sets of function symbols Fw→s Sets of function symbols FR→s

for w ∈ B∗, s ∈ B. for R ∈ RB, s ∈ B.
The sets of function symbols and The sets of function symbols
variables are pairwise disjoint. are not required to be disjoint.

Table 1: Comparison with the order-sorted language from (Walther, 1988).

We abbreviate the regular expression order sorts used in the current paper
as REOS. To guarantee the existence of a least sort, we extend the condition
of preregularity defined for ranked order-sorted signatures in (Goguen and
Meseguer, 1992) to REOS signatures. The finite overloading property of the
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REOS signature (the same function symbol can belong only to finitely many
different sets of function symbols) guarantees that a least sort is effectively
computable.

Table 1 reveals that our variables have regular expression sorts, thus they
may be instantiated with term sequences by sort-preserving substitutions.
The problem of unification in an unsorted language where variables stand
for term sequences (sequence unification, SEQU) has been studied earlier,
see, e.g. (Kutsia, 2007) and the discussion on related work thereof. Our work
can be seen as a generalization of those to the sorted setting. It is well-known
that generalization of unsorted unification algorithms to the sorted ones is not
trivial: Depending on the sort theory, it can happen that unification problems
in unsorted and sorted versions of the same language belong to different
unification types (e.g., unitary vs finitary, unitary vs infinitary, etc.) Putting
it to an extreme, a sort theory may make a sorted version of the standard
syntactic unification problem undecidable. See, e.g., (Weidenbach, 1996) for
more detailed discussion on sort theories and their effect on unification.

Like SEQU (Kutsia, 2007), REOS unification (REOSU, in short) prob-
lems may also have infinitely many incomparable unifiers. We prove that RE-
OSU, in fact, is infinitary. It amounts to proving that REOSU is not of type
zero, i.e., that a minimal complete set of unifiers always exists. Moreover, we
prove that REOSU is decidable and describe sort weakening techniques which
can be used to obtain (a minimal complete set of) sorted unifiers from the
unsorted ones. Besides, we give a procedure which directly enumerates a min-
imal complete set of REOS unifiers, instead of getting it from the unsorted
solutions. The advantage of this approach is that it can detect failure earlier
that the generate-and-test approach, based on the transforming/filtering the
unsorted unifiers.

The decidability result of REOSU has an interesting consequence: Decid-
ability of sequence unification with regular hedge constraints. (Hedges are
finite sequences of unranked terms.) This result generalizes decidability of
word unification with regular constraints (Schulz, 1990) to term sequences.

Talking about related work, there are other known unification problems
which can be seen as specializations of REOSU. The diagram in Fig. 1 illus-
trates how REOSU generalizes the syntactic unification SYNU (Robinson,
1965), word unification WU (Makanin, 1977; Schulz, 1990), order-sorted uni-
fication OSU (Walther, 1988), sequence unification SEQU (Kutsia, 2007),
and word unification with regular constraints WRCU (Schulz, 1990):

The precise relationships between these problems can be described as
follows:

• From OSU one can obtain SYNU by considering only one basic sort.
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WUSYNU

WRCUSEQUOSU

REOSU

Figure 1: Relationship between REOSU and other unification problems.

• SEQU problems without sequence variables (i.e., with individual vari-
ables only) constitute SYNU problems.

• WU is a special case of SEQU with constants, sequence variables, and
only one unranked function symbol for concatenation.

• WU is also a special case of WRCU where none of the variables is
constrained.

• From REOSU we can get OSU (with finitely many basic sort symbols
only, because this is what REOSU considers), if instead of arbitrary
regular sorts in function domains we allow only words over basic sorts,
restrict variables to be of only basic sorts, and forbid function symbol
overloading.

• SEQU can be obtained if we restrict REOSU with only one basic sort,
say s, the variables that correspond to sequence variables in SEQU have
the sort s∗, individual variables are of the sort s, and function symbols
have the sort s∗ → s.

• WRCU can be obtained from REOSU by the same restriction that gives
WU from SEQU and, in addition, identifying the constants in REOSU
to the sorts they belong to.

The order-sorted unification problems considered in (Schmidt-Schauß,
1989; Weidenbach, 1996) extend OSU from (Walther, 1988) in a way that is
not compatible with REOSU.

When it comes to applications of infinitary unification, its finitary frag-
ments and variants are of special interest. A particularly useful such re-
striction is matching, where one side of the unification problem is variable-
free (ground). We study REOS matching in this paper, give a complete
matching algorithm, and prove that it terminates and never computes the
same matcher more than once. We also prove its NP-completeness and #P-
completeness of the corresponding counting problem. The REOS matching
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can be seen as an abstract model of the basic pattern matching algorithm
on which the programming language of the Mathematica system (Wolfram,
2003) is based.

Yet another interesting feature of our language is that we can relate reg-
ular expression order-sorted signatures and unranked tree automata (Comon
et al., 2007) similarly to the relationship between the ranked order-sorted
signatures and automata mentioned above. Namely, we show that a REOS
signature is exactly a finite bottom-up unranked tree automaton. Taking
into account the closure properties of unranked tree automata, this result
can help, for instance, in developing simplification techniques for arbitrary
equational formulas in the REOS framework. We do not go into more de-
tailed discussion here, as this topic requires thorough investigation which is
beyond the scope of the current paper.

Regular expression typed pattern matching is presented in the program-
ming languages XDuce (Hosoya and Pierce, 2003b), designed for manipulat-
ing XML, and in XHaskell (Sulzmann and Lu, 2007), an extension of Haskell.
These types are regular expressions over trees. They are ordered by a sub-
typing relation. Pattern matching for such regular expression types has been
studied in (Hosoya and Pierce, 2003a). Unlike XDuce types, our sorts are
regular expressions over words and we perform word regular language ma-
nipulations rather than working with tree languages. Moreover, we deal not
only with matching, but also with full-scale unification.

In this paper we study REOSU in the empty theory (i.e., the syntac-
tic case). It would be interesting to see how one can extend equational
OSU (Kirchner, 1988; Meseguer et al., 1989; Boudet, 1992; Hendrix and
Meseguer, 2012) with regular expression sorts, but this problem is beyond
the scope of this paper.

2 Preliminaries

In this paper, for unification and matching we use the notation and terminol-
ogy of Baader and Snyder (2001). For the notions related to sorted theories,
we follow Goguen and Meseguer (1992).

2.1 Sorts

We consider a finite poset (B,�) of basic sorts ranged over by p, q, r, s, t. We
write s ≺ r if s � r and s 6= r. Also, we write RB for the set of regular
expressions over B, built by the grammar R ::= s | 1 | R1.R2 | R1+R2 | R∗. We
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use capital SANS SERIF font letters for them. Usually, we omit the subscript
and write R for RB, and call the elements of R regular expression sorts.

The regular language [[R]] denoted by a regular expression R is defined in
the standard way: [[s]] = {s}, [[1]] = {λ}, [[R1.R2]] = [[R1]].[[R2]], [[R1+R2]] =
[[R1]]∪ [[R2]], [[R∗]] = [[R]]∗, where λ stands for the empty word, [[R1]].[[R2]] is the
concatenation of the regular languages [[R1]] and [[R2]], and [[R]]∗ is the Kleene
star of [[R]].

Besides regular expression sorts, we also consider functional expression
sorts, which are pairs made of R ∈ R and s ∈ B, written as R → s. The
relation � on B is extended to words of basic sorts, sets of words, and regular
expression sorts as follows:

1. if w1, w2 ∈ B∗ then w1 � w2 iff w1 = s1 · · · sn, w2 = r1 · · · rn and si � ri
for all 1 ≤ i ≤ n;

2. if W1,W2 ⊆ B∗ then W1 � W2 iff for each w1 ∈ W1 there is w2 ∈ W2

such that w1 � w2;

3. if R1,R2 ∈ R then R1 � R2 iff [[R1]] � [[R2]].

Note that � is a quasi-order on the sets B∗, 2B
∗
, and R. In particular,

we can define the equivalence relation � on R by: R1 ' R2 iff R1 � R2 and
R2 � R1. We extend this equivalence relation to functional sorts: R1 → s1 '
R2 → s2 iff R1 ' R2 and s1 = s2.

The closure R of R ∈ R is the regular expression defined as follows:
s =

∑
r�s r, 1 = 1, R1.R2 = R1.R2, R1+R2 = R1+R2, R∗ = R

∗
. Closures of

regular expressions enable the decidability of relations � and ' on R:

Lemma 2.1. Let S,R ∈ R. Then S � R iff [[S]] ⊆ [[R]].

Proof. An easy proof by induction on the structure of R ∈ R reveals that

(1) [[R]] � [[R]] � [[R]], therefore R ' R, and

(2) for all w ∈ B∗ we have {w} � [[R]] iff w ∈ [[R]].

(2) implies W � [[R]] iff W ⊆ [[R]] for all W ⊆ B∗. In particular, for W = [[S]]
we obtain [[S]] � [[R]] iff [[S]] ⊆ [[R]].

If S � R then S ' S � R ' R. Since � is transitive, we learn S � R, that
is, [[S]] ⊆ [[R]]. Conversely, if [[S]] ⊆ [[R]] then obviously S � R. Since S � S
and R � R, we learn by transitivity of � that S � R.
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Thus, we can decide S � R by deciding [[S]] ⊆ [[R]]. This can be achieved
with the rewriting-based Antimirov’s algorithm (Antimirov, 1995) that em-
ploys partial derivatives. The problem is PSPACE-complete, but this rewrit-
ing approach has an advantage over the standard technique of translating
regular expressions into automata: In some cases, it provides derivations of
polynomial size, while any algorithm based on translation of regular expres-
sions into DFA’s causes an exponential blow-up.

Corollary 1. Let S,R ∈ R. Then S ' R iff [[S]] = [[R]].

The set of all �-maximal elements of a set of sorts S ⊆ R is denoted by
max(S). R is a lower bound of S if R � Q for all Q ∈ S. A lower bound G of
S is a greatest lower bound, denoted glb(S), if R � G for all lower bounds R
of S. Note that if glb(S) exists, then it is unique modulo '.

The following subsection recalls results from the factorization theory of
regular languages. We anticipate that these results will be useful in the study
of unification problems that will show up in Sect. 2.4.

2.2 Linear Form and Split of a Regular Expression

We recall the notion of linear form for regular expressions from (Antimirov,
1996) by adapting the notation to our setting and using the set of basic sorts
B for alphabet. This notion, together with the split of a regular expression,
will be needed later, in sort-related algorithms. Linear forms help to split a
sort into a basic sort and another sort, while the split operation decomposes
it into two (not necessarily basic) sorts.

