Labworks 10

April 26, 2021

1 Review questions

1. Consider the following program
```
father(john,bill).
mother(ann,bill).
parent(X,Y):-father(X,Y).
parent(X,Y):-mother(X,Y).
```

(a) How many facts and how many rules are in this program?
(b) Indicate the function symbols, the predicate symbols, and the variables used in this program.
(c) What predicates are defined in this program?
2. Use the Martelli-Montanari algorithm to compute a most general unifier of the terms
(a) $f(X, Y, Z)$ and $f(a, Z, h(a))$
(b) $f(g(X), g(c), Y)$ and $f(g(g(Y)), X, a)$
(c) $f(\mathrm{~h}(\mathrm{~b}), \mathrm{X}, \mathrm{X}, \mathrm{Y})$ and $\mathrm{f}(\mathrm{h}(\mathrm{b}), \mathrm{g}(\mathrm{Y}), \mathrm{g}(\mathrm{g}(\mathrm{Z})), \mathrm{g}(\mathrm{a}))$
3. Consider the problem of arranging three 1 's, three 2 's, \ldots, three 9 's in sequence so that for all $1 \leq i \leq 9$ there are exactly i numbers between successive occurrences of i. Use Prolog to define the relation niceList(L) for lists which have this property.
Suggestion. Note that L is such a nice list if it has 27 elements and the following property: for all $1 \leq i \leq i, \mathrm{~L}$ contains a sublist of the form

$$
[i, \underbrace{,, \ldots,-}_{i \text { times }}, i, \underbrace{\ldots, \ldots,}_{i \text { times }}, i]
$$

By default, SWI Prolog displays only the first 10 elements of long lists. You can change this setting by evaluating the query

```
?- set_prolog_flag(answer_write_options,
    [quoted(true), portray(false),max_depth(28),spacing(next_argument)]).
```


2 Homework (Deadline: May 11, 2021)

1. Consider the Prolog representation of sets described in Lecture 10. Define the following relations on sets:
(a) union ($\mathrm{A}, \mathrm{B}, \mathrm{C}$) which holds if C is the union of sets A, B.
(b) $\operatorname{diff}(A, B, C)$ which holds if C is the set difference of sets A, B.
(c) included (A, B) which holds if A is subset of B.
2. Consider natural numbers represented in the Peano arithmetic
```
nat ::= 0 | s(nat)
```

and define the predicate $\operatorname{pow}(\mathrm{A}, \mathrm{B}, \mathrm{C})$ which takes as input parameters the numbers A, B represented in Peano arithmetic, and instantiates the output parameter C with the number A to power B, represented in Peano arithmetic. For example,

```
?- pow(s(s(0)),0,C). % compute 20}=
C = s(0).
?- pow(s(s(0)),s(s(0)),C). % compute 2 2 = 4
C = s(s(s(s(0)))).
```

3. In Prolog we can not define functions, but we can define predicates that behave like functions. For example,

- Instead of the function that computes $\min (x, y)$, we can define the predicate minim (X, Y, R) which binds R to $\min (X, Y)$:

```
minim(X,Y,X) :- X =< Y.
minim(X,Y,Y) :- X > Y.
```

- For the function $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)= \begin{cases}-x & \text { if } x<0, \\ x^{2} & \text { if } 0 \leq x<2, \\ x / 2 & \text { if } 2 \leq x \leq 10, \\ 7 & \text { if } x>10\end{cases}$
we can define the relation $f x(X, R)$ to hold if R is bound to the value of $f(\mathrm{X})$:

```
fx(X,R) :- X<0,R is -X.
fx(X,R) :- X>=0,X<2,R is X*X.
fx(X,R) :- X>=2,X=<10,R is X/2.
fx(X,7) :- X>10.
```

Define the following relations:
(a) $\operatorname{gcd}(A, B, D)$ which holds if D is the greatest common divisor of A and B. It is assumed that A and B are nonnegative integers. Note that

- If $B=0$, the gcd is A.
- If $A<B$, the gcd of A and B coincides with the gcd of B and A.
- Otherwise, the gcd of A and B coincides with the gcd of B and R, where R is the remainder of dividing A by B.
(b) nextPair ($(\mathrm{X}, \mathrm{Y}),(\mathrm{X} 1, \mathrm{Y} 1))$ which takes as input a pair of integers (X, Y) that represent the coordinates of a point in the Cartesian plane, and returns the coordinates ($\mathrm{X} 1, \mathrm{Y} 1$) of the next point on the spiral depicted below:
$(0,0),(1,0),(1,1),(0,1),(-1,1),(-1,0),(-1,-1),(0,-1),(1,-1), \ldots$

Note that the pair next to (x, y) is

- $(x+1, y)$ if $y \leq 0$ and $y \leq x \leq-y$,
- $(x, y+1)$ if $x>0$ and $-x<y<x$,
- $(x-1, y)$ if $y>0$ and $-y<x \leq y$,
- $(x, y-1)$ if $x<0$ and $x<y \leq-x$.

