
Solving, Reasoning, and Programming in
Common Logic

Temur Kutsia1 and Mircea Marin2

1 RISC, Johannes Kepler University Linz, Austria
2 West University of Timisoara, Romania

Abstract. Common Logic (CL) is a recent ISO standard for exchanging
logic-based information between disparate computer systems. Sharing
and reasoning upon knowledge represented in CL require equation solv-
ing over terms of this language. We study computationally well-behaved
fragments of such solving problems and show how they can influence
reasoning in CL and transformations of CL expressions.

1 Introduction

Common Logic (CL) is a framework for a family of logic-based languages. Its syn-
tax and semantics has been published as an ISO/IEC International Standard [1].
The purpose of CL is to facilitate knowledge exchange in a heterogeneous net-
work, between disparate computer systems.

Open networks, like the Web, pose new challenges to knowledge represen-
tation languages: How can formalized information be represented on such open
networks so that it can be identified by interested agents, reasoned upon, and in-
tegrated with related information? In [2], CL is presented from this perspective,
as a result of representational adaptations of traditional first-order logic moti-
vated by developments in knowledge representation and the (Semantic) Web.

These adaptations lead to a pretty liberal framework. In CL, symbols (called
names) do not have fixed arity (variable polyadicity), the language contains
sequence markers that stand for finite term sequences, one and the same sym-
bol can play the syntactic roles of both function symbol and predicate (cross-
categoricity), terms can be applied to other terms, and the language is type-free.
Despite the fact that the syntax looks higher-order, CL admits first-order model
theory. The framework permits a variety of different syntactic forms, called di-
alects. The dialects are expressible in the CL syntax and share the single seman-
tics.

One of the advantages of logic-based knowledge representation frameworks
is that they enable the use of automated reasoning techniques to draw useful
conclusions from the information. However, there are not many reasoning tools
for CL yet. Probably, [3] is the only large-scale attempt to provide a reasoning
support (for KIF [4], a predecessor of CL).

CL is not compact, which is, in general, a serious problem for automated
reasoning, but the clausal fragment of CL does not suffer from it [2]. One of

the reasons why proving support for CL is not well-developed is the difficulty of
unification. Even a simple unification problem that involves sequence markers
may have infinitely many unifiers.

In this paper we approach this problem by giving precise characterizations to
several terminating fragments of CL unification. Such fragments are important
for developing proving and programming methods in languages that conform to
the CL Standard. In fact, resolution and factoring rules can be used for proving
in clausal fragments of CL with finitary unification. The unification fragment
restrictions can be weakened for Horn theories. Moreover, we show how well-
moded Horn clauses can model conditional sequence transformation rules. These
rules can be used, for instance, to formulate and execute queries in CL. The main
computational mechanism for such rule-based programming is matching. We give
complexity results for various CL matching fragments.

2 Preliminaries

We introduce Common Logic and its dialects following [2]. This is a less general
definition that the one in [1], but it is sufficient for our purposes.

Let N be a countable set. Its elements are called names. They play the role
of nonlogical symbols when building CL expressions. Besides N , any Common
Logic dialect includes a countable set X of sequence variables (sequence markers
in the CL terminology), connectives (¬,→,↔,∨,∧) and quantifiers (∃,∀). The
sets N and X are assumed to be disjoint.

In any CL dialect (a language LN based on N), terms t and sequences of
terms and sequence variables (term sequences) s̃ are defined by the grammar
below, where a is a name and X is a sequence variable:

t ::= a | t(s̃) s ::= t | X s̃ ::= s1, . . . , sn n ≥ 0.

The letters a, b, c, f, g, x, y, z, u are used for names, t, l, r for terms, X,Y, Z, U
for sequence variables, s, q for a term or a sequence variable, and s̃ and q̃ for
term sequences. The terms f() and f are not identified. Terms of the form t(s̃)
are called functional terms.

A sentence is either an atom, a Boolean sentence, or a quantified sentence:
sen ::= atom | bool | quant . Each of them is defined by the following productions:

atom ::= t(s̃) | .=(l, r).

bool ::= atom | ¬(sen)

| →(sen1, sen2) | ↔(sen1, sen2)

| ∨(sen1, . . . , senn) | ∧(sen1, . . . , senn).

quant ::= ∃x̃. sen | ∀x̃. sen.

In this definition n ≥ 0 and x̃ is a finite, nonrepeating sequence of names and
sequence variables. In this context, the names that occur in x̃ are called individual
variables. To distinguish, we reserve the letters x, y, z, u for them. The atoms

.
=(l, r) are called equational atoms. We will use the standard infix notation for
sentences. Note that CL sentences may contain unquantified sequence variables.

Example 1. ∃x,X. x(a)(f(x,X)) ∨ f(x,X) is a sentence.

A substitution is a mapping from names to terms and from sequence variables
to term sequences, which is the identity almost everywhere. They are denoted by
lower case Greek letters, reserving ε for the identity substitution. The domain of
a substitution σ is the set dom(σ) = {χ | χ 6= σ(χ)}. We write substitutions as
sets, e.g., σ = {x 7→ f(a,X)(f(), f), X 7→ 〈a, f()(Y)〉}, with {x,X} = dom(σ).
The 〈 and 〉 are used only for readability. The notions of substitution composition
◦, extension to term sequences, and the restriction of σ to a set of names or
sequence variables S, denoted σ|S , are defined in the standard way. σ is more
general than ϑ on a set of names and sequence variables S, written σ ≤·S ϑ, if
there exists η such that (η ◦ σ)|S = ϑ|S .

2.1 Interpretations

An outstanding feature of Common Logic, when compared with First Order
Logic, is complete cross-categoricity: the same name can have occurrences with
different interpretations: as constants, as functions, or as relations. This feature
is motivated by the anarchic character of knowledge available in open networks
such as World Wide Web, where the same name can be used with different
meanings in different contexts.