A pair (s,R) ∈ B × R is called a monomial. A linear form of a regular
expression R, denoted lf (R), is a finite set of monomials defined recursively
as follows:

lf (1) = ∅ lf (R∗) = lf (R)� R∗

lf (s) = {(s, 1)} lf (R.Q) = lf (R)� Q if λ /∈ [[R]]
lf (s+r) = lf (s) ∪ lf (r) lf (R.Q) = lf (R)� Q ∪ lf (Q) if λ ∈ [[R]]

These equations involve an extension of concatenation � that acts on a
linear form and a regular expression and returns a linear form. It is defined as
l�1 = l and l�Q = {(s, S.Q) | (s, S) ∈ l, S 6= 1}∪{(s,Q) | (s, 1) ∈ l} if Q 6= 1.
The set l̂f (R) is defined as {s.Q | (s,Q) ∈ lf (R)}.

Example 2.2. If R = s∗.(s.s+r)∗ then l̂f (R) = {s.R, s.s.(s.s+r)∗, r.(s.s+r)∗}.

Definition 2.3 (Split). Let S ∈ R. A split of S is a pair (Q,R) ∈ R2 such
that (1) Q.R � S and (2) if (Q′,R′) ∈ R2, Q � Q′, R � R′, and Q′.R′ � S,
then Q ' Q′ and R ' R′.
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We recall the definition of 2-factorization from (Conway, 1971): A pair
(Q,R) ∈ R2 is a 2-factorization of S ∈ R if (1) [[Q.R]] ⊆ [[S]] and (2) if
(Q′,R′) ∈ R2, [[Q]] ⊆ [[Q′]], [[R]] ⊆ [[R′]], and [[Q′.R′]] ⊆ [[S]], then [[Q]] = [[Q′]] and
[[R]] = [[R′]].

Lemma 2.4. (Q,R) is a split of S iff (Q,R) is a 2-factorization of S.

Proof. (Q,R) is a split of S iff (1) Q.R � S and (2) if (Q′,R′) ∈ R2, Q � Q′,
R � R′, and Q′.R′ � S, then Q ' Q′ and R ' R′. By Lemma 2.1, these
conditions are equivalent to (1’) [[Q.R]] ⊆ [[S]] and (2’) if (Q′,R′) ∈ R2, [[Q]] ⊆
[[Q′]], [[R]] ⊆ [[R′]], and [[Q′.R′]] ⊆ [[S]], then [[Q]] = [[Q′]] and [[R]] = [[R′]]. It is
not hard to see that (1’) and (2’) are the same as saying that (Q,R) is a
2-factorization of S.

In (Conway, 1971) it has been shown that the 2-factorizations of a regu-
lar expression are finitely many modulo ', and that they can be effectively
computed. By the lemma above a regular expression has finitely many splits
modulo ' that can be effectively computed. For instance, the regular expres-
sion s∗.r.r∗ has three splits modulo ': (s∗, s∗.r.r∗), (s∗r∗, r.r∗), and (s∗.r.r∗, r∗).

2.3 Terms and Term Sequences

These notions are defined with respect to a regular expression order-sorted
(REOS) signature and a countable set of sorted variables. A REOS signature
is a triple Σ = (B,�,F) made of a finite set B of basic sorts, a partial ordering
� on B which is extended to the set R of regular expressions over B, and a
set F =

⋃
R∈R,s∈B FR→s corresponding to a family {FR→s | R ∈ R, s ∈ B} of

sets of function symbols which satisfy the following conditions:

Functional equivalence: If R1 → s1 ' R2 → s2 then FR1→s1 = FR2→s2 .

Monotonicity: If f ∈ FR1→s1 ∩ FR2→s2 and R1 � R2, then s1 � s2.

Finite overloading: For each f , the set {FR→s | R ∈ R, s ∈ B, f ∈ FR→s}
is finite.

The corresponding set of variables is V =
⋃

R∈R VR, where every VR is a
countably infinite set of variables such that VR1 = VR2 iff R1 ' R2 and
VR1 ∩ VR2 = ∅ iff R1 6' R2.

As usual, we assume that F ∩ V = ∅.

Definition 2.5. The set of terms of sort R ∈ R over Σ and V , denoted by
TR(Σ,V), and the set of term sequences of sort R ∈ R over Σ and V , denoted
by SR(Σ,V), are the least sets satisfying the properties:
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• VR ⊆ TR(Σ,V).

• TR′(Σ,V) ⊆ TR(Σ,V) and SR′(Σ,V) ⊆ SR(Σ,V) if R′ � R.

• ε ∈ S1(Σ,V).

• (t1, . . . , tn) ∈ SR(Σ,V), n ≥ 1, if there exist R1, . . . ,Rn ∈ R such that
ti ∈ TRi

(Σ,V) and R1. · · · .Rn = R.

• f(t1, . . . , tn) ∈ TR(Σ,V), if R = s, f : R′ → s, and (t1, . . . , tn) ∈
SR′(Σ,V).

Thus, the set of sorted terms is
⋃

R∈R TR(Σ,V), which we denote by
T (Σ,V). The set of term sequences S(Σ,V) is defined similarly. Note that
TR(Σ,V) ⊆ SR(Σ,V) holds for all R ∈ R. Sorted terms of the form a(ε) are
abbreviated with a.

From now on we assume implicitly that all terms and term sequences
under consideration are sorted, therefore we will stop mentioning them to be
sorted. We denote terms by symbols t, s, and r, and term sequences by t̃, s̃,
and r̃. For variables, we use x, y, z, u, v, and w.

A desirable property of our sorted term algebra is the existence of a
least sort for each term. To guarantee this property, we have identified the
following extra condition on the REOS signature:

Preregularity: If f ∈ FR1→s1 and R0 � R1, then the set {s | f ∈ FR→s and
R0 � R} has a �-least element.

This condition is the natural generalization of the notion of preregular order-
sorted signature (Goguen and Meseguer, 1992) for REOS signatures.

Lemma 2.6. If Σ is a preregular signature, then every term sequence t̃ has
a �-least sort that is unique modulo '.

Proof. Suppose t̃ ∈ SR(Σ,V). We prove the existence of a �-least sort of
t̃ by induction on length of the proof that t̃ ∈ SR(Σ,V). If t̃ is a variable
then t̃ ∈ TR(Σ,V) follows from t̃ ∈ VQ1 ⊆ TQ1(Σ,V) ⊆ . . . ⊆ TQn(Σ,V),
where Qn = R and Q1 � . . . � Qn = R. It follows that the set of sorts
Mt̃ := {Q | t̃ ∈ VQ} is a complete set of �-minimal sorts of t̃ ∈ V . Since
Q ' Q′ for all Q,Q′ ∈Mt̃, it follows that any t̃ ∈ V has a �-least sort modulo
', which is any Q such that t̃ ∈ VQ.

If t̃ = ε then t̃ ∈ SR(Σ,V) follows from t̃ ∈ SQ1(Σ,V) ⊆ . . . ⊆ SQn(Σ,V)
with 1 = Q1 � . . . � Qn = R. Thus 1 is the �-least sort of ε modulo '.

Now, suppose t̃ = f(s̃). Because t̃ is sorted, there exist Q ∈ R and s ∈ B
such that f ∈ FQ→s and s̃ ∈ SQ(Σ,V). By induction hypothesis, there exists
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a �-least sort Q′ such that s̃ ∈ SQ′(Σ,V). Since Σ is preregular, there exists
a �-least sort s0 of the set MQ′ := {s′ | f ∈ FR′→s′ and Q′ � R′}. Thus s0

is the �-least sort of t̃ modulo '. In fact, s0 can be computed effectively
because the set MQ′ is finite due to the finite overloading property.

The only other possibility is t̃ = (t1, . . . , tm) ∈ SR(Σ,V), because ti ∈
TRi

(Σ,V) for 1 ≤ i ≤ m and R = R1. · · · .Rm. By induction hypothesis, there
exist R′1, . . . ,R

′
m ∈ R such that R′i is the �-least sort of t′i and R′i � Ri for

1 ≤ i ≤ m. Then R′1. · · · .R′m is the �-least sort of t̃ modulo '.

From now on we assume that our signature is preregular, and write either
R = lsort(t̃) or t̃ : R to express the fact that R is a �-least sort modulo ' of
some term sequence t̃. Also, we write f : R → s instead of f ∈ FR→s. Note
that, if x ∈ VR then lsort(x) = R.

The set of variables of a term sequence t̃ is denoted by var(t̃). t̃ is ground
if var(t̃) = ∅. These notions extend to sets of term sequences, etc. We denote
the set of ground term sequences (resp. ground terms) over a signature Σ
by S(Σ) (resp. T (Σ)). For a basic sort s, its semantics sem(s) is the set
Ts(Σ) of ground terms of sort s. The semantics of a regular sort is given
by the set of ground term sequences of the corresponding sort: sem(1) =
{ε}, sem(R1.R2) = {(s̃1, s̃2) | s̃1 ∈ sem(R1), s̃2 ∈ sem(R2)}, sem(R1+R2) =
sem(R1) ∪ sem(R2), sem(R∗) = sem(R)∗. This definition, together with the
definition of � and S(Σ,V), implies that if R � Q, then sem(R) ⊆ sem(Q).

2.4 Substitutions and Unification Problems

A mapping ϕ : V → S(Σ,V) is well-sorted if lsort(ϕ(x)) � lsort(x). A
substitution is a well-sorted mapping from variables to term sequences, which
is identity almost everywhere. This means that the set dom(ϕ) := {x ∈
V | ϕ(x) 6= x}, called the domain of substitution ϕ, is a finite set for all
substitutions ϕ. A substitution is a variable renaming if it maps the variables
from its domain to distinct variables.

Substitutions are denoted by lowercase Greek letters ϕ, ϑ, ψ, µ, ω, and
ε, where ε stands for the identity substitution. The notions of substitution
application, composition, restriction, and subsumption are defined in the
standard way. (See, e.g., Baader and Snyder (2001).) We use postfix notation
for instances, juxtaposition for composition, and write t̃ ≤ s̃ to indicate that
t̃ subsumes s̃, that is, there exists a substitution ϕ such that t̃ϕ = s̃. In this
case we also say that t̃ is more general than s̃. The notation ϕ ≤X ϑ is for
subsumption (more generality) with respect to the set of variables X , that is,
when there exists a substitution ψ such that xϕψ = xϑ for all x ∈ X . The
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notation ϕX stands for the restriction of ϕ to the set of variables X . It means
that ϕ|X is a substitution with the property xϕ|X = xϕ for all x ∈ X .

Lemma 2.7. lsort(t̃ϕ) � lsort(t̃) holds for any term sequence t̃ and substi-
tution ϕ.

Proof. By induction on the structure of t̃. If t̃ = ε then t̃ϕ = ε = t̃, thus
lsort(t̃ϕ) = lsort(t̃). Otherwise t̃ = (t1, . . . , tn) where n ≥ 1 and ti ∈ T (Σ,V)
for 1 ≤ i ≤ n. Note that, if lsort(tiϕ) � lsort(ti) for 1 ≤ i ≤ n then
lsort(t̃ϕ) = (lsort(t1ϕ). · · · .lsort(tnϕ)) � (lsort(t1). · · · .lsort(tn)) = lsort(t̃).

