Lab 2: Composite datatypes: pairs, lists, and vectors.

Local definitions

Mircea Marin
mircea.marin@e-uvt.ro

March 1, 2021

mailto:mircea.marin@e-uvt.ro

Expressions

@ All functional programming languages, including Racket,
compute by evaluating expressions

@ There are four kinds of expressions:

values: they evaluate to themselves.
variables: they are names given to values. The evaluation
of a variable yields its value.
function calls: they are evaluated strictly:
o first, all the argument of the function call are reduced to
values, from left to right
@ next, the body of the called function is evaluated, with the
function arguments instantiated with the values passed to
the function call.
special forms, like

(1f test ey eo)
(define var expr)

Every special form has its own rule(s) of evaluation.

M. Marin ALFP

Values
Remember that ...

@ Values are atomic (e.g., numbers, strings, booleans,
symbols) or composite

@ A composite value is a value produced by putting together
other kinds of values.

@ A datatype whose elements are composite is a composite
datatype

@ The composite datatypes of Racket include: pairs, lists,
vectors, hash tables, etc.

M. Marin ALFP

Composite datatypes

Every composite datatype has:

@ recognizers = boolean functions that recognize values of
that type.

@ constructors = functions that build a composite value from
component values

@ selectors = functions that extract component values from a
composite vulue

@ utility functions = useful functions that operate on//with
composite values

@ A specific internal representation that affects the efficiency
of the operations on them

M. Marin ALFP

Pairs

@ The simplest container of two values
@ constructor: (cons vy Vo)
e internal representation: a cons-cell that stores pointers to
the internal representations of v; and v»

L[]
@ (cons? p):returns #t if the value of pis a pair, and #f
otherwise.
e selectors

@ (car p): returns the first component of pair p
@ (cdr p): returns the second component of pair p

Diagrammatically, these operations behave as follows:

Vi) cons car Vi
}4>’ (cons Vi Vo) ti

lpair? cdr
#t

M. Marin

Operations on pairs
Examples

p (cons

> (define
> p

(1 "am")
> (pair? p)
#t

> (car p)

1

> (cdr p)

"a"

REINES

We can nest pairs to any depth to store many values in a single

1 "a"))

structure:

> (cons (cons (1 "a)
(1. a) "abc")

> (con (cons "a 1) (cons
"((a l) b #t "c")

"abc"))

"b

define g (cons 'a ’'b))

(cons #t "c")))

M. Marin ALFP

The printed form of pairs

RACKET applies repeatedly two rules to reduce the number of
quote characters(’) and parentheses in the printed forms:
rule 1: (cons vy vo) is replaced by
(W . W)
where wy, w, are the printed forms of vq, v» from
which we remove the preceding quote, if any.
There is space before and after the dot
character in the printed form.

rule 2: Whenever there is a dot character before a
parenthesised expression, remove the dot
character and the open/close parentheses.

M. Marin ALFP

Printed form of pairs
Example

> (cons (cons "a 1) (cons ’'b (cons #t (cons "c" ’'d))))
"((a . 1) b #t "c" . d)
The printed form is obtained as follows:

@ Apply rule 1 ro reduce the number of quote characters =
theform’ ((a . 1) . (b . (#t . ("c" . d))))

@ Apply repeatedly rule 2 to eliminate dots and open/close

parentheses:
"((a . 1) . (b . (#t . ("c" . d))))—="((a . 1) b . (#t . ("c" . d)))
"((a . 1) b . (#t . ("c" . d)))—=>"((a . 1) . (#t "c" . d))
"((a . 1) . (#t "c" . d))—="((a . 1) b #t "c" . d)

The final form is the printed form:

"((a . 1) b #t "c" . d)

M. Marin ALFP

Pairs

Printed forms

We can input directly the printed forms, which are usually much
shorter to write than combinations of nested cons-es:

Example

Instead of (cons (cons ’v11 ’v12) (cons ’'v21 ’v22))
we cantype ’ ((vll . vl12) v21 . v22):

> (define p ’ ((v1ll . v12) v21 . v22))

> Pp

" ((v1ll . v12) v21 . v22))

> (car p) > (cdr p)

"(v1il . vl12) r(v21 . v22)

> (car (car p)) > (cdr (car p))
"v11 "v12

> (car (cdr p)) > (cdr (cdr p))
"v21 "'v22

M. Marin ALFP

Selectors for nested pairs

The selection of an element deep in a nested pair is
cumbersome:

> (define p "(a ((x . y) . c) d))

To select the second of the first of the first of the second
component of p, we must type

> (cdr (car (car (cdr p))))
"y

We can use the shorthand selector cdaadr:

> (cdaadr p)
"y

Other shorthand selectors: cxy ... x,r where xq,..., X, € {a,d}
and 1 < p < 4 (max. 4 nestings)

M. Marin ALFP

Lists
Constructors and internal representation

A recursive datatype with two constructors:
@ null: the empty list

@ (cons v /): the list produced by placing the value v in
front of list /.