All features of CL are nicely captured at the semantic level by the notion of
intensional interpretation, which is a tuple I = 〈D, den, fext , rext〉 where

– den : N → D provides intensional meaning to the names of the language,
– fext : D → {f | f : D∗ → D} yields functional extensions to the functional

occurrences of names,
– rext : D → {r | r ⊆ D∗} yields relational extensions to the relational

occurrences of names,

and D∗ is the set of all finite sequences of elements from D, including the empty
sequence. A corresponding variable assignment is a mapping σ : N ∪ X → D∗

with N ⊆ N and σ(a) ∈ D for all a ∈ N.
The denotation dσI (expr) of an expression expr ranging over terms or term

sequences of CL is defined w.r.t. an interpretation I and corresponding variable
assignment σ as follows. Terms are interpreted as elements of D, and terms
sequences are interpreted as elements of D∗:

dσI (a) := den(a) if a ∈ N \N ; dσI (a) = σ(a) if a ∈ N ;
dσI (t(s̃)) := fext(dσI (t))(dσI (s̃));

dσI (X) := σ(X) if X ∈ X ;
dσI (s1, . . . , sn) := dσI (s1), . . . , dσI (sn)

We write |=I,σ atom, and say that the atomic sentence atom is true in inter-
pretation I and assignment σ, if

atom ≡ t(s̃) and dσI (s̃) ∈ rext(dσI (t)), or
atom ≡ s .

= t and dσI (s) = dσI (t).

The relation |=I,σ sen for an arbitrary sentence sen is defined as expected, in
the standard way. Since sentences can contain unquantified sequence variable,
we always interpret them w.r.t. a variable assignment.

The notions of Herbrand universe and interpretation from First Order Logic
can be defined for Common Logic as well. In our setting, the Herbrand universe
consists is the set of all variable-free terms, and the Herbrand base consists of all
variable-free atoms which are not equalities. A Herbrand interpretation in CL is
any interpretation H = 〈H, den, fext , rext〉 with H the set of variable-free terms,
den is the identity function on N , and fext : H → (H∗ → H), fext(t)(s̃) := t(s̃)
for all s̃ ∈ H∗. Thus, like in First Order Logic, the Herbrand interpretations
of CL differ only by the assignment of relational extensions to the relational
occurrences of names.

Note that the interpretation of equational atoms is the same in all Herbrand
interpretations of CL.

2.2 Unification in Common Logic

A Common Logic unification problem (CLU problem) is a sentence ∃x̃ . l1
.
=

r1 ∧ · · ·∧ ln
.
= rn . It is assumed that x̃ contains all sequence variables that occur

in l’s or r’s. A unifier for it is a substitution σ such that (i) dom(σ) does not
contain names and sequence variables that occur in the problem but not in x̃,
and (ii) σ(li) = σ(ri) for each 1 ≤ i ≤ n. Below we write CLU problems in
the form of a set of (unordered) equations {l1 ?= r1, . . . , ln

?= rn}. A problem is
solvable if it has a unifier. A complete set of unifiers of a CLU problem Γ is a set
of substitutions Σ such that (i) every σ ∈ Σ is a unifier of Γ , (ii) For any unifier
ϑ of Γ there exists σ ∈ Σ such that σ ≤·var(Γ) ϑ, where var(Γ) is the set of
individual and sequence variables in Γ . This set is minimal, if for all σ1, σ2 ∈ Σ,
σ1 ≤·var(Γ) σ2 implies σ1 = σ2. A CLU problem Γ is unitary (finitary, infinitary)
if it has a minimal complete set of unifiers (denoted by mcsu(Γ)) of cardinality
1 (finite cardinality, infinite cardinality). For any solvable CLU problem there
exists a minimal complete set of unifiers.

A fragment of CLU is a set of CLU problems defined by some syntactic
restriction. A fragment is unitary if all solvable problems in it are. It is fini-
tary if it contains at least one finitary problem and no infinitary problems. It
is infinitary if it contains at least one infinitary problem. The CLU itself is in-
finitary: {f(a,X) ?= f(X, a)} has an infinite mcsu: {{X 7→ 〈〉}, {X 7→ a}, {X 7→
〈a, a〉}, . . .}. The challenge is to find “computationally interesting” finitary or
unitary fragments.

3 Solving

A state is a pair 〈Γ, ϑ〉 of a CLU problem and a substitution. The CLU procedure
is described by a set of state transformations of the form 〈Γ ∪ {l ?= r}, ϑ〉

〈σ(Γ ∪ Γ ′), σ ◦ ϑ〉. Each of the transformations is characterized by a rule of the
form l ?= r Γ ′ and a substitution σ. The rules are:

Simplification rules:

S1. t ?= t ∅.
S2. t(l, s̃) ?= t(r, q̃) {l ?= r, t(s̃) ?= t(q̃)},

where (l, s̃) 6= (r, q̃).

S3. t(X, s̃) ?= t(X, q̃) {t(s̃) ?= t(q̃)},
where s̃ 6= q̃.

S4. t′(s̃) ?= t′′(q̃) {t′ ?= t′′, f(s̃) ?= f(q̃)},
where t′ 6= t′′.

In all cases σ = ε. Both t′ and t′′ are functional terms. The name f is chosen
arbitrarily.

Projection rule:

P. t(X, s̃) ?= t(q̃) {t(s̃) ?= t(q̃)},
where t(X, s̃) 6= t(q̃).

In this case σ = {X 7→ 〈〉}.

Variable Elimination rules:

VE1. x ?= t ∅.
VE2. x(s̃) ?= t(q̃) {f(s̃) ?= f(q̃)}.

In both cases σ = {x 7→ t}, where x does not occur in t. The name f is chosen
arbitrarily.

VE3. t(X, s̃) ?= t(q, q̃) {t(X ′, s̃) ?= t(q̃)},

where σ = {X 7→ 〈q,X ′〉}, X does not occur in q, and X ′ is fresh.