We still have to prove that lsort(tϕ) � lsort(t) for any term t and sub-
stitution ϕ. If t is a variable, then the lemma follows from the definition
of substitution. If t = f(t̃) with lsort(t) = s then there exist f : S → s
with lsort(t̃) � S. Also, lsort(t̃ϕ) � lsort(t̃) by the induction hypothe-
sis. Let M := {r | f ∈ FR→r and lsort(t̃ϕ) � R}. Then s ∈ M because
lsort(t̃ϕ) � lsort(t̃) � S and f ∈ FS→s. Σ is preregular, therefore M has
a �-least element s0. This means s0 � s and the existence of S0 ∈ R with
f : S0 → s0 and lsort(t̃ϕ) � S0. Thus tϕ = f(t̃ϕ) ∈ Ts0(Σ,V). Therefore
lsort(tϕ) � s0 � s = lsort(t).

An equation is a pair of term sequences, written as s̃
.
= t̃. A regular

expression order sorted unification or, shortly, REOSU problem Γ is a finite
set of equations between sorted term sequences {s̃1

.
= t̃1, . . . , s̃n

.
= t̃n}.

A substitution ϕ is a unifier of Γ if s̃iϕ = t̃iϕ for all 1 ≤ i ≤ n. A minimal
complete set of unifiers of Γ is a set U of unifiers of Γ satisfying the following
conditions:

Completeness: For any unifier ϑ of Γ there is ϕ ∈ U such that ϕ ≤var(Γ) ϑ.

Minimality: If there are ϕ1, ϕ2 ∈ U such that ϕ1 ≤var(Γ) ϕ2, then ϕ1 = ϕ2.

3 Relating REOS Signatures and Unranked

Tree Automata

Regular expression ordered sorts over finite signatures are related to finite
automata for unranked trees in the same way as ordered sorts are related to
finite automata for ranked trees. In order to understand the correspondence,
we recall the notion of finite bottom-up unranked tree automaton. This is a
tuple A = (Q,F,Qf , δ) where

• Q is a finite set of states (nonterminals),
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• F is a finite unranked alphabet (terminals),

• δ is a finite set of rules of the form q1 → q2 or f(R)→ q where f ∈ F ,
R is a regular expression over Q and q1, q2, q ∈ Q, and

• Qf (final states) is a subset of Q.

The move relation of A over ground trees T (F ∪Q) is defined as follows:
for all t1, t2 ∈ T (F ∪ Q), the relation t1 −→A t2 holds if there exists a
context C[] and a rule f(R) → q ∈ δ such that t1 = C[f(q1, . . . , qn)], the
word q1 · · · qn ∈ [[R]] and t2 = C[q]. A tree t ∈ T (F ) is recognized by A
at state q if t −→∗A q holds. The language L(A) accepted by A is defined
as the set of ground unranked trees L(A) = {t ∈ T (F ) | there exists q ∈
Qf such that t −→∗A q}.

The finite bottom-up unranked tree automaton that corresponds to a
REOS signature Σ = (B,�,F) with F finite is AΣ := (B,F ,B, δ) where the
roles of states and final states are played by B, the role of terminals is played
by F , and δ contains rules of two kinds:

1. For each r � s, the ε-transition rule r→ s.

2. For each f ∈ FR→s, the transition rule f(R)→ s.

It is easy to see that t ∈ Ts(Σ) iff t −→∗AΣ
s.

Conversely, if A = (Q,F,Qf , δ), then we can define the REOS signature
ΣA := (Q,�,F) where

• q1 � q2 iff q1 → q2 ∈ δ, and

• FR→q := {f ∈ F | f(R)→ q ∈ δ},

and note that t −→∗A q iff t ∈ Tq(ΣA).

4 Sort-Related Algorithms

In this section we single out some useful algorithms that operate on sorts.
These algorithms will be useful later.

4.1 Computing Least Sorts

We can extract from the constructive proof of Lemma 2.6 the following set
of inference rules for the judgment t̃ : R which expresses the fact that the
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least sort of the term sequence t̃ is R.

ε : 1

x ∈ VR
x : R

t1 : R1 . . . tm : Rm

(t1, . . . , tm) : R1. · · · .Rm

f : Q→ q t̃ : R R � Q s = least elem�{s′ | f ∈ FR′→s′ and R � R′}
f(t̃) : s

4.2 Computing Greatest Lower Bounds

Assume that R1, . . . ,Rn ∈ R. If
⋂n

i=1[[Ri]] = ∅ then R1, . . . ,Rn have no
lower bound with respect to �, because if Q were such a lower bound
then, by Lemma 2.1, [[Q]] ⊆ [[Ri]] for all i ∈ {1, . . . , n}. This implies ∅ 6=
[[Q]] ⊆

⋂n
i=1[[Ri]] = ∅, which is a contradiction. From now on, we write

glb({R1, . . . ,Rn}) = ⊥ in the situation when R1, . . . ,Rn ∈ R and
⋂n

i=1[[Ri]] =
∅ (that is, when R1, . . . ,Rn have no lower bound). Otherwise, we can use
standard techniques from the theory of regular languages to compute Q ∈ R
such that [[Q]] =

⋂n
i=1[[Ri]], and note that such a Q is a greatest lower bound of

R1, . . . ,Rn. Thus, in this case we can write glb({R1, . . . ,Rn}) = Q, where Q
is a regular expression sort computed to fulfill the condition [[Q]] =

⋂n
i=1[[Ri]].

4.3 Computing Weakening Substitutions

A weakening substitution of a term sequence t̃ towards a sort Q ∈ R is
a variable renaming θ such that t̃θ ∈ SQ(Σ,V). Alternatively, we call θ a
solution of the weakening pair t̃  Q. We generalize this notion to finite
sets of weakening pairs, which we call weakening problems, and consider θ a
solution of such a setW iff θ is a solution for every weakening pair t̃ Q ∈ W.

Note that weakening substitutions may not exist. Such a situation hap-
pens, for instance, for weakening pairs t̃ Q with t̃ a ground term sequence
and lsort(t̃) 6� Q.

The notion of weakening substitution has a very simple intuitive meaning:
Given a pair t̃ Q, we wish to relax the sorts of the variables in t̃ by replacing
them with variables of smaller sorts, such that the renamed version of t̃ is
in SQ(Σ,V). The necessity of such an algorithm can be demonstrated on a
simple example: Assume we want to unify x and f(y) for x : s, f : R1 → s1,
f : R2 → s2, y : R2, where s1 ≺ s ≺ s2 and R1 ≺ R2. We can not map x to
f(y) directly, because lsort(f(y)) = s2 6� s = lsort(x). However, if we weaken
the least sort of f(y) to s1, then the mapping becomes possible. To weaken
the least sort of f(y), we take its instance under substitution {y 7→ z}, where
z ∈ VR1 , which gives lsort(f(z)) = s1. Hence, the substitution {y 7→ z, x 7→
f(z)} is a unifier of x and f(y), leading to the common instance f(z).
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Now we describe an algorithm that computes weakening substitutions for
weakening problems. Our weakening algorithm is called W, and works by
applying exhaustively the following rules to pairs of the form W ;ϕ where
W is a weakening problem and ϕ is a substitution. In the rules here and
elsewhere ] stands for disjoint union:

E-w: Elimination in Weakening

{s̃ Q} ]W ;ϕ =⇒W ;ϕ if lsort(s̃) � Q.

D1-w: Decomposition 1 in Weakening

{(f(t̃), s̃) Q} ]W ;ϕ =⇒ {f(t̃) s, s̃ S} ∪W ;ϕ

if lsort(f(t̃), s̃) 6� Q, var(f(t̃), s̃) 6= ∅, s̃ 6= ε and s.S ∈ max(l̂f (Q)).

D2-w: Decomposition 2 in Weakening

{(x, s̃) Q} ]W ;ϕ =⇒ {x Q1, s̃ Q2} ∪W ;ϕ

if lsort(x, s̃) 6� Q, s̃ 6= ε and (Q1,Q2) is a split of Q.

AS-w: Argument Sequence Weakening

{f(t̃) Q} ]W ;ϕ =⇒ {t̃ R} ∪W ;ϕ

where lsort(f(t̃)) 6� Q, var(f(t̃)) 6= ∅, R.r is a maximal sort such that f ∈ FR→r

and r � Q.

V-w: Variable Weakening

{x Q} ]W ;ϕ =⇒Wϕ;ϕ{x 7→ w}
where lsort(x) 6� Q and glb({lsort(x),Q}) 6= ⊥ and w is a fresh variable from
Vglb({lsort(x),Q}).

If none of the rules are applicable to W ;ϕ, then it is transformed into
⊥, indicating failure. By exhaustive search, transforming each W ;ϕ in all
possible ways, we generate a complete search tree whose branches form
derivations. The branches that end with ⊥ are called failing branches. The
branches that end with ∅;ω are called successful branches and ω is a sub-
stitution computed by W along this branch. The set of all substitutions
computed by W starting from W ; ε is denoted by weak(W ). It is easy to see
that the elements of weak(W ) are variable renaming substitutions.

It is essential that the signature has the finite overloading property, which
guarantees that the rule AS-w does not introduce infinite branching. Since
the linear form and split of a regular expression are both finite, the other
rules do not cause infinite branching either. W is terminating, sound, and
complete, as the following theorems show.

Theorem 4.1. W is terminating.
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Proof. The measure of a weakening pair t̃  Q is 1 + the size of t̃, and
the measure of a weakening problem W is the multiset of the measures of its
constituent weakening pairs. The multiset extension of the standard ordering
on nonnegative integers is well-founded. The rules in W strictly decrease the
measure for the sets on which they operate and, hence, W is terminating.

Theorem 4.2 (Soundness of the Weakening Algorithm). If W is a weakening
problem then each ω ∈ weak(W ) is a weakening substitution of W .

Proof. It is enough to show that if a rule in W transforms W1;ϕ into W2;ϕϑ
and ψ is a weakening substitution for W2, then ϑψ is a weakening substitution
for W1. For E-w, it is trivial. For D1-w it follows from two facts: First, if s.S ∈
max(l̂f (Q)) then s.S � Q, and second, �-monotonicity of concatenation: If
R1 � Q1 and R2 � Q2 then R1.R2 � Q1.Q2. For D2-w it follows from �-
monotonicity of concatenation and from the definition of split. For AS-w, it
is implied by the selection of R and r, whereas for V-w it is implied by the
definition of glb and Lemma 2.7.

Theorem 4.3 (Completeness of the Weakening Algorithm). Let W be a
weakening problem. For every weakening substitution ω of W there exists
ω′ ∈ weak(W ) such that ω′ ≤var(W ) ω.

Proof. The proof is by induction on the measure of W defined in the proof
of Theorem 4.1. The lemma holds trivially when W = ∅. If W contains
a weakening pair s̃  Q such that lsort(s̃) � Q, then W is of the form
{s̃ Q} ]W ′ and W ′ has smaller measure than W . Since ω is a weakening
substitution for W ′ as well, by induction hypothesis, there exists an W-
derivation W ′; ε =⇒∗ ∅;ω′ such that ω′ ≤var(W ′) ω, and we can assume
without loss of generality that ω′ ≤var(W ) ω. Since we can prepend the E-w
step {s̃  Q} ] W ′; ε =⇒ W ′; ε to the former W-derivation, we conclude
that ω′ ∈ weak(W ) and ω′ ≤var(W ) ω.