If n > 1, the list of values vy, Vo, ..., vy is
(cons V4 (cons Vo ... (cons Vp null)...))

with the internal representation

REMARK: The internal representation of a list with n values
V1,..., Vp consists of n cons-cells linked by pointers.

M. Marin ALFP

Printed form of lists

> null
" () ; the printed form of the empty list

All non-empty lists are pairs, and their printed form is computed
like for pairs.

Example
> (cons ’"a
(cons b
(cons 'c (cons (cons ’'d null)
null))))
"(a b c (d))

This printed form is obtained by applying repeatedly rule 2 to
theform’ (a. (b . (¢ . ((d . O) . 0O))))

M. Marin ALFP

Lists
Other constructors and selectors

A simpler constructor for the list of values vy, vo, ..., V!
> (list V4 Vo ... Vp)
Selectors:

@ (car Ist) selects the first element of the non-empty list /st

@ (cdr Ist) selects the tail of the non-empty list /st

@ (list-ref Ist k) selects the element at position k of Ist
NOTE: The elements are indexed starting from position 0.

> (list ’a #t "bc" 'd) > null

"(a #t "bc" ’d) " ()

> (list " () "a ' (b c)) > (list-ref " (1 2 3) 0)
() a (b c)) 1

> (list-ref 7 (1 (2) 3) 1)
" (2)

<

M. Marin ALFP

List recognizers

@ (list? Ist) recognizes if Istis a list.
@ (null? Ist) recognizes if Ist is the empty list.

Example

> (define 1lst ' (a b c d))
> (list? 1st)

#t

> (car 1lst)

"a

> (cdr 1lst)

"(b c d)

> (list-ref 1lst 0)
"a

> (list-ref 1lst 1)
"b

v

M. Marin ALFP

List operations

Diagrammatic representation of their behavior

(list)
A2]
null? list?

#t #t

Vo)

. list - ‘ (list-ref _ 1)

: —>{ (list Vo ... Vp) [%
Vn null?/ \list?

#f #t

M. Marin

Utility functions on lists

(length Ist) returns the length (=number of elements) of /st

> (length " (1 2 (3 4))) > (length " ())
3 0

(append Isty ... Ist,) returns the list produced by joining lists
Isty, ..., Ist,, one after another.

> (append "(1 2 3) "(a b c))
(1 2 3 a b c)

(reverse Ist) returns the list /st with the elements in reverse
order:

> (reverse ' (1 2 3))
(3 2 1)

M. Marin ALFP

Operations on lists (1)

apply and filter

@ If £ is a function and 1st is a list with component values
v1,...,vy in this order, then
(apply £ 1st)
returns the value of the function call (£ v, ... v,).
@ If pis a boolean function and 1st is a list, then
(filter p 1st)
returns the sublist of 1st with elements v for which (p v)

is true.
Examples
> (apply + ' (4 5 6)) ; compute 4+5+6
15
> (filter symbol? ' (1 2 a #t "abc" (3 4) b))
"(a b)
> (filter number? ' (1 2 a #t "abc" (3 4) b))
(1 2)

v

M. Marin ALFP

Operations on lists (2)

map

If £is afunction and 1st is a list with component values
vi,..., vy in this order, then

(map f 1st)

returns the list of values wj, ..., w, where every w; is the value
of (f V)

> (map (lambda (x) (+ x 1)) "(1 2 3 4))
(2 3 4°5)

> (map list? "(1 2 () (3 4) (a . b)))
"(#f #f #t #t #£)

M. Marin ALFP

A composite datatype of a fixed number of values.
Constructors:

@ (vector Vg V3 ... Vp_1)
constructs a vector with n component values, indexed from
0to n— 1, and internal representation

0 n—1

Ly L Iy
@ (make-vector n v)

returns a new vector with n elements, all equal to v.

Recognizer: vector?
Selectors: (vector-ref vec i)
returns the component value with index i of the vector vec.

M. Marin ALFP

Operations on vectors

(vector-ref _ 7)

\

Vo
. vector
: —{ (vector vy ... vUp) | i
Un lvector?
#t
> (define vec (vector "a" ’ (1 2) ' (a b)))
> (vector? vec)
#t
> (vector-ref vec 1)
(1 2)
> (vector-ref vec 2)
"(a b)
> (vector-length vec) ; compute the length of vec
3

M. Marin ALFP

Printed form of vectors

The printed form of a vector with component values
Vo, Vi, ..., Vpis

TH(Wy Wy ... Wp)

where w; is the printed form of v; from which we remove the
preceding quote character, if any.

Examples
> (vector 'a #t ' (a . Db) (1 2 3))
"#(a #t (a . b) (1 2 3))
> (vector 'a (vector 1 2) (vector) "abc")
"#(a #(1 2) #() "abc")
(
(

make-vector 3 7 (1 2))

>
"#((12) (1 2) (1 2))

#

The printed forms of vectors are also valid input forms:

> T#(1 2 3) > (vector? "#(1 2 3))
T#(1 2 3) #t

M. Marin ALFP

The void datatype

Consists of only one value, " #<void>:
@ The recognizeris void?

