LoaGIic AND FUNCTIONAL PROGRAMMING

Labworks 10

April 26, 2021

Review questions

. Consider the following program

father(john,bill).

mother (ann,bill).

parent (X,Y) :-father(X,Y).
parent (X,Y) :-mother(X,Y) .

(a) How many facts and how many rules are in this program?

(b) Indicate the function symbols, the predicate symbols, and the vari-
ables used in this program.

(¢) What predicates are defined in this program?

. Use the Martelli-Montanari algorithm to compute a most general unifier
of the terms

(a) £(X,Y,Z) and £(a,Z,h(a))

(b) £(g(X),g(c),Y) and £(g(g(Y)), X, 2)

(c) £(h(b),X,X,Y) and £(h(b),g(Y),g(g(2)).&(a))
. Consider the problem of arranging three 1’s, three 2’s, ..., three 9’s in
sequence so that for all 1 < ¢ < 9 there are exactly ¢ numbers between

successive occurrences of 7. Use Prolog to define the relation niceList (L)
for lists which have this property.

SUGGESTION. Note that L is such a nice list if it has 27 elements and the
following property: for all 1 <4 <, L contains a sublist of the form
(4, ity yeeny_,i]
—_—
1 times i times
By default, SWI Prolog displays only the first 10 elements of long lists.
You can change this setting by evaluating the query

?7- set_prolog_flag(answer_write_options,
[quoted(true) ,portray(false) ,max_depth(28),spacing(next_argument)]).

Homework (Deadline: May 11, 2021)

. Consider the Prolog representation of sets described in Lecture 10. Define
the following relations on sets:

(a) union(A,B,C) which holds if C is the union of sets A, B.
(b) diff(A,B,C) which holds if C is the set difference of sets A, B.
(¢) included(A,B) which holds if A is subset of B.

. Consider natural numbers represented in the Peano arithmetic