The remaining case to be considered is when lsort(r̃) 6� Q for all weaken-
ing pairs (r̃  Q) ∈ W . Assume (r̃  Q) ∈ W is such a weakening pair. Let
W = {r̃  Q}]W ′. The proof proceeds by case distinction on the syntactic
structure of r̃.

• r̃ = (f(t̃), s̃), s̃ 6= ε. Since lsort(r̃ω) � Q, there exists s.S ∈ max(l̂f (Q))
such that lsort(f(t̃)ω) � s and lsort(s̃ω) � S. In this case we can
perform the D1-w step π = (W ; ε =⇒ W ′′; ε) where W ′′ = {f(t̃)  
s, s̃ S}]W ′. SinceW ′′ has the smaller measure thanW , and since ω is
a weakening substitution for W ′′, we can apply the induction hypothesis
to infer the existence of a W-derivation Π = (W ′′; ε =⇒∗ ∅;ω′) such
that ω′ ≤var(W ′′) ω. Note that var(W ′′) = var(W ). By prepending the
D2-w step π to the W-derivation Π we conclude that ω′ ∈ weak(W ).
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• r̃ = (x, s̃), s̃ 6= ε. Since lsort(r̃ω) � Q, there exists a split (Q1,Q2)
of Q such that lsort(xω) � Q1 and lsort(s̃ω) � Q2. In this case we
can perform the D2-w step π = (W ; ε =⇒ W ′′; ε), where W ′′ = {x  
Q1, s̃  Q2} ]W ′. Since W ′′ has the smaller measure than W , and ω
is a weakening substitution for W ′′, there exists a W-derivation Π =
(W ′′; ε) =⇒∗ ∅;ω′) such that ω′ ≤var(W ′′) ω. Note that var(W ′′) =
var(W ). By prepending the step π to the derivation Π we conclude
that ω′ ∈ weak(W ).

• r̃ = f(t̃). Since lsort(r̃ω) � Q, there exist R and s such that R.r is a
maximal sort with f ∈ FR→r, r � Q, and lsort(t̃ω) � R. In this case
we can perform the AS-w step π = (W ; ε =⇒ W ′′; ε), where W ′′ =
{t̃  R} ]W ′. Since W ′′ has the smaller measure than W , and ω is a
weakening substitution for W ′′, we can apply the induction hypothesis
to infer the existence of a W-derivation Π = (W ′′; ε =⇒∗ ∅;ω′) such
that ω′ ≤var(W ′′) ω. Note that var(W ′′) = var(W ). By prepending the
step π to the derivation Π we conclude that ω′ ∈ weak(W ).

• r̃ = x. Since lsort(xω) � Q, there exists R′ := glb(lsort(x),Q) ∈ R
and lsort(xω) � R′. In this case we can perform the V-w step π =
(W ; ε =⇒ W ′ϕ;ϕ), where ϕ = {x 7→ w}, w a fresh variable from
VR′ . Then ω ∪ {w 7→ xω} is a weakening substitution of W ′ϕ. Since
W ′ϕ has the smaller measure that W , we can apply the induction
hypothesis to infer the existence of a W-derivation Π = (W ′ϕ; ε =⇒∗
∅;ω′′) such that ω′′ ≤var(W ′ϕ) ω ∪ {w 7→ xω}. Let ω′ = ϕω′′. Then
we have ω′ ≤var(W ′ϕ)∪{x} ω ∪ {w 7→ xω} and ω′ ≤var(W ′ϕ)∪{x}\{w} ω.
But var(W ′ϕ) ∪ {x} \ {w} = var(W ). From Π, we can construct a
W-derivation Π′ = (W ′ϕ;ϕ =⇒∗ ∅;ω′). Prepending the step π to Π′

we get that ω′ ∈ weak(W ) and ω′ ≤var(W ) ω.

Example 4.4. Let W = {x  q, f(x)  s} be a weakening problem with
x : r, f : s → s, f : r → r and the sorts r1 ≺ r, r2 ≺ r, r1 ≺ q, r2 ≺ q, s ≺ r1,
s ≺ r2. Then the weakening algorithm first transforms W ; ε into {f(w)  
s}; {x 7→ w} with w : r1+r2 by the rule V-w. The obtained weakening pair
is then transformed into ∅; {{x 7→ z, w 7→ z}} with z : s by AS-w, leading to
weak(W ) = {{x 7→ z}}.

Example 4.5. Let W = {(x, y)  s∗.r.r∗} be a weakening problem with
x : q∗1.p

∗
1, y : q∗2.p

∗
2, and the sorts s ≺ q1, s ≺ q2, r ≺ p1, r ≺ p2. Then

the weakening algorithm computes weak(W ) = {{x 7→ u1, y 7→ v1}, {x 7→
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u2, y 7→ v2}, {x 7→ u3, y 7→ v3}} where

u1 : s∗, u2 : s∗.r∗ u3 : s∗.r.r∗,

v1 : s∗.r.r∗, v2 : r.r∗, v3 : r∗.

Example 4.6. Let W = {x  q∗} be a weakening problem with x : r∗ and
the sorts s1 ≺ r, s2 ≺ r, s1 ≺ q, s2 ≺ q, p1 ≺ s1, p2 ≺ s2. Then the weakening
algorithm computes weak(W ) = {{x 7→ w}} where w : (s1+s2)∗.

5 Unification Type

The sequence unification problems (SEQU problems in short) have been stud-
ied in (Kutsia, 2007). They can be seen as REOSU problems built over one
basic sort s, all function symbols having the sort s∗ → s, and each variable
having either the sort s (individual variable) or s∗ (sequence variable). We
can also ignore the sort information, keeping just the explicit distinction
between individual and sequence variables.

Unification problems are characterized by the existence and cardinality
of their minimal complete sets of unifiers. It is called the type of unifica-
tion, whose definition we give here following Baader and Snyder (2001). For
simplicity, the word “theory” in the definition means REOSU or SEQU, i.e.,
syntactic theories over F or its unsorted version. Similarly, the phrase “uni-
fication problem” refers to REOSU problem over F or a SEQU problem over
the unsorted version of F .

Definition 5.1. Let Γ be a unification problem over F . It has type unitary
(finitary, infinitary) iff it has a minimal complete set of unifiers of cardinality
1 (finite cardinality, infinite cardinality). It Γ has no minimal complete set
of unifiers, then it has type zero. We abbreviate type unitary with 1, type
finitary by ω, type infinitary by ∞, and type zero by 0, and order them as
1 < ω < ∞ < 0. Then the unification type of a theory is the maximal type
of a unification problem in the theory.

The SEQU problems in this section will be assumed to contain only se-
quence variables and no individual variables. Let Γre be a REOSU problem
and Γseq be the corresponding SEQU problem. It means, Γseq is obtained
from Γre by forgetting the sort information and replacing every variable with
a sequence variable. Each unifier of Γre is, obviously, a unifier of Γseq. On the
other hand, not all unifiers of Γseq solve Γre: They might not preserve sorts.

In (Kutsia, 2007), it was shown that SEQU is infinitary. It is obvious
that REOSU is at least infinitary. We would like to show that it is indeed
infinitary and not of type zero.
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Let Sseq be a minimal complete set of unifiers of Γseq and ϑ be a unifier
of Γre. Although ϑ solves Sseq, it is not necessary that ϑ ∈ Sseq, because
it might not be a minimal unifier for Sseq. However, since Sseq is complete,
there should be a substitution ϕ ∈ Sseq such that ϕ ≤var(Γseq) ϑ. Hence, any
unifier of Γre is an instance of an element of Sseq.

For each substitution ϕ = {x1 7→ t̃1, . . . , xn 7→ t̃n}, we define the set of
weakening substitutions for ϕ as Ω(ϕ) = weak({t̃1  lsort(x1), . . . , t̃n  
lsort(xn)}).

Let S(ϕ) be the set of substitutions S(ϕ) = {ϕωϕ | ωϕ ∈ Ω(ϕ)}. This
set is finite, because Ω(ϕ) is finite. Let Smin

X (ϕ) denote the set obtained from
S(ϕ) by minimizing it with respect to the subsumption ordering ≤X on a set
of variables X . Without loss of generality, we can assume dom(ϑ) ⊆ X for
each ϑ ∈ Smin

X (ϕ).
Let V be the set of variables V = var(Γre) = var(Γseq). By Sre we denote

a set of substitutions defined as Sre = ∪ϕ∈SseqS
min
V (ϕ). Then we have the

following lemma:

Lemma 5.2. Sre is a complete set of unifiers for Γre.

Proof. Every element of Sre is a unifier of Γre. This easily follows from the
fact that these substitutions are well-sorted instances of elements of Sseq. To
prove completeness, we take a unifier ϑ of Γre and show that there exists
ψ ∈ Γre such that ψ ≤V ϑ.

Since Sseq is a complete set of unifiers of Γseq and ϑ is a unifier of Γseq,
there exists ϕ ∈ Sseq such that for each x ∈ V , xϕ ≤ xϑ. ϑ is well-sorted.
Therefore, lsort(x) � lsort(xϑ) for all x ∈ V . If lsort(x) � lsort(xϕ) holds
for all x ∈ V , then, by the construction of Γre, we have ϕ ∈ Γre and we can
take ψ = ϕ. Otherwise, let x be a variable for which lsort(x) 6� lsort(ϕ).
Since xϕ ≤ xϑ and lsort(x) � lsort(xϑ), we can weaken x towards lsort(ϕ)
with a weakening substitution ω such that lsort(x) � lsort(ϕω) and xϕω ≤
xϑ. But then ϕω ∈ Γre by the construction of Γre, and we can take ψ = ϕω.
Hence, for any unifier ϑ of Γre there is a substitution ψ ∈ Γre such that
ψ ≤V ϑ. Therefore, Sre is a complete set of unifiers for Γre.

To prove that REOSU is not of type zero, we should show that any
unification problem has a minimal complete set of unifiers.

Lemma 5.3. The set Sre is minimal.

Proof. Assume by contradiction that Sre is not minimal. Then it contains
two elements ϕ′ and ϑ′ such that ϕ′ ≤V ϑ′, i.e., there exists ψ′ 6= ε such that
ϕ′ψ′ =V ϑ′. We consider the following four possible cases:

19



1. ϕ′ ∈ Sseq and ϑ′ /∈ Sseq. Then ϕ′ψ′ = ϕωϕψ
′ =V ϑ′ for ϕ ∈ Sseq

and ωϕ ∈ Ω(ϕ). If ϕ 6= ϑ′, then the previous equality contradicts
minimality of Sseq. If ϕ = ϑ′, then Γre contains two substitutions ϕ′

and ϑ′, comparable with respect to ≤V , both obtained by weakening
the same substitution ϕ ∈ Γseq. However, this contradicts the way how
Γre was constructed: Smin

V (ϕ) is supposed to be minimal.