@ Attempts to input ’ #<void> directly will raise a syntax
error:

> #<void>
read: bad syntax ‘#<’

@ We can obtain ’ #<void> indirectly, as the value of the
function call (void):
> (list 1 (void) ’a)
" (1 #<void> a)
> (void? (void))
#t
@ Usually, ’ #void is not printed

> (void) ; nothing is printed

M. Marin ALFP

Equality in RACKET: eg?, eqv? and equal?

There are many notions of object equality. The weakest notion
is structural equality: the objects are not the same (in computer
memory), but one can be replaced by the other in an
expression, without causing any difference. The strongest
notion of equality is identity: two objects are identical if they
refer to the same object in computer memory. Racket has
several predicates to test equality:

@ (eqg? e e») yields #t if ey and e, evaluate to identical
values, and # £ otherwise.
> (eg? 1 1) > (eg? 2 (+ 1 1)) > (eg? 1 1.0)
#t #t #f

@ eqgv? is like eg? but does the right thing when comparing
numbers. eqv? returns #t iff its arguments are eg? orif its
arguments are numbers that have the same value. eqv?
does not convert integers to floats when comparing
integers and floats though.

M. Marin ALFP

Equality in RACKET: eg?, eqv? and equal?

equal? is especially useful when comparing compound values, such
as lists.

@ In general, equal? returns true if its arguments have the same
structure. Formally, we can define equal? recursively. 'item
equal? returns #t if its arguments are eqv?, or if its arguments
are lists whose corresponding elements are equal?; and
otherwise false.

@ Two objects that are eq are both egqv? and equal 2. Two objects
that are eqv? are equal 2, but not necessarily eq?.

@ Two objects that are equal? are not necessarily eqv? or eqg>.

M. Marin ALFP

Equality predicates

Examples

> (eg? "abc" "abc")

#t

> (eqg? "abc" (symbol->string ’"abc))

#£

> (eqg? "abc" (keyword->string ’#:abc))

#£

> (eg? 10 10)

#t ; (generally, but implementation-dependent)
> (eg? (/ 1.0 3.0) (/ 1.0 3.0))

#f ; (generally, but implementation-dependent)
> (eqv? 10 10)

#t

> (eqv? 10.0 10.0)

#t

> (eqv? 10.0 10) ; no conversion between types

#£

> (equal? 0 0.0) > (=0 0.0)
#f #t

> (equal? "abc" (symbol->string ’abc))

#t

> (equal? "abc" (keyword->string ’#:abc))

#t

M. Marin ALFP

Definitions in RACKET

Remember that:

@ (define name expr)
is a special form which assigns name name to the value of expr.

@ (lambda (Xy ... Xp) body)
is a special form with the intended reading “the function which,
for input arguments xi, ..., x,, computes the value of body.”

When evaluated, it creates a function value.

Racket also has special forms 1et and 1et* to define local variables:

(let ([vary expri] (letx ([vary expri]

[var, expral) [var, expral)
expr) expr)

M. Marin ALFP

(let ([vary expri]

[var, exprpl)
block)

is evaluated as follows:

@ expry, ..., expr, are evaluated to values vy, ..., v,.
@ The definitions var; = vy, ..., var, = v, are made local to
block.

© block is evaluated, and its value is returned as final result.

This special form is equivalent to

((lambda (vary ... varp) body) expry ... expry)

M. Marin ALFP

The 1let form

Examples

> (let ([x 51)

(let ([x 2] ; binds x to 2
Iy x1) ; binds y to the value of the outer x, which is 5
(+ x y))) ; computes the value of 2+5
7
> (let ([x 5B])
(let ([x 2] ; binds x to 2
Iy x1) ; binds y to the value of the outer x, which is 5
(define x 1) ; this binding shadows the outer binding of x to 2
+ x¥y))) ; computes the value of 1+5
6 O

M. Marin ALFP

(letx ([var expr]

[var, expr,]l)
block)

@ Similar with the 1et form, but with the following difference:
e The scope of every local definition
[var; expri]
iS expriii, ..., expr, and block.

This special form is equivalent to

(... (lambda (var)

(lambda (var,) body) exprn) ... expr)

M. Marin ALFP

The let « form
Example

> (letx ([x 1] ; binds x to 1
[y (+ x 1)1) ; binds ytothevalueof (+ x 1),whichis?2
(+ v x)) ; computes the value of 2+1
3

Note that the following expression can not be evaluated

> (let ([x 1] ; binds x to 1
[y (+ x 1)1) ;x isundefined here
(+ y x))

x: unbound identifier in module in: x

M. Marin ALFP

References

Sections

@ 3.8: Pairs and Lists

@ 3.9: Vectors

@ 3.12: Void and Undefined
from the Racket Guide

M. Marin ALFP