To solve a problem Γ , we start with 〈Γ, ε〉 and apply these transformations
nondeterministically on the selected equation. At each step, only one equation
is selected. If we get 〈∅, ϑ〉, then we say that the procedure computes ϑ. The set
of all computed substitutions for a problem Γ is denoted by comp(Γ). This set
can be infinite. It can be enumerated by a fair application of the procedure rules
(e.g., during a breadth-first construction of the derivation tree for 〈Γ, ε〉).

Example 2. Let Γ = {x(Y)(X, f) ?= y(f(x), Z)(f,X)} be a unification problem.
Then

comp(Γ) = {{x 7→ y, Y 7→ f(y), Z 7→ 〈〉, X 7→ 〈〉},
{x 7→ y, Y 7→ f(y, Z), X 7→ 〈〉},

{x 7→ y, Y 7→ f(y), Z 7→ 〈〉, X 7→ f},
{x 7→ y, Y 7→ f(y, Z), X 7→ f},
{x 7→ y, Y 7→ f(y), Z 7→ 〈〉, X 7→ 〈f, f〉},
{x 7→ y, Y 7→ f(y, Z), X 7→ 〈f, f〉}, . . .}.

Example 3. comp({x() ?= x(Y)}) = {{Y 7→ 〈〉}}. comp({f(x) ?= g(a)}) =
comp({x(a) ?= f(x)(a)}) = comp({x() ?= x}) = ∅.

The CLU rules given above are adapted from the sequence unification (SU) rules
[5]. SU has more features, such as sequence functions, or fixed arity symbols to-
gether with the variadic ones. But it does not allow a term to be applied to other
terms. For instance, the CL term f(a)(X, g(x, b())) is not a valid expression there.
In principle, we could encode it into the syntax accepted by the SU, introducing
a new variadic application symbol @ and writing @(@(f, a), X,@(g, x,@(b))).
We chose not to do it, because such an encoding destroys the syntactic form of
the fragments we will be dealing with and makes characterization of terminating
cases more cumbersome. Therefore, we write rules directly into the CL syntax.
On the other hand, it is easy to see that the encoding preserves solvability: a
CLU problem is solvable iff its encoded SU version is solvable. Therefore, from
the decidability, soundness and completeness of sequence unification [5–7] we
can get the same results for the CLU procedure:

Theorem 1. CLU is decidable, infinitary, and admits a complete unification
procedure (described above).

On the other hand, as one can see from Example 2, the procedure as we described
it is not minimal: It may compute two unifiers such that one is more general than
the other (maybe even the same unifiers several times). It is possible to get an
(almost) minimal procedure if we require ?= to be ordered, add orientation rules,
and put additional constraints on the application of variable elimination rules,
similar to the ones in [5]. The reason why we have not chosen that approach is
that we wanted to keep the procedure simple, with the minimal number of rules.
It is sufficient for our purposes.

One can notice that the procedure as it is described above does not neces-
sarily terminate for a Γ even if comp(Γ) is finite. For instance, Γ = {f(X, a) ?=
f(a,X, a)} is such an instance, where comp(Γ) = ∅, but the procedure does not
stop. A way out of this situation is to tailor the decision algorithm into the CLU
procedure and apply the transformation rules only to solvable problems. In this
way, the procedure terminates for Γ iff comp(Γ) (and, hence, mcsu(Γ)) is finite.

Decidability of CLU (via decidability of SU) is based on decidability of word
unification with regular constraints (WURC) and, hence, is at least as difficult
as WURC that is PSPACE-complete [8]. The fact that CLU is infinitary restricts
its usability further. A way out is to identify better-behaved fragments of CLU.3

3 Another way is to impose restrictions on the unifiers, obtaining well-behaved vari-
ants. An example of such a variant is the restriction of instantiation lengths for
sequence variables [3]. We do not consider variants in this paper.

We consider only fragments with sequence variables. Otherwise, the problem
becomes unitary.

3.1 Terminating Fragments of CLU

The CLU procedure terminates if it can recognize unsolvable problems and the
set of unifiers it computes is finite. (We do not consider infinite but finitely
representable sets of unifiers here.) Because of the high complexity of the decision
procedure, we consider here finitary fragments whose solvability can be decided
with more light-weight methods. In all of them, the decidability test in the CLU
procedure is replaced by implicit failure that arises when no rule can be applied
to the problem. A fragment is terminating if the CLU procedure (or its relevant
modification) terminates on it.

Linear Fragment (L-CLU) A term (atom, unification problem) is called linear,
if no variable occurs in it more than once.

Example 4. The unification problem {f(X, f(Y,Z)) ?= f(a, b, f(x, c))} is linear,
while {f(f(a,X), f(X, a)) ?= f(x, x)} is not.

Inspecting the CLU rules, it is easy to see that no rule duplicates occurrences
of a variable in linear problems. It indicates that the CLU procedure preserves
linearity. As a side effect, there is no need to perform occurrence checks.

Theorem 2. The L-CLU fragment is terminating.

Proof. We define the size of a term or a sequence variable:

– size(t) = 1 if t is a name or a sequence variable.

– size(t(s1, . . . , sn)) = 1 +
∑n
i=1 size(si) + size(t).

Then, the complexity measure of a CLU problem Γ is defined as a tuple 〈n,M〉,
where n is the number of variables in Γ and M is the multiset of sizes of equations
in Γ . The measures are ordered lexicographically, where the first components are
compared by the standard ordering on the naturals and the second components
are compared by the multiset extension of the standard ordering. Each rule
of the CLU procedure strictly decreases the size of unification problems: For
the rule VE3 this observation is based on the fact that size(t′) > size(f) and
size(t′′) > size(f) (since t′ and t′′ are functional terms). For the other rules it
is straightforward to check this property. Since the measure ordering is well-
founded, we obtain termination of the procedure.