2. ϕ′ ∈ Sseq and ϑ′ /∈ Sseq. Then ϕ′ψ′ =V ϑ′ = ϑωϑ where ϑ ∈ Sseq and
ωϑ ∈ Ω(ϑ). Since ωϑ is a variable renaming, ϕ′ψ′ω−1

ϑ =V ϑ. If ϕ′ 6= ϑ,
the latter equality contradicts minimality of Sseq. If ϕ′ = ϑ, then Γre

contains two substitutions ϕ′ and ϑ′, comparable with respect to ≤V ,
both obtained by weakening the same substitution ϑ ∈ Γseq. However,
this contradicts the way how Γre was constructed: Smin

V (ϑ) is supposed
to be minimal.

3. ϕ′ /∈ Sseq and ϑ′ /∈ Sseq. Then ϕωϕψ
′ = ϕ′ψ′ =V ϑ′ = ϑωϑ for

ϕ, ϑ ∈ Sseq. Since ωϑ is a variable renaming, we have ϕωϕψ
′ω−1

ϑ =V ϑ.
Then we reason in the same way as above: If ϕ 6= ϑ, the latter equality
contradicts minimality of Sseq. If ϕ = ϑ, then Γre contains two substi-
tutions ϕ′ and ϑ′, comparable with respect to ≤V , both obtained by
weakening the same substitution ϑ ∈ Γseq. However, this contradicts
the way how Γre was constructed: Smin

V (ϑ) is supposed to be minimal.

4. ϕ′ ∈ Sseq and ϑ′ ∈ Sseq. It immediately contradicts minimality of Sseq.

Hence, Sre is minimal.

Lemma 5.2 and Lemma 5.3 imply that Γre has a minimal complete set of
unifiers. Hence, REOSU is not of type zero and the following theorem holds:

Theorem 5.4. REOSU has the infinitary unification type.

6 Decidability of REOSU

To show decidability, we define a translation from REOSU problems into
word equations with regular constraints. The idea is similar to the one of
Levy and Villaret (2001), used to translate context equations into traversal
equations, or of Kutsia et al. (2007, 2010), used to translate left-hole context
equations into word equations with regular constraints.

In the proof we need the notion of depth for various syntactic constructs.
The depth of a term and a term sequence is defined in the standard way:
depth(x) = 1, depth(f(t̃)) = 1 + depth(t̃), depth(ε) = 0, depth(t1, . . . , tn) =
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max{depth(ti) | 1 ≤ i ≤ n}, n > 0. The depth of an equation s̃
.
= t̃ is

the maximum between depth(s̃) and depth(t̃). The depth of a substitution
is defined as depth(ϕ) = max{depth(xϕ) | x ∈ V}. The depth of a REOSU
problem Γ is the maximum depth of the equations it contains.

For each basic sort we assume at least one constant of that sort and
proceed as follows:

• First, we show that each solvable REOSU problem Γ has a unifier ϕ
with the property depth(ϕ) ≤ size(Γ), where size(Γ) is the number of
alphabet symbols in Γ.

• Next, we transform a REOSU problem Γ into a WU problem with
regular constraints by a transformation that preserves solvability in
both directions. The transformation uses the minimal unifier depth
bound when translating sort information. Since WRCU is decidable,
we get decidability of REOSU.

We now elaborate on these items. We can assume without loss of gener-
ality that we are looking for the unifiers that do not map any variable to ε
(nonerasing unifiers).

Unifier depth bound Let ϑ be a depth-minimal nonerasing unifier of Γ
with the domain dom(ϑ) ⊆ var(Γ) and let ρ be a grounding substitution for
Γϑ, mapping each variable in Γϑ to a sequence of constants of appropriate
sort. We denote ϑρ by ϕ. Then for each x ∈ var(Γ), xϕ consists of terms of
the form tϕ, where t is either a subterm of Γ, or a constant, or is obtained from
a subterm of Γ by replacing variables with sequences of constants. Since there
are size(Γ) subterms in Γ and we can not repeat application of a subterm
on itself, depth(tϕ) ≤ size(Γ). Therefore, depth(xϕ) ≤ size(Γ) for all x ∈
dom(ϕ) which implies depth(ϕ) ≤ size(Γ).

Translation into a WRCU problem Let Γ be a REOSU problem. For
the translation, we restrict ourselves to the function symbols occurring in Γ
and, additionally, one constant for each basic sort, if Γ does not contain a
constant of that sort. This alphabet is finite. We denote it by FΓ.

First, we ignore the sort information and define a transformation Tr from
term sequences into words as follows:

Tr(x) = x

Tr(f(t̃)) = fTr(t̃)f

Tr(ε) = λ

Tr(t1, . . . , tn) = Tr(t1)# · · ·#Tr(tn), n > 1
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where # is just a letter that does not occur in FΓ. A mapping ϕ from
variables to term sequences is translated into a substitution for words Tr(ϕ)
defined as xTr(ϕ) = Tr(xϕ) for each x. Tr is an injective function. Its
inverse is denoted by Tr−1.

Example 6.1. Let Γ = {f(x, y)
.
= f(f(y, a), b, c)} with s � r, x : s, y : r∗,

f : r∗ → s, a : s and b, c : r. Then Γ has a solution ϕ = {x 7→ f(b, c, a), y 7→
(b, c)}. On the other hand, Tr(Γ) = {fx#yf

.
= ffy#aaf#bb#ccf} is

a word unification problem, which has three nonerasing solutions: ψ1 =
{x 7→ fbb#cc#aaf, y 7→ bb#cc}, ψ2 = {x → fcc#aaf#bb, y 7→ cc}, ψ3 =
{x 7→ faaf#bbf#cc, y 7→ aaf#bbf#cc}. It is easy to see that ψ1 = Tr(ϕ),
but ψ2 and ψ3 are extra substitutions introduced by the transformation.
However, they are of different nature: Tr−1(ψ2) exists and it is a mapping
{x 7→ (f(c, a), b), y 7→ c}, but it is not a substitution because it is not well-
sorted. Tr−1(ψ3) does not exist (which indicates that Tr is not surjective).

Lemma 6.2. If ϕ is a substitution and t̃ is a sequence of REOS terms, then
Tr(t̃)Tr(ϕ) = Tr(t̃ϕ).

Proof. By structural induction on t̃.

This lemma implies that if a REOSU Γ is solvable, then Tr(Γ) is solvable.
The converse, in general, is not true, because the transformation introduces
extra solutions. However, translating sort information and considering word
equations with regular constraints prevent extra solutions to appear and we
get solvability preservation in both directions, as we will see below.

We start with translating sort information: For each x ∈ var(Γ), we
transform x : R into a membership constraint x ∈ Tr(R,Γ), where Tr(R,Γ)
is defined as the set

Tr(R,Γ) = {Tr(t̃) | the terms in t̃ are from T (FΓ),

lsort(t̃) � R and depth(t̃) ≤ size(Γ)}.

That is, we translate only those t̃’s whose minimal sort is bounded by R
and the depth is bounded by size(Γ).

We show now that Tr(R,Γ) is a regular word language. First, we in-
troduce a notation for regular word languages: L1.#L2 = {w1#w2 | w1 ∈
L1, w2 ∈ L2}, L0# = {λ}, L1# = L, Ln# = L.#L

(n−1)# and L∗# = ∪∞n=0L
n# .

For each R, the language Tr(R,Γ) is constructed level by level, first for
the term sequences of depth 1, then for depth 2, and so on, until the depth
bound depth(Γ) is reached:
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• Depth 1:

Tr 1(s,Γ) = {aa | a ∈ FΓ, a : s′, s′ � s} (This set is finite.)

Tr 1(1,Γ) = {λ}
Tr 1(R1 + R2,Γ) = Tr 1(R1,Γ) ∪ Tr 1(R2,Γ)

Tr 1(R1.R2,Γ) = Tr 1(R1,Γ).#Tr 1(R2,Γ)

Tr 1(R∗,Γ) = Tr 1(R,Γ)∗#

• Depth n > 1:

Trn(s,Γ) = Trn−1(s,Γ) ∪ {fwf | f ∈ FΓ, f : R→ s′,

w ∈ Trn−1(R′,Γ),R′ � R, s′ � s}
Trn(1,Γ) = {λ}

Trn(R1 + R2,Γ) = Trn(R1,Γ) ∪ Trn(R2,Γ)

Trn(R1.R2,Γ) = Trn(R1,Γ).#Trn(R2,Γ)

Trn(R∗,Γ) = Trn(R,Γ)∗#

Note that Trn(R,Γ) is regular for each n. From this construction it follows
that Tr(R,Γ) = Tr size(Γ)(R,Γ) and, hence, Tr(R,Γ) is regular.

Example 6.3. Consider again Γ and the sort information from Example 6.1.
Now it gets translated into the WRCU problem

∆ = {fx#yf
.
= ffy#aaf#bb#ccf, x ∈ Tr(s,Γ), y ∈ Tr(r∗,Γ)}.

Tr(s,Γ) contains (among others) fbb#cc#aaf , but neither fcc#aaf#bb nor
faaf#bbf#cc are in it. Tr(r∗,Γ) contains (among others) bb#cc. Hence, ψ1

from Example 6.1 is a solution of ∆, but ψ2 and ψ3 are not.

Finally, we have the theorem:

Theorem 6.4. Let Γ = {s̃1
.
= t̃1, . . . , s̃n

.
= t̃n} be a REOSU problem with

var(Γ) = {x1, . . . , xm} such that xi : Ri for each 1 ≤ i ≤ m. Let ∆ =
{Tr(s̃1)

.
= Tr(t̃1), . . . ,Tr(s̃n)

.
= Tr(t̃n), x1 ∈ Tr(R1,Γ), . . . , xm ∈ Tr(Rm,Γ)}

be a word unification problem with regular constraints, obtained by translating
Γ. Then Γ is solvable iff ∆ is solvable.

Proof. (⇒) Let ϕ be a depth-minimal unifier of Γ. Then, by Lemma 6.2,
Tr(s̃i)Tr(ϕ) = Tr(s̃iϕ) = Tr(t̃iϕ) = Tr(t̃i)Tr(ϕ) for each 1 ≤ i ≤ n. On
the other hand, for each 1 ≤ j ≤ m, all terms in xjϕ are from T (FΓ),
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xjTr(ϕ) = Tr(xjϕ), depth(xjϕ) ≤ depth(ϕ) ≤ size(Γ), and lsort(xjϕ) � Rj.
It implies that xjTr(ϕ) ∈ Tr(Rj,Γ). Hence, Tr(ϕ) solves ∆.