4. Define the relation subList (L1, L2) to hold if the elements of list L1 occur in list L2 in the same order. For example:
?- subList $([2,4,6],[1,2,3,4,5,6,7])$.
true.
?- subList ([4, 2,6$],[1,2,3,4,5,6])$.
false .
5. Define the relation countElems (Lst, $[\mathrm{X}, \mathrm{Y}], \mathrm{N}$) which takes as inputs a list Lst and a list of two elements [X,Y], and instantiates N with the number of occurrences of X and Y in Lst. For example,
?-countElems([a, d, c, a, z, c, b, b, c] , [a, c] , N).
$\mathrm{N}=5$.
6. Define the predicate shift_left(Lst1,Lst2) which holds if list Lst2 is a left rotational shift of list Lst1. For example,
?- shift_left([1, 2, 3, 4, 5], L1) , shift_left(L1, L2).
$\mathrm{L} 1=[2,3,4,5,1]$,
$\mathrm{L} 2=[3,4,5,1,2]$.
7. Define the predicate shift_right(Lst1,Lst2) which holds if list Lst2 is a right rotational shift of list Lst1. For example,
?- shift_right([1, 2, 3, 4, 5],L1), shift_right(L1,L2).
$\mathrm{L} 1=[5,1,2,3,4]$,
$\mathrm{L} 2=[4,5,1,2,3]$.
8. Define the following relations using one or more accumulators:
(a) fact (N, R) which takes as input a positive integer N and instantiates the output parameter R with the value of $N!$. For example,
?- fact (5,R).
$R=120$.
(b) $\operatorname{fib}(N, R)$ takes as input a positive integer N and instantiates the output parameter R with the value of the N-th Fibonacci number. For example
```
?- fib(1,R). ?- fib(2,R). ?- fib(7,R).
\(R=1 . \quad R=1 . \quad R=13\).
```

9. Define the predicate isSorted(Lst) which takes as input a list of numbers and returns true if the elements of Lst are in increasing order. For example,
```
?- isSorted([1,2,3]). ?- isSorted([]). ?- isSorted([2,1,3]).
```

true. true. false.
10. Consider the relation elim(Lst, E, Rest) which has input parameter a list Lst, and output parameters E and Rest. The following program clauses define this relation to hold when R is an element of Lst and Rest is the result of removing E from Lst:

```
elim(E,[E|Rest],Rest).
elim(E,[X|Lst],[X|Rest]) :- elim(E,Lst,Rest).
```

For example,

```
?- elim([1,2,3],E,Rest).
R=1,
Rest=[2,3];
R=2,
Rest=[1,3];
R=3,
Rest=[1,2];
false.
```

A permutation of a list Lst is a rearrangement of the elements of Lst. Note that Perm is a permutation of a non-empty list Lst if Perm is of the form [E|Rest] where E is an element of Lst and Rest is a permutation of Lst without E.
(a) Use the previous observation to define the relation perm(Lst, Perm) to hold if Perm is a permutation of list Lst.
(b) Use the previously defined predicates isSorted and perm to define the relation sortList (Lst,S) which takes as input a list of numbers Lst and binds the output parameter S to the sorted version of list Lst. For example,

```
?- sortList([],S). ?- sortList([5,1,3,2,4],S).
S= []. S = [1,2,3,4,5].
```

11. Define the relation insert (E,Lst, R) which takes as inputs a number E and a sorted list of numbers Lst, and binds R to the sorted list produced by inserting E in Lst at the right place. For example,
```
?- insert(4,[],R). ?- insert(4,[1,2,8]).
R = [4]. R= [1,2,4,8].
```

12. Define the relation insertionSort(Lst, Sorted) which binds the output parameter Sorted to the sorted version of the list of number Lst, by implementing the algorithm of sorting by insertion. In Prolog this algorithm is defined as follows:

- If Lst is a nonempty list, take its head H, sort its tail T, and insert H in the sorted tail at the right place.

13. Another way to sort a nonempty list of numbers is the following:
1) Take its head H and tail T,
2) Split the tail T into
$\mathrm{T} 1=$ the elements of tail smaller than H , and
$\mathrm{T} 2=$ the elements of tail larger than H,
3) Sort (recursively) the lists T1 and T2, and
4) Concatenate the sorted version of T 1 with $[\mathrm{H} \mid \mathrm{S} 2$], where S 2 is the sorted version of list T2.
The predefined predicate append (L1, L2, R) can be used to bind R to the result of concatenating lists L1 and L2.

Use this method to implement the relation sortV2 (Lst, S) which binds the output parameter S to the sorted list of numbers Lst.
14. Define a predicate twoTimesLonger (L1,L2) which holds if list L2 is two times longer than list L1. For example,

```
?- twoTimesLonger([],[]).
true.
?- twoTimesLonger([1,2],[a,b,c,d]).
true.
?- twoTimesLonger([a],[a,b,c]).
false.
```

15. Define sum_and_squareSum(Lst, $\mathrm{S} 1, \mathrm{~S} 2$) which takes as input a list of numbers Lst and instantiates

S1 with the sum of elements in Lst, and S2 with the sum of squares of elements in Lst.

For example,

```
?- sum_and_squareSum([],S1,S2).
S1 = 0,
S2 = 0.
?- sum_and_squareSum([1,-3,2 ,0],S1,S2).
S1 = 0,
S2 = 14.
?- sum_and_squareSum([1,2,3,4],S1,S2).
S1 = 10,
S2 = 30.
```

16. Define isPalindrome(Lst) which holds if and only if Lst is a list which coincides with its reverse. For example,
```
?- isPalindrome([]). ?- isPalindrome([a,b,b,c]).
true.
true
```

17. Define the predicate rgb (Lst) if and only if Lst is a list of 0 or more r , followed by zero or more g , followed by 0 or more b .
For example,
```
?- rgb([]). ?- rgb([r,g,g,b]). ?- rgb([b,b]).
true.
true.
true.
?- rgb([b,r,g]).
false
```