L-CLU is finitary. For the problem {f(X, f(Y, Z)) ?= f(a, b, f(x, c))} above, mcsu
consists of three elements: {X 7→ (a, b), Y 7→ (), Z 7→ (x, c)}, {X 7→ (a, b), Y 7→
x, Z 7→ c}, and {X 7→ (a, b), Y 7→ (x, c), Z 7→ ()}.

KIF Fragment (KIF-CLU) The restriction on sequence variables in this frag-
ment originates from KIF [4]. Sequence variables occupy only the last argument
position in each subterm where they occur. Linearity is not required. With a
slight modification of the rules, we avoid branching in unification derivations,
obtaining a single most general unifier (mgu) for solvable problems. The modi-
fication affects the Projection and VE3 rules:

– The Projection rule is applied only when q̃ is the empty sequence.
– In the VE3 rule, substitute X with the entire 〈q, q̃〉.

The procedure terminates, because the rules strictly reduce the complexity mea-
sure defined in the proof of Theorem 2. This modification basically corresponds
to the algorithm in [9].

Example 5. The CLU problem {f(a,X)(g(x, y,X), Y) ?= f(x, a, Y)(g(a, Z), U)}
is in the KIF-fragment, with an mgu {x 7→ a,X 7→ 〈a, U〉, Z 7→ 〈y, a, U〉, Y 7→
U}.

Inverse KIF (I-KIF-CLU) Here sequence variables occupy only the first argu-
ment position in each subterm where they occur. Changing the order in the
Simplification and Variable Elimination rules for KIF, starting it from the last
argument, we obtain a unification algorithm for I-KIF-CLU.

Unique Postfix Fragment (U-Post-CLU) Given a term r = t(s̃1, X, s̃2), we call
the sequence s̃2 a postfix of X in r. Note that the same variable may have several
postfixes in the same term. For instance, the postfixes of X in f(a,X, b,X, g(X))
are 〈b,X, g(X)〉 and 〈g(X)〉. A CLU problem Γ is called unique-postfix, if each
sequence variable X occurring in Γ has the same postfix in all subterms it occurs.
Therefore, we can speak of the postfix of X in Γ .

Example 6. An example of a U-Post-CLU problem is {f(a,X, f(Y, b), y)(Z) ?=
x(x, g(X, f(Y, b), y)), f(U, a) ?= f(f(Y, b), X, f(Y, b), y)}. On the other hand,
terms like f(a,X, b,X, g(X)) can not occur in U-Post-CLU problems. There
can be no cyclic dependence between sequence variable occurrences in postfixes.

The unification procedure for the U-Post-CLU fragment is obtained from the
CLU procedure by replacing the rule VE3 with two new ones:

VE3’: t(X, s̃) ?= t(q̃, X, s̃) {t() ?= t(q̃)},
where σ = ε.

VE3”: t(X, s̃) ?= t(q, q̃) {t(X ′, s̃) ?= t(q̃)},
where σ = {X 7→ 〈q,X ′〉}, provided that X does not occur in q,

q̃ does not contain X as an element, and X ′ is fresh.

The condition “q̃ does not contain X as an element” means that q̃ does not have
a form . . . , X, VE3’ and VE3” are exhaustive and mutually exclusive for the
equations of the form f(X, s̃) ?= f(q̃). They do not violate soundness of CLU.

The U-Post-CLU procedure does not preserve the unique postfix property:
VE3” transforms {f(X, s̃) ?= f(Y, q̃)} ∪ Γ ′ into σ({f(X ′, s̃) ?= f(q̃)} ∪ Γ ′) with
σ = {X 7→ 〈Y,X ′〉}. Hence, occurrences of Y in Γ ′ now appear in σ(Γ ′) with the
postfix σ(q̃). Besides, there may be new occurrences of Y in σ(Γ ′) (and, maybe,
also deeper in σ(q̃)) with the postfix 〈X ′, s̃〉. However, if we manage to solve
σ({f(X ′, s̃) ?= f(q̃)}) say, with ϑ, then ϑ(σ(Γ ′)) will be again postfix-unique,
because ϑ(σ(q̃)) = ϑ(σ(〈X ′, s̃〉)) = ϑ(〈X ′, s̃〉). This observation suggests the
idea of imposing the following control: After applying VE3”, split the obtained
CLU problem into two: ∆1 = σ({f(X ′, s̃) ?= f(q̃)}) and ∆2 = σ(Γ ′), where ∆1

is again postfix-unique. We solve ∆1 and apply its solution ϑ to ∆2. Then ϑ(∆2)
is U-Post-CLU and we try to solve it.

We show that such a control leads to termination. In fact, we should show
that the sequence of transformations of ∆1 terminates and the measure of ϑ(∆2)
(defined in the sense of Theorem 2) is strictly smaller than the measure of Γ .
If ∆1 is transformed with the VE3” rule, then the result is split again, and
so on. This process can not continue infinitely, because VE3” strictly reduces
the number of arguments of t(q, q̃) (since q̃ does not contain X as an element).
An alternative to VE3” is the projection rule, which reduces the number of vari-
ables. The other rules strictly reduce the measure. Therefore, after finite number
of steps (in the course of transforming ∆1) we stop either with an unsolvable
problem, which immediately leads to termination, or return a solution ϑ of ∆1.
Hence, we arrive at ϑ(∆2), which is postfix-unique and contains fewer variables
compared to Γ , i.e., its measure is strictly smaller than the measure of Γ . It
implies

Theorem 3. The U-Post-CLU fragment is terminating.

The considered control does not affect completeness.
Note that the splitting control is crucial for termination here. Otherwise, we

may transform an (unsolvable) U-Post-CLU problem into its own variant:

{f(X,x) ?= f(a, Y, b), f(X,x) ?= f(Y, b)} VE3”,{X 7→〈a,X′〉}

{f(X ′, x) ?= f(Y, b), f(a,X ′, x) ?= f(Y, b)} VE3”,{Y 7→〈a,Y ′〉}

{f(X ′, x) ?= f(a, Y ′, b), f(X ′, x) ?= f(Y ′, b)}.