(⇐) Let ψ be a solution of ∆. For each 1 ≤ j ≤ m, since xjψ ∈ Tr(Rj,Γ),
by definition of Tr(Rj,Γ), there exists a sequence r̃j such that all terms in
r̃ are from T (FΓ), depth(r̃) ≤ size(Γ), lsort(r̃) � Rj, and Tr(r̃) = xjψ.
Hence, Tr−1(ψ) exists. Obviously, xjTr−1(ψ) = r̃j for each 1 ≤ j ≤ m.
By Lemma 6.2, Tr(t̃)ψ = Tr(t̃)Tr(Tr−1(ψ)) = Tr(t̃Tr−1(ψ)) for each t̃.
In particular, for each Tr(s̃i)

.
= Tr(t̃i) ∈ ∆, we have Tr(s̃iTr−1(ψ)) =

Tr(t̃iTr−1(ψ)). Since Tr is injective, it implies s̃iTr−1(ψ) = t̃iTr−1(ψ) for
each 1 ≤ i ≤ n. Hence, Tr−1(ψ) is a unifier of Γ.

Hence, the problem of deciding solvability of REOSU has been reduced
(by a solvability-preserving transformation) to the problem of deciding solv-
ability of WRCU. Since the latter is decidable, we conclude with the following
result:

Theorem 6.5 (Decidability). Solvability of REOSU is decidable.

7 Decidability of Sequence Unification with

Regular Hedge Constraints

Decidability of REOSU has an interesting consequence: Decidability of se-
quence unification with regular hedge constraints. It generalizes decidability
of word unification with regular constraints (Schulz, 1990) to sequences. To
prove it, we first need to introduce some definitions.

In Sect. 5, we mentioned that SEQU problems can be seen as REOSU
problems built over one basic sort s, all function symbols have the sort s∗ → s,
and each variable has either the sort s (individual variable) or s∗ (sequence
variable). We do not mention sorts explicitly, when we talk about SEQU
problems.

A finite hedge automaton A is a tuple (Q,F,Rf , δ) where Q, F , and δ are
defined exactly as in the case of unranked tree automata in Sect. 3, while
Rf is a regular expression over Q. The automaton is deterministic if for all
rules f(R1) → q1, f(R2) → q2 ∈ δ, q1 6= q2 implies [[R1]] ∩ [[R2]] = ∅. (We
also assume that there are no two rules f(R1)→ q, f(R2)→ q ∈ δ: They are
replaced by f(R1+R2)→ q.)

For hedge automata, the move relation is defined similarly as for the
unranked tree case, with the difference that it can act on hedges (sequences)
of unranked trees instead of unranked trees. The language L(A) recognized
by a finite hedge automaton A is the set of hedges L(A) = {(t1, . . . , tn) ∈
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T (F )n | there exist q1, . . . , qn such that ti −→∗A qi holds for each 1 ≤ i ≤
n and q1 · · · qn ∈ [[Rf ]]}.

A sequence unification problem with regular constraints (SEQURC) is a
triple

Π = ∆; {X1 in R1, . . . , Xm in Rm}; (Q,F, δ),

where ∆ = {s1
.
= t1, . . . , sn

.
= tn} is a SEQU problem built over F and

individual and sequence variables. For all 1 ≤ j ≤ m, the variables Xj are
some of the sequence variables occurring in ∆, and the regular expressions
Ri are built over Q such that (Q,F,Ri, δ) is a deterministic unranked hedge
automaton. A solution of such a SEQURC problem is a substitution ϕ that
solves Γ and satisfies the constraints: Xjϕ ∈ L(Q,F,Rj, δ) for all 1 ≤ j ≤ m.

Now, we encode the SEQURC problem Π above as a REOSU problem
ΓΠ over the signature ϕ = (B,�,F) defined as follows:

• The equations in ΓΠ are those in ∆.

• The set of basic sorts B is defined as Q ∪ {t} where t is a new sort.

• The partial ordering on B is assumed to be � ={(q, t) | q ∈ Q}, that
is, t is assumed to be the �-maximal basic sort of B.

• F is the set of all symbols that occur in F and in ∆, f ∈ Ft∗→t for all
f ∈ F and, in addition, f ∈ FR→s whenever f(R)→ s ∈ δ.

As for the variables in ΓΠ, we assume that Xi ∈ VRi
for 1 ≤ i ≤ m, X ∈ Vt∗

for any other sequence variable X in ∆, and x ∈ Vt for any individual variable
x in ∆.

Lemma 7.1. Σ = (B,�,F) is a preregular REOS signature.

Proof. B is obviously finite. We extend the � ordering on B to the set of
regular expressions over B∗ in the usual way. F is also finite (since it consists
only of function symbols occurring in F and in Γ) and, therefore, finitely
overloading. Also, it is easy to see that F is monotonic and preregular.

• Monotonicity: We may have only one kind of overloading: The same
f may belong to FR→s (that comes from the automaton in SEQURC)
and to Ft∗→t. Since R � t∗ and s � t, the monotonicity property holds.

• Preregularity: Let f ∈ Ft∗→t. Then for all R0 � t∗, the set of sorts
{s | f ∈ FR→s and R0 � R} is either {t} or {t, q} for some q. Both
sets have a �-least element. If f ∈ FR→s, then for all R0 � R, the set
{s′ | f ∈ FR→s′ and R0 � R} is {s}. Hence, preregularity also holds.
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Lemma 7.2. Π is solvable iff the corresponding REOSU ΓΠ is solvable.

Proof. If ϕ is a solution of Π, then it can solve each equation in ∆, i.e., in
a sort-free version of ΓΠ. To show that ϕ respects the sorts for ΓΠ, it is
enough to notice that for the constrained sequence variables Xj in Π, we
have Xjϕ ∈ L(Q,F,Rj, δ), and, hence, the least sort of the encoding of Xjϕ
is � Rj. Hence, each solution of Π is a solution of ΓΠ. On the other hand,
with a similar argument we can see that ΓΠ does not have a unifier that is
not a solution of Π.

The lemmas 7.1 and 7.2 imply decidability of SEQURC:

Theorem 7.3. Solvability of SEQURC is decidable.

8 Computing Unifiers and Matchers

8.1 Unification Procedure

To compute unifiers for a REOSU problem, one can ignore the sort in-
formation, treat each variable as a sequence variable, employ the SEQU
procedure (Kutsia, 2002, 2007) on the unsorted problem, and then weaken
each computed substitution to obtain their order-sorted instances. In fact,
such an approach is not uncommon in order-sorted unification, see, e.g.
(Schmidt-Schauß, 1989; Meseguer et al., 1989; Smolka et al., 1989; Hendrix
and Meseguer, 2012). It has an advantage of being a modular method that
reuses an existing solving procedure.

In our case, this approach can be realized as follows: Assume a SEQU
procedure computes a unifier ϕ = {x1 7→ t̃1, . . . , xn 7→ t̃n} of the unsorted
version of an REOSU problem Γ. We can assume without loss of generality
that ϕ is idempotent. Then we form a weakening problem W = {t̃1  
lsort(x1), . . . , t̃n  lsort(xn)}, and find the set of weakening substitutions
weak(W ). If weak(W ) = ∅, then ϕ can not be weakened further to a solution
of Γ. Otherwise, ϕϑ is a solution of Γ for each ϑ ∈ weak(W ). Completeness
and minimality of the obtained set of solutions is proved in Lemma 5.2 and
Lemma 5.3.

A drawback of this approach is that it is so called generate-and-test
method. It is not able to detect derivations that fail because of sort in-
compatibility, until the weakening algorithm is run on the generated SEQU
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unifiers. Early failure detection requires weakening to be tailored in the
unification rules. This is what we consider in more details now.1

The following transformation rules act on pairs of the form Γ;ϕ with Γ a
unification problem and ϕ a substitution, and are designed to define a sound
and complete rule-based procedure for REOSU problems.

P: Projection

Γ;ϕ =⇒ Γϑ;ϕϑ,

for ϑ = {x1 7→ ε, . . . , xn 7→ ε} with xi ∈ var(Γ) and 1 � lsort(xi) for
1 ≤ i ≤ n.

T: Trivial

{ε .= ε} ∪ Γ;ϕ =⇒ Γ;ϕ.

TP: Trivial Prefix

{(t, t̃) .
= (t, s̃)} ∪ Γ;ϕ =⇒ {t̃ .= s̃} ∪ Γ;ϕ.

D: Decomposition

{(f(t̃), t̃′)
.
= (f(s̃), s̃′)} ∪ Γ;ϕ =⇒ {t̃ .= s̃, t̃′

.
= s̃′} ∪ Γ;ϕ,

if glb({lsort(f(t̃)), lsort(f(s̃))}) 6= ⊥ and t̃ 6= s̃.

O: Orient

{(t, t̃) .
= (x, s̃)} ∪ Γ;ϕ =⇒ {(x, s̃) .

= (t, t̃)} ∪ Γ;ϕ, where t /∈ V .

WkE1: Weakening and Elimination 1

{(x, t̃) .
= (s, s̃)} ∪ Γ;ϕ =⇒ {t̃ .= s̃}ϑ ∪ Γϑ;ϕϑ,

where s /∈ V , x /∈ var(s), ω ∈ weak({s lsort(x)}), and ϑ = ω ∪ {x 7→ sω}.

WkE2: Weakening and Elimination 2

{(x, t̃) .
= (y, s̃)} ∪ Γ;ϕ =⇒ {t̃ .= s̃}ϑ ∪ Γϑ;ϕϑ,

where R = glb(lsort(x), lsort(y)) 6' 1 and ϑ = {x 7→ w, y 7→ w} for a fresh
variable w ∈ VR.

WkWd1: Weakening and Widening 1

{(x, t̃) .
= (s, s̃)} ∪ Γ;ϕ =⇒ {(z, t̃) .

= s̃}ϑ ∪ Γϑ;ϕϑ,

if s /∈ V , x /∈ var(s), there is (r,R) ∈ lf (lsort(x)) with R 6' 1, ω ∈ weak({s 
r}), z ∈ VR is a fresh variable and ϑ = ω ∪ {x 7→ (sω, z)}.

1This approach is similar to the one for ranked terms described in (Meseguer et al.,
1989), where an order-sorted version of the algorithm of Martelli and Montanari (1982) is
presented.
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WkWd2: Weakening and Widening 2

{(x, t̃) .
= (y, s̃)} ∪ Γ;ϕ =⇒ {(z, t̃) .

= s̃}ϑ ∪ Γϑ;ϕϑ,

where (S,R) is a split of lsort(x) such that R 6' 1, w ∈ VR′ is a fresh variable
with R′ = glb({S, lsort(y)}) 6' 1, z is a fresh variable with lsort(z) = R, and
ϑ = {x 7→ (w, z), y 7→ w}.

WkWd3: Weakening and Widening 3

{(x, t̃) .
= (y, s̃)} ∪ Γ;ϕ =⇒ {t̃ .= (z, s̃)}ϑ ∪ Γϑ;ϕϑ,

where (S,R) is a split of lsort(y) such that R 6' 1, w ∈ VR′ is a fresh variable
with R′ = glb({S, lsort(x)}) 6' 1, z is a fresh variable with lsort(z) = R, and
ϑ = {x 7→ w, y 7→ (w, z)}.