With splitting, we first follow transformations of {f(X,x) ?= f(a, Y, b)}, ob-
taining its solution ϑ = {X 7→ 〈a, Y 〉, x 7→ b}. Then we would continue with
ϑ({f(X,x) ?= f(Y, b)}) = {f(a, Y, b) = f(Y, b)}, transforming it with VE3’ into
{f(a) ?= f()}, which gives failure.

Unique Prefix Fragment (U-Pre-CLU) If in the definition of U-Post-CLU we
change s̃2 to s̃1, we obtain the U-Pre-CLU fragment. To prove termination, we
may modify the new rules and the arguments in the proof for the U-Post-CLU
fragment as we did it for the I-KIF fragment.

Unique Variables in One Side (UV-CLU) These problems have the form Γ =
{l1 ?= r1, . . . , lm

?= rm}, where each variable occurring in l1, . . . , lm is unique in
Γ . Simplification and Projection rules preserve this restriction. In the Variable

Elimination rules, σ can not affect the l’s in Γ and, hence, the UV-CLU property
is still preserved. We define complexity measure as a triple 〈n,Ml,Mr〉, where n is
the number of distinct variables in Γ , Ml is the multiset of sizes of the l’s, and Mr

is the multiset of sizes of the r’s. The measures are compared lexicographically.
The rule VE3 does not increase n and either strictly reduces Ml (if t(X, s̃) in the
rule corresponds to an r) or does not increase n and Ml and strictly reduces Mr

(if t(X, s̃) corresponds to an l). It is not hard to see that the other rules strictly
reduce the measure. Hence, UV-CLU is terminating.

Matching Fragment (CLM) In matching equations, one side does not contain
variables (is ground). We write l �? r for a matching equation with r ground.
The CLU rules can be simplified for them: No occurrence check; Projection and
VE3 rules collapse into one rule:

PVE : t(X, s̃)�? t(q̃1, q̃2) {t(s̃)�? t(q̃2)}
with σ = {X 7→ q̃1}.

The rules preserve matching problems.

Theorem 4. The CLM fragment is terminating.

Proof. For CLM problems, each rule strictly reduces the complexity measure
defined in the proof of Theorem 2.

Note that CLM is a special case of UV, because every matching problem {t1 �?

t′1, . . . , tn �? t′n} can be expressed as the UV-problem {t′1
?= t1, . . . , t

′
n

?= tn}.

Relationships between the Terminating Fragments These are illustrated by the
diagram below where the fragments are indicated by the V-like shape (L), four
ellipses (KIF, I-KIF, CLM, and UV), and two circles (U-Post and U-Pre):

U-Post U-Pre

L

KIF I-KIFCLM UV

KIF and I-KIF are unitary, while the others are finitary.

4 Reasoning

Difficulty of CLU suggests basically two ways of extending classical results in
resolution/superposition based theorem proving for the clausal fragment of Com-
mon Logic. One is to keep unification problems in constraints (as discussed, e.g.,
in [10] and described in more details in [11]), using incomplete light-weight meth-
ods to detect their unsatisfiability, and at the end, when only constraints are left,

employ the full-scale decision procedure to check if the proof succeeded or not.
In this way we do not need to impose any syntactical restrictions on the CL
clauses involved in the deduction.

The other approach avoids the expensive decidability test. This is achieved
by restricting clauses to guarantee finitary unification. Also here we can choose
between computing the unifiers and keeping the unification problems in con-
straints (whose decidability is easier than in the general case). In this paper we
stick to the approach of computing unifiers.

Note that, in the theorem proving context, ordering is an important ingre-
dient of calculi, which helps to prune the search space significantly. However,
we do not consider ordering relations here. See, e.g., [12] for an example of an
ordering that takes into account sequence variables.

A clause is a sentence ∀x̃. L1 ∨ · · · ∨Ln, where each L is a literal (an atom or
its negation). Following the standard convention, clauses are written without the
quantifiers, but they are assumed to be there to identify the variables. We recall
the rules for resolution-based theorem proving without equality (see, e.g., [10]).
They remain valid for the clausal fragment of CL without equality we are dealing
with in this section.

Binary resolution:
C ∨A D ∨ ¬B

(C ∨D)σ
.

Factoring:
C ∨A ∨B
(C ∨A)σ

,
C ∨ ¬A ∨ ¬B

(C ∨ ¬A)σ
.

In both rules, A and B are atomic sentences and σ ∈ mcsu({A ?= B}). In the
resolution rule, the given clauses are assumed to be variable disjoint.

We should introduce restrictions on the form of clauses to guarantee that
the mcsu involved in the rules is always finite. The restrictions are based on the
finitary fragments from the previous section. Let each clause satisfy the same
syntactic criterion that defines one of the following fragments: L, KIF, I-KIF,
U-Post, U-Pre. Then the resolution and factoring rules preserve these properties
and the mcsu’s in the rules are finite. Hence, we obtain

Theorem 5. Let S be a set of CL clauses. If each clause in S satisfies the
same syntactic criterion that defines either L, KIF, I-KIF, U-Post, or U-Pre
fragment, then binary resolution and factoring are finitely branching rules and
their combination forms a refutationally complete proving method for S.

We could think of putting these restrictions not on the entire clauses, but on
each literal. That would certainly increase the classes covered but, unfortunately,
even the linear literals make the mcsu infinite: Consider factoring the clause
p(a,X) ∨ p(X, a). However, looking into the problem carefully, one may notice
that, for the binary resolution rule the mcsu is still finite even under this new
restriction.

This new observation leads us to look for a form of clauses for which the
binary resolution rule alone is refutationally complete. As it has been shown
in [10, 13], Horn clauses (clauses with at most one positive literal) have such a

property. These papers also indicate that the order of negative literal selection
does not matter (free selection). It remains valid in our case as well. Summarizing
all the observations, we obtain

Theorem 6. Let S be a set of CL Horn clauses. If each literal in S satisfies
the same syntactic criterion that defines either L, KIF, I-KIF, U-Post, or U-
Pre fragment, then binary resolution (with free selection) is a finitely branching,
refutationally complete proving method for S.

We can relax the conditions of the last theorem, removing all the restrictions
from the negative literals in Horn clauses, but requiring that the positive ones
to be linear:

Theorem 7. Let S be a set of CL Horn clauses. If each positive literal occurring
in the clauses in S is linear, then binary resolution (with free selection) is a
finitely branching, refutationally complete proving method for S.

Proof. The finite branching property follows from the fact that the CLU problem
{A ?= B} in the binary resolution rule satisfies the UV restriction: A is linear
and disjoint from B. Refutational completeness can be proved as in the standard
first-order case [10, Theorem 7.2].

A consequence of this result is the completeness of SLD-resolution for Com-
mon Logic under relatively liberal restrictions. It, like Theorem 6, can be used
for logic programming in CL that itself can be seen as a generalization of logic
programming in HiLog [14].

Finitary unification introduces extra backtracking points in programming.
Hence, from this point of view, CL programs that obey the KIF and I-KIF
restrictions behave exactly like the usual (sequence variable free) logic programs,
because these restrictions lead to unitary unification algorithms.

5 Programming

Theorems 6 and 7 provide a basis for logic programming in Common Logic.
Now, we take advantage of finitary matching in CL and demonstrate how it can
be used in rule-based programming with sequence transformations that we can
model as well-moded CL programs. Such rules can be used, for instance, for a
CL conforming query language.

The logic programs that we consider in this section are constructed from
atoms of the form t(f(s̃), f(q̃)), where f is a name whose occurrence in these
designated positions gets a special treatment: It is used as a kind of “wrapper”
around sequences, to distinguish the “input” arguments s̃ from the “output”
ones q̃. As a syntactic sugar, we write t(f(s̃), f(q̃)) as t :: s̃ =⇒ q̃. We build
clauses just from the atoms of this form. For simplicity, here we consider Horn
clauses only, i.e., we deal with definite programs. Queries are negative Horn
clauses. Following the usual conventions, we write clauses as A ← B1, . . . , Bn
and queries as ← B1, . . . , Bn.

The standard definition of well-modedness [15] is adapted to our queries and
clauses:

– A query t1 :: s̃1 =⇒ q̃1, . . . , tn :: s̃n =⇒ q̃n is well-moded, if var(ti, s̃i) ⊆
∪i−1j=1var(q̃j) for all 1 ≤ i ≤ n.

– A clause t0 :: q̃0 =⇒ s̃n+1 ← t1 :: s̃1 =⇒ q̃1, . . . , tn :: s̃n =⇒ q̃n is well-moded
if var(ti, s̃i) ⊆ ∪i−1j=0var(t0, q̃j) for all 1 ≤ i ≤ n+ 1.

The operational semantics is given by the following two inference rules, res-
olution and identity factoring: (The name id used in them is interpreted as the
identity.4)

Resolution:
← t :: s̃ =⇒ q̃, Q

← (Body , id :: s̃′ =⇒ q̃, Q)σ
,

if t′ :: q̃′ =⇒ s̃′ ← Body is a fresh variant of some program clause, t and s̃ are
ground, and σ is a matcher of the CLM problem {t′ �? t, f(q̃′)�? f(s̃)}.

Identity factoring:
← id :: s̃ =⇒ q̃, Q

← Qσ
,

where q̃ is ground and σ is a matcher of {f(s̃)�? f(q̃)}.
Since CLM is finitary, both rules introduce branching points by selecting σ

nondeterministically. As a decision problem, CLM is NP-complete. Membership
in NP is easy. Therefore, we prove here NP-hardness. It can be shown by reduc-
tion from the NP-hard positive 1-IN-3-SAT [16], which is the usual method for
similar problems (see, e.g., [7,17]). A positive 1-IN-3-SAT problem is given by a
set of clauses {C1, . . . , Cn} where each clause Ci contains exactly three positive
literals p1i ∨ p2i ∨ p3i from a set of literals p1, . . . , pm. A truth assignment solves
the problem if it maps exactly one literal from each clause to true. For each pi,
we introduce a sequence variable Xi. We choose two function symbols c and t to
represent, respectively, clause and truth. The given positive 1-IN-3-SAT problem
is encoded as the following CLM problem:

{c(X1
1 , X

2
1 , X

3
1)�? c(t), . . . , c(X1

n, X
2
n, X

3
n)�? c(t)}

This encoding is polynomial and preserves solvability in both directions: pji is

true iff Xj
i is instantiated with t and pji is false iff Xj

i is instantiated with the
empty sequence. Hence, the matching problem is solvable iff the corresponding
1-IN-3-SAT problem is solvable. It implies that CLM is NP-hard. Hence, we
proved the theorem:

Theorem 8. CLM is NP-complete.

The encoding shows that, in fact, individual variables are not needed to
show NP-completeness of CLM. We can make the result stronger, showing that

4 More precisely, the relational extension of the denotation of id contains all pairs of
the same elements over the domain of discourse.