Note that R′ 6' 1 in WkWd2 and WkWd3 implies that in those rules S 6' 1.
We denote this set of transformation rules with Urules.

Theorem 8.1 (Soundness of Unification Rules). The rules of Urules are
sound.

Proof. It is straightforward to to check for each rule in Urules that if it per-
forms a transformation Γ, ϕ =⇒ ∆, ϕϑ and ψ is a unifier of ∆, then ϑψ is a
unifier of Γ.

To solve a unification problem Γ, we create the initial pair Γ; ε and first
apply the projection rule to it in all possible ways. From each obtained
problem we select an equation and apply the other rules exhaustively to
that selected equation, developing the search tree in a breadth-first way. If
no rule applies, the problem is transformed to ⊥. The obtained procedure
is denoted by Uproc(Γ). Branches in the search tree form derivations. The
derivations that end with ⊥ are failing derivations. The derivations that end
with ∅;ψ are successful derivations. The set of all ψ’s at the end of successful
derivations of Uproc(Γ) is called the computed substitution set of Uproc(Γ) and
is denoted by comp(Uproc(Γ)). From Theorem 8.1 by induction on the length
of derivations one can prove that every ψ ∈ comp(Uproc(Γ)) is a unifier of Γ.

One can observe that under this control, variables are replaced with ε only
at the projection phase. In particular, no variable introduced in intermediate
stages gets eliminated with ε or replaced by a variable whose sort is 1.

Theorem 8.2 (Completeness of the Unification Procedure). Let Γ be a RE-
OSU problem with a unifier ϑ. Then there exists ϕ ∈ comp(Uproc(Γ)) such
that ϕ ≤var(Γ) ϑ.

Proof. We construct recursively a derivation that computes ϕ and starts
with the pair Γ; ε. To choose a proper extension, we find all x ∈ var(Γ) with
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xϑ = ε and make the projection step with the substitution ϕ1 whose domain
consists of these x’s only. Obviously, ϕ1 ≤var(Γ) ϑ.

Now assume Γn;ϕn belongs to the derivation. Then ϕn ≤var(Γ) ϑ, i.e.,
there exists ψ such that xϕnψ = xϑ for all x ∈ var(Γ). Moreover, it is easy
to see that ψ is a unifier of both Γϕn and Γn and xψ 6= ε for any x. We want
to extend the derivation with Γn+1, ϕn+1 such that ϕn+1 ≤var(Γ) ϑ. Let t̃

.
= s̃

be the selected equation in Γn and represent Γn as {t̃ .= s̃} ∪ Γ′n. Then we
have the following cases:

1. t̃ and s̃ are either both identical to ε, or have the same first element, or
their first elements are distinct nonvariable terms with the same head.
Then Γn+1;ϕn+1 is obtained by the rules T, TP, or D, respectively.
Hence, ϕn+1 = ϕn ≤var(Γ) ϑ.

2. The first element of s̃ is a variable x, while t̃ does not start with a
variable. Then we apply the rule O and get ϕn+1 = ϕn ≤var(Γ) ϑ.

3. The first element of t̃ is a variable x, while s̃ does not start with a
variable. Since ψ is a unifier of Γn and does not map x to ε, we have
either xψ = sψ or xψ = (sψ, s̃′) where s is the first element of s̃ and s̃′ 6=
ε. In the first case, lsort(sψ) � lsort(x), i.e., ψ involves weakening of
lsort(s) to lsort(x). We single out this weakening substitution ω from ψ
and extend the derivation with the rule WkE1 and substitution ω∪{x 7→
sω}. In the second case we have lsort(sψ).lsort(s̃′) � lsort(x). Since
lsort(s) is basic sort, there exists (r,R) ∈ lf (R) such that lsort(sψ) � r
and lsort(s̃′) � R. Hence, ψ involves weakening of of lsort(s) to r.
Therefore, extracting the weakening substitution ω from ψ, we extend
the derivation by WkWd1 and ω ∪{x 7→ (sω, z)}, where z is fresh with
lsort(z) = R. In either case ϕn+1 ≤var(Γ) ϑ.

4. The first element of t̃ is a variable x and the first element of t̃ is another
variable y. There are the following alternatives: xψ = yψ, xψ =
(yψ, s̃′), or yψ = (xψ, t̃′), where s̃′ 6= ε and t̃′ 6= ε. In the first case,
ψ also involves weakening for x and y and we proceed with WkE2
with the corresponding weakening substitution. In the second case
lsort(yψ) � S and lsort(s̃′) � R for a split (S,R) of lsort(x). We choose
such a split and proceed with the rule WkWd2 together with a properly
chosen substitution {x 7→ (w, z), y 7→ w}. The third case is analogous
to the second one. In all the cases we have ϕn+1 ≤var(Γ) ϑ.

The second step is to show that this sequence terminates. We define in-
ductively the size of a term t, sequence of terms t̃, and a substitution ϕ as
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follows: ‖x‖ = 2, ‖f(t̃)‖ = ‖t̃‖+ 2, ‖(t1, . . . , tn)‖ = ‖t1‖+ · · ·+ ‖tn‖+ 1, and
‖ϕ‖ =

∑
x∈dom(ϕ) ‖xϕ‖, where dom(ϕ) is the domain of ϕ. Given Γ and ϑ,

we define the size of Γi;ϕi as the quadruple ‖Γi;ϕi‖ = (k, l,m, n) where

• k is the number of distinct variables in Γi;

• l = ‖ϑ‖ − ‖ϕi|var(Γ)‖, where ϕi|var(Γ) is the restriction of ϕi on the set
of variables on Γ;

• m is the multiset ∪t̃ .=s̃∈Γi
{‖t̃‖, ‖s̃‖};

• n is the number of equations of the form (t, t̃)
.
= (x, s̃), t /∈ V in Γi.

The sizes are compared lexicographically. The ordering is well-founded.
The projection rule is applied only once. The other rules strictly decrease

the size: T, TP, D decrease m and do not increase k and l. O decreases n
without increasing the others. WkE1 and WkE2 decrease k. WkWd1, WkWd2,
and WkWd3 decrease l and do not increase k. Hence, the derivation we have
constructed above terminates.

Note that the set comp(Uproc(Γ)), in general, is not minimal.2 The fol-
lowing example illustrates how the unification procedure Uproc works.

Example 8.3. Let {f(x, y, z)
.
= f(f(x), g(u), a, b)} be a REOSU problem,

where s, r and q basic sorts ordered as s ≺ q, r ≺ q, and

x, z : s∗ y, u : q f : q∗ → r

g : q→ q a, b : s g : s + r→ s.

Note that g is overloaded. We show a successful derivation for this problem.
The first three steps are projection, trivial rule, and decomposition:

{f(x, y, z)
.
= f(f(x), g(u), a, b)}; ε =⇒P

{f(y, z)
.
= f(f(ε), g(u), a, b)}; {x 7→ ε} =⇒D

{(y, z) .
= (f(ε), g(u), a, b), ε

.
= ε}; {x 7→ ε} =⇒T

{(y, z) .
= (f(ε), g(u), a, b)}; {x 7→ ε}

The weakening pair f(ε)  q has ε as a weakening substitution. Hence, we
can make the next step with the WkE1 rule:

{(y, z) .
= (f(ε), g(u), a, b)}; {x 7→ ε} =⇒WkE1

2However, if in the rules WkE1 and WkE2 the substitution ω is selected from a minimal
subset of the corresponding weakening set, one can show that comp(Uproc(Γ)) is almost
minimal. (Almost minimality is defined in (Kutsia, 2007)).

30



{z .
= (g(u), a, b)}; {x 7→ ε, y 7→ f(ε)}

Now, (s, s∗) ∈ lf (lsort(z)). The least sort of g(u) is q 6� s. However, we can
weaken g(u) towards s: The weakening pair g(u)  s has solution {u 7→
v}, where v ∈ Vs+r is a fresh variable. We perform the WkWd1 step by
introducing a fresh variable z1 ∈ Vs∗ :

{z .
= (g(u), a, b)}; {x 7→ ε, y 7→ f(ε)} =⇒WkWd1

{z1
.
= (a, b)}; {x 7→ ε, y 7→ f(ε), u 7→ v, z 7→ (g(v), z1)}

The next step is again WkWd1. To make it, we take a weakening substitution
ε for a s∗, a fresh variable z2 = Vs∗ and proceed:

{z1
.
= (a, b)}; {x 7→ ε, y 7→ f(ε), u 7→ v, z 7→ (g(v), z1)} =⇒WkWd1

{z2
.
= b}; {x 7→ ε, y 7→ f(ε), u 7→ v, z 7→ (g(v), a, z2), z1 7→ (a, z2)}

The last two steps in the derivation are WkE1 and T. WkE1 uses the weak-
ening substitution ε for b s∗:

{z2
.
= b}; {x 7→ ε, y 7→ f(ε), u 7→ v, z 7→ (g(v), a, z2), z1 7→ (a, z2)} =⇒WkE1

{ε .= ε};
{x 7→ ε, y 7→ f(ε), u 7→ v, z 7→ (g(v), a, b), z1 7→ (a, b), z2 7→ b} =⇒T

∅; {x 7→ ε, y 7→ f(ε), u 7→ v, z 7→ (g(v), a, b), z1 7→ (a, b), z2 7→ b}.

Finally, restricting the computed substitution to the variables of the orig-
inal problem {f(x, y, z)

.
= f(f(x), g(u), a, b)}, we obtain its unifier {x 7→

ε, y 7→ f(ε), u 7→ v, z 7→ (g(v), a, b)}.
By restricting sorts or occurrences of variables, various terminating frag-

ments of REOSU can be obtained. Some of such fragments are listed below:

• Sorts of all variables in a REOSU problem Γ are star-free. Then Γ
is finitary. To show this, we first transform Γ into Γ′, replacing each
occurrence of a variable x : R1.R2 in Γ by a sequence of two fresh
variables x1 : R1 and x2 : R2. Then, for each y : R1+R2 in Γ′, we obtain
a new problem Γ′1 by replacing each occurrence of y by a fresh variable
y1 : R1, and another new problem Γ′2 replacing each occurrence of y
by a fresh variable y2 : R1. Applying these transformations on each of
the obtained problems iteratively, we reach a finite set of order-sorted
unification problems, where each variable is of a basic sort. Since the
set of basic sorts is finite, such problems are finitary (Walther, 1988).
Γ is solvable if and only if at least one of the obtained problems is
solvable. The transformation establishes a one-to-one correspondence
between the unifiers of obtained problems and the unifiers of Γ, which
implies that Γ is finitary.
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• Variables whose sort contains the star occur in the last argument posi-
tion. This is a pretty useful terminating (unitary) fragment for which
more optimized algorithm can be designed, based on the ideas of a
similar fragment in sequence unification (Kutsia, 2007).

• One side of each equation in Γ is ground. In this case Γ is finitary.
These are REOS matching problems. For them there is no need to
invoke the weakening algorithm. Because of its practical importance,
we consider the matching fragment in more details.