CLM is NP-complete even if no sequence variable occurs in it more than twice.
For this, we use the encoding of positive 1-IN-3-SAT into two kinds of CLM
equations. The first one is almost the same as above, the only difference is
that each occurrence of the literal pi is encoded with a fresh sequence variable.
The second kind of equations has the form f(Y 1

i , f(g(X1
i), . . . , g(Xni

i)), Y 2
i)�?

f(f(g(t), . . . , g(t)), f(g(), . . . , g())), in which ni is the number of occurrences of
the literal pi in the given positive 1-IN-3-SAT problem, Xj

i is the variable that
encodes the j’th occurrence of the literal pi in the first kind of equation, and
g(t)’s and g()’s occur ni times in the right hand side. It guarantees that all the
variables X1

i , . . . , X
ni
i are instantiated at the same time either with t or with

the empty sequence. This corresponds to the fact that all occurrences of pi in
the 1-IN-3-SAT problem are either true or false at the same time. We will have
at most m such equations, since there are m literals in the given 1-IN-3-SAT
problem: {p1, . . . , pm}. An equation is written only for those p’s which occur
more than once in the given problem. Its size linearly depends on the number
of occurrences of the corresponding literal in the 1-IN-3-SAT problem. Hence,
the encoding is polynomial and each sequence variable occurs in this encoding
at most twice: Once in the first kind and at most once in the second kind of
equation. It shows that the following theorem holds:

Theorem 9. CLM with at most two occurrences of sequence variables and with
no occurrences of individual variables is NP-complete.

Moreover, we can show that the time complexity of linear CLM is O(n3). Let
t �? s be a linear CLM problem. Let F be the set of names in s. Let t′ be
the term obtained from t by replacing all occurrences of individual variables
with a symbol X, and all occurrences of sequence variables with a symbol Y .
We construct the CFG G = (N,S, P) with nonterminals N = {S,X}, start
nonterminal S, and set of productions

P = {S → t′} ∪ {X → X(Y)} ∪ {X → f | f ∈ F}∪
{Y → ε} ∪ {Y → X,Y }.

Note that the nonterminal X is intended to generate bindings for individual
variables, and the nonterminal Y is intended to generate bindings for sequence
variables. Since t is a linear term, we have t �? s if and only if s ∈ L(G).
Obviously, the size of this CFG language membership problem is O(n), where n
is the size of the corresponding matching problem. Since recognition and parsing
of context-free languages can be achieved in O(n3) time (see [18]), we proved
the theorem:

Theorem 10. The time complexity of linear CLM is in O(n3).

Finally, we note that, KIF and I-KIF fragments of CLM are in P and conjecture
that the unique prefix and postfix ones are also such. As a counting problem
(computing the cardinality of the minimal complete set of matchers, see [19]),
#CLM is #P-complete.

Example 7. We can program first-order term rewriting in the rule-based style
just described:

rw(z) :: x =⇒ y ← z :: x =⇒ y.

rw(z) :: u(X , x ,Y) =⇒ u(X, y, Y)← rw(z) :: x =⇒ y .

Assuming that we have a rule r :: f(x, y) =⇒ x in the program, we can compute
values for the variable x in the goal rw(r) :: f (f (a, b), f (b, c)) =⇒ x . These are
f(a, b), f(a, f(b, c)), and f(f(a, b), b). This example illustrates how one can select
a subterm at arbitrary depth.

With sequence variables, one can compactly formulate quite complex, even in-
complete queries. Terms in the functional position can encode strategies and
their combinations as they appear in rule-based calculi such as ρ-calculus [20]
and ρLog [21]. The expressive power can be further increased by introducing the
concept of negation as failure. It will allow, for instance, to encode the strategy
for computing normal forms.

6 Discussion

Common Logic has evolved from first-order logic. Its evolution has been moti-
vated by the recent developments in the use of the Web for representing, sharing,
and reasoning upon knowledge. A tool that adopts CL for these tasks will en-
counter some kind of equation solving problem over CL expressions. Variable
polyadicity, cross-categoricity, and especially the use of sequence variables make
CL equation solving quite a difficult task. To make it practically useful, one has
to identify fragments of CL expressions that admit “easy” solving methods. To
the best of our knowledge, this problem has not been addressed systematically
from this perspective.

In this paper, we aimed at filling this gap, studying computationally well-
behaved fragments of CL equation solving. These fragments, in fact, cover im-
portant practical cases.

CLM is a very important one, because it can form the basis of (rewrite or
transformation) rule-based programming for CL. It can be used for important
operations over CL expressions such as transformation, extraction, and query-
ing. Unrestricted CL matching is NP-complete, but we know many examples of
successful use of NP-complete matching algorithms in computation. Some such
instances are associative-commutative matching which is used, for instance, in
Maude [22], associative matching used in Tom [23], and sequence matching used
in Mathematica [24]. Moreover, if we combine CLM with the other restrictions
(e.g., linearity or KIF) we obtain polynomial fragments with a great potential
for rule-based querying and transforming expressions written in CL syntax.

The practical value of the UV fragment can be illustrated on the basis of
Theorem 7, in the context of Horn clause programming. It basically says that
one does not have to bother about any syntactic restrictions in the bodies of
such clauses, provided that the clause heads are linear.

The other fragments play an important role in representing knowledge in
CL and, subsequently, reasoning over it. We have analyzed the form of CL ex-
pressions with sequence variables in the SUMO and its domain ontologies.5 The
analysis revealed the fact that the fragments considered in our paper are, actu-
ally, the most typical ones: 97.6% of the formulas with sequence variables fall
in one of those categories. Sequence variables occur in SUMO, geography, and
distributed computing ontologies 85 times (without counting occurrences in the
quantifier prefix) in 42 formulas. Out of them, 1 formula (with 2 occurrences of
sequence variables) has a shape that would lead to U-Post-CLU or U-Pre-CLU
problem, 4 formulas (6 occurrences) classify for I-KIF, and 36 formulas (75 oc-
currences) for KIF. Such a dominance of the KIF fragment is not surprising,
because these ontologies originally have been based on KIF (a predecessor of
CL). Only recently they have been translated to CL.6

We think that our work can be useful for ontology developers in CL. Ontology
development in CL is still in its early stage. Based on the fragments discussed
here, ontology developers can employ sequence variables more freely (using more
well-behaved fragments instead of concentrating only on KIF) and still have
ontologies amenable to reasoning tools.