8.2 Matching Algorithm

A matching equation is a pair of term sequences s̃ � t̃, where t̃ is ground.
A regular expression order sorted matching problem or, shortly, a REOSM
problem is a finite set of matching equations. A substitution ϕ is a matcher
of a REOSM problem {s̃1 � t̃1, . . . , s̃n � t̃n} iff s̃iϕ = t̃i for all 1 ≤ i ≤ n.

REOSM is a special case of REOSU. Unlike REOSU, there is no need to
compute weakening substitutions in REOSM. Solving regular language mem-
bership problem suffices. Rules of the REOSM procedure can be formulated
as follows:

T-M: Trivial

{ε� ε} ] Γ;ϕ =⇒ Γ;ϕ.

D-M: Decomposition

{(f(t̃), t̃′)� (f(s̃), s̃′)} ] Γ;ϕ =⇒ {t̃� s̃, t̃′ � s̃′} ∪ Γ;ϕ,

if lsort(f(s̃)) � lsort(f(t̃)).

E-M: Elimination

{(x, t̃)� (s̃, s̃′)} ] Γ;ϕ =⇒ {t̃ϑ� s̃′} ∪ Γϑ;ϕϑ,

if lsort(s̃) ∈ [[lsort(x)]], lsort(s̃′) ∈ [[lsort(t̃)]] and ϑ = {x 7→ s̃}.

To match a term sequence s̃ to a ground term sequence t̃, we create the
initial system {s̃ � t̃}; ε and apply the rules exhaustively as long as it is
possible. Problems to which no rule applies are transformed into ⊥. The
REOSM algorithm defined in this way is denoted by M.

Derivations are sequences of rule applications. A derivation of the form
Γ; ε =⇒∗ ∅;ϕ is called a successful derivation and ϕ is called a computed
substitution of Γ. We denote the set of substitutions computed by M for Γ
with comp(M(Γ)).
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It is easy to check that the matching rules above are sound. It implies
that every computed substitution of Γ is a matcher of Γ.

The fact that we do not need to use weakening suggests that comp(M(Γ))
is a subset of the complete set of matchers of the unsorted version of Γ.

Example 8.4. Let Γ = {f(x, y) � f(f(a, c), b, c)} with s � r, x : s.(s+1),
y : r∗, f : r∗ → s, a, b : s and c : r. Then comp(M(Γ)) = {ϕ1, ϕ2}, where
ϕ1 = {x 7→ f(a, c), y 7→ (b, c)} and ϕ2 = {x 7→ (f(a, c), b), y 7→ c}.

If we forget the sort information, then there are two more matchers for
Γ: {x 7→ ε, y 7→ (f(a, c), b, c)} and {x 7→ (f(a, c), b, c), y 7→ ε}.

To prove termination, we first define inductively the norm of a sequence
of terms t̃, denoted ‖t̃‖, as follows:

• ‖x‖ = 2,

• ‖f(t̃)‖ = ‖t̃‖+ 2,

• ‖(t1, . . . , tn)‖ = ‖t1‖+ · · ·+ ‖tn‖+ 1.

The norm of a matching equation t̃� s̃ is ‖s̃‖. We associate to each REOSM
problem Γ its measure, which is a pair 〈n,M〉, where n is the number of dis-
tinct variables in Γ and M is the multiset of norms of matching equations in
Γ. Measures are compared lexicographically. This ordering is well-founded.
Each matching rule strictly reduces the measure: T-M and D-M do not in-
crease n and decrease M , E-M decreases n. Hence, we have

Theorem 8.5 (Termination of M). The algorithm M terminates on any
matching problem.

Moreover, for a REOSM problem Γ, the algorithm M is able to compute
any matcher whose domain is var(Γ) and computes any matcher exactly
once:

Theorem 8.6 (Completeness and Minimality of M). comp(M(Γ)) is a mini-
mal complete set of matchers of a REOSM problem Γ. Moreover, no matcher
is computed more than once.

Proof. Let µ be an arbitrary matcher of Γ. We can construct a derivation
in M that computes a matcher that coincides with µ on var(Γ) as follows:
Starting from Γ, we apply to each selected equation T-M or D-M rule when-
ever applicable. If the selected equation is such that E-M rule should apply,
we take xµ in the role of s̃ in this rule. This process terminates, computing
a matcher whose domain is var(Γ) and which coincides to µ on the domain.
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Hence, for each matcher µ of Γ, the set comp(M(Γ)) contains an element
that coincides with µ on var(Γ). It proves completeness.

The claim that no matcher is computed more than once follows from the
fact that from the matching rules, only E-M causes branching in the search
space. If at the branching point a variable x is instantiated in two different
ways, with s̃1 on one branch and with s̃2 on another, that there is no chance
the instantiations of x further on those branches to become the same, because
s̃1 and s̃2 are distinct ground hedges. It implies that no matcher is computed
more than once.

Minimality follows from the fact that given two matchers ϕ1 and ϕ2 of Γ,
neither ϕ1 ≤var(Γ) ϕ2 nor ϕ2 ≤var(Γ) ϕ1 holds, since ϕ1 and ϕ2 are syntactic
matchers, which map each x ∈ var(Γ) to a ground term or ground term
sequence.

Now we show that REOSM is NP-complete. Membership in NP is trivial.
Therefore, we concentrate on NP-hardness. It can be proved by reduction
from positive 1-IN-3-SAT problem (Schaefer, 1978). A positive 1-IN-3-SAT
problem is given by a set of clauses {C1, . . . , Cn} where each clause Ci con-
tains exactly three positive literals pi1∨pi2∨pi3 from a set of literals p1, . . . , pm.
A truth assignment solves the problem if it maps exactly one literal from each
clause to true. To encode this problem as a REOSM problem, we introduce
three basic sorts: true, false, and value, ordering them as true � value and
false � value. We also have the following function symbols:

and : value∗ → value assign : value∗ → value
: value∗.false.value∗ → false : value∗.true.value∗ → true
: true∗ → true : false∗ → false

or : value∗ → value t : true
: value∗.true.value∗ → true f : false
: false∗ → false

For each pi, we introduce a variable xi : value and for each clause Cj, a
pair of variables yj1 : value∗ and yj2 : value∗. Obviously, we obtain a REOS
signature. Then the given positive 1-IN-3-SAT problem is encoded as the
following REOSM problem:

{and(assign(y1
1, or(x11, x12, x13), y1

2), . . . ,

assign(yn1 , or(xn1, xn2, xn3), yn2 ))�
and(assign(or(t, f, f), or(f, t, f), or(f, f, t)), . . . ,

assign(or(t, f, f), or(f, t, f), or(f, f, t)))}
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This encoding is polynomial and preserves solvability in both directions.
It implies that REOSM is NP-hard. Hence, we proved the following theorem:

Theorem 8.7. REOSM is NP-complete.

Now we turn to complexity of the counting problem for REOS matching.
First, we introduce some definitions, following (Hermann and Kolaitis, 1995).

Assume Σ1 and Σ2 are nonempty alphabets and let w : Σ∗1 → P(Σ∗2) be
a function from the set Σ∗1 of words over Σ1 to the power set P (Σ∗2) of Σ∗2. If
x is a word in Σ∗, then w(x) is called the witness set for x. Its elements are
called witnesses for x. Every such witness function w can be identified with
the following counting problem w: Given a word x ∈ Σ∗, find the number of
witnesses for x in the set w(x). Below |x| stands for the length of a word x
and |S| for the cardinality of the set S.

The class #P, according to Kozen (1991), is the class of witness functions
w such that

(#P.1) there is a polynomial-time algorithm to determine, for a given x and
y, whether y ∈ w(x);

(#P.2) there exists a natural number k such that for all y ∈ w(x), |y| ≤ |x|k
(note that k can depend on w).

Counting problems relate to each other via counting reductions. They are
defined as follows: Let w : Σ∗1 → P(Σ∗2) and v : Π∗1 → P(Π∗2) be two counting
problems. A counting reduction from w to v is a pair of polynomial-time
computable functions σ : Σ∗1 → Π∗1 and τ : N → N, such that |w(x)| =
τ(|v(σ(x))|) for all x ∈ Σ∗1.

A counting problem v is #P-hard if for each counting problem w in #P
there is a counting reduction from w to v. If in addition v is a member of
#P, then v is #P-complete (Valiant, 1979a,b).

Now we associate to REOSM the following problem, which we call #RE-
OSM:

Input: A REOS term sequence s̃ and a ground REOS term sequence t̃.

Output: Cardinality of the minimal complete set of matchers of {s̃� t̃}.

The main result about counting complexity of REOS matching is #P-
completeness of #REOSM:

Theorem 8.8. #REOSM is #P-complete.
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Proof. First, we show that #REOSM is in #P and then prove its #P-
hardness.

Membership in #P: We should find a function w which satisfies the con-
ditions (#P.1) and (#P.2) above. This is pretty straightforward: In the role
of w we can take a function which for (a string representation of) any s̃ and
ground t̃ returns the set consisting of string representations of the substi-
tutions from the minimal complete set of matchers {s̃ � t̃}. (Note that
the minimal complete set of REOS matchers of Γ is unique, if we restrict
substitution domain to var(Γ).) Now, for such a w, the condition (#P.1)
is satisfied because for any substitution ϕ we can check in polynomial time
whether s̃ϕ = t̃ holds (and, hence, whether for a string representation y of
ϕ and for a string representation x of s̃ � t̃, the inclusion y ∈ w(x) holds).
The fact that w fulfills the condition (#P.2) follows from the observation
that the size of ϕ does not exceed the size of t̃, since s̃ϕ = t̃.

#P-Hardness: Examining the reduction from positive 1-IN-3-SAT prob-
lem to REOSM above, we can see that it is a counting reduction: To each
solution of the 1-IN-3-SAT problem corresponds exactly one matcher. Hence,
the function τ in the definition of counting reduction is the identity func-
tion. (Such counting reductions are called parsimonious reductions.) Now
#P-hardness follows from the fact that #-positive 1-IN-3-SAT problem is
#P-complete (Creignou and Hermann, 1996).

9 Conclusion

We studied unification in order-sorted theories with regular expression sorts.
A regular expression order-sorted signature can be viewed as a bottom-up
finite unranked tree automaton. We proved that REOSU is infinitary and
decidable. Based on the latter result, we generalized decidability of word
unification with regular constraints to terms, proving decidability of sequence
unification with regular hedge language constraints. We designed a sort
weakening algorithm which helps to construct solutions of a REOSU problem
from the solutions of the unsorted problem of sequence unification. Besides,
we studied REOS matching, developed it solving algorithm, proved that the
problem is NP-complete and the corresponding counting problem is #P-
complete.

There are some interesting research questions we did not consider in this
paper. An instance of such a problem is simplification of arbitrary equa-
tional formulas in the regular expression order-sorted framework. One can
think about generalizing the procedure of Comon and Delor (1994) from
the ranked order-sorted setting to a REOS language, exploring relationships
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between REOS signatures and unranked tree automata. Another interest-
ing direction of future work would be to study REOS unification modulo
equational theories.
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