Our work can be useful for the authors of reasoning tools as well. The tech-
nique of sequence variable expansion [25] (in the original terminology, row vari-
able expansion) used for dealing with sequence variables is incomplete. It adds
new formulas and changes semantics. From each formula with n sequence vari-
ables, mn new formulas are generated, where m is a predefined number. The
new formulas are obtained by replacing each sequence variable by 0, 1, . . . ,m−1
fresh individual variables. Our results can make this technique obsolete in the
vast majority of practical cases, as the above mentioned analysis of ontologies
showed. The reasoners that incorporate algorithms for terminating fragments of
CLU will need to perform the expansion very rarely and will not loose complete-
ness for this reason. It will make them more valuable for ontology consistency
checking: If reasoning using the row variable expansion technique does not re-
veal inconsistency, one can not say whether it really is consistent or not because
of incompleteness of the technique. The more ontologies written in CL appear,
the more will be the demand for corresponding reasoners, and algorithms for
terminating solving fragments will be useful there.

Acknowledgment

This work has been partially supported by the Austrian Science Fund (FWF) un-
der the project P 24087-N18, and by the EC FP7-ICT Project SPRERS 246839.

5 http://www.ontologyportal.org/
6 http://www.kojeware.com/sumo-cl.clif

References

1. Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In Robinson
and Voronkov [26], pages 19–99.

2. Emilie Balland, Paul Brauner, Radu Kopetz, Pierre-Etienne Moreau, and Antoine
Reilles. Tom: Piggybacking rewriting on Java. In Franz Baader, editor, RTA,
volume 4533 of LNCS, pages 36–47. Springer, 2007.

3. Weidong Chen, Michael Kifer, and David Scott Warren. HiLog: a foundation for
higher-order logic programming. JLP, 15(3):187–230, 1993.

4. Horatiu Cirstea and Claude Kirchner. The rewriting calculus - parts I and II. Logic
Journal of the IGPL, 9(3), 2001.

5. Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso Mart́ı-Oliet,
José Meseguer, and Jose F. Quesada. Maude: specification and programming in
rewriting logic. TCS, 285(2):187–243, 2002.

6. Piotr Dembinski and Jan Maluszynski. And-parallelism with intelligent backtrack-
ing for annotated logic programs. In SLP, pages 29–38, 1985.

7. Michael R. Genesereth and Richard E. Fikes. Knowledge Interchange Format. Ver-
sion 3.0. Reference Manual. Technical Report KSL-92-86, Comp. Sci. Department,
Stanford University, June 1992.

8. Miki Hermann and Phokion G. Kolaitis. The complexity of counting problems in
equational matching. JSC, 20(3):343–362, 1995.

9. Ian Horrocks and Andrei Voronkov. Reasoning support for expressive ontology
languages using a theorem prover. In Jürgen Dix and Stephen J. Hegner, editors,
FoIKS, volume 3861 of LNCS, pages 201–218. Springer, 2006.

10. ISO/IEC. Information technology—Common Logic (CL): A framework for a
family of logic-based languages. International Standard ISO/IEC 24707, 2007.
Available online at http://standards.iso.org/ittf/PubliclyAvailableStandards/-
c039175 ISO IEC 24707 2007(E).zip.

11. Temur Kutsia. Theorem proving with sequence variables and flexible arity symbols.
In Matthias Baaz and Andrei Voronkov, editors, LPAR, volume 2514 of LNCS,
pages 278–291. Springer, 2002.

12. Temur Kutsia. Unification with sequence variables and flexible arity symbols and
its extension with pattern-terms. In Jacques Calmet, Belaid Benhamou, Olga
Caprotti, Laurent Henocque, and Volker Sorge, editors, AISC, volume 2385 of
LNCS, pages 290–304. Springer, 2002.

13. Temur Kutsia. Equational prover of Theorema. In Robert Nieuwenhuis, editor,
RTA, volume 2706 of LNCS, pages 367–379. Springer, 2003.

14. Temur Kutsia. Solving equations with sequence variables and sequence functions.
JSC, 42(3):352–388, 2007.

15. Temur Kutsia, Jordi Levy, and Mateu Villaret. On the relation between context
and sequence unification. JSC, 45(1):74–95, 2010.

16. Christopher Lynch. Oriented equational logic programming is complete. JSC,
23(1):23–45, 1997.

17. Mircea Marin and Temur Kutsia. Foundations of the rule-based system ρLog.
J. Applied Non-Classical Logics, 16(1-2):151–168, 2006.

18. Christopher Menzel. Knowledge representation, the World Wide Web, and the
evolution of logic. Synthese, 182(2):269–295, 2011.

19. Robert Nieuwenhuis and Albert Rubio. Paramodulation-based theorem proving.
In Robinson and Voronkov [26], pages 371–443.

20. Adam Pease and Christoph Benzmüller. Sigma: An integrated development envi-
ronment for formal ontology. AI Commun. (Special Issue on Intelligent Engineering
Techniques for Knowledge Bases), 2012. In print.

21. Wojciech Plandowski. Satisfiability of word equations with constants is in
PSPACE. J. ACM, 51(3):483–496, 2004.

22. John Alan Robinson and Andrei Voronkov, editors. Handbook of Automated Rea-
soning (in 2 volumes). Elsevier and MIT Press, 2001.

23. Thomas J. Schaefer. The complexity of satisfiability problems. In Richard J.
Lipton, Walter A. Burkhard, Walter J. Savitch, Emily P. Friedman, and Alfred V.
Aho, editors, STOC, pages 216–226. ACM, 1978.

24. M. Schmidt-Schauß and J. Stuber. The complexity of linear and stratified context
matching problems. Theory of Computing Syst., 37(6):717–740, 2004.

25. Stephen Wolfram. The Mathematica Book. Wolfram Media, 5th edition, 2003.
26. D. H. Younger. Recognition and parsing of context-free languages in time n3.

Information and Control, 10(2):189–208, 1967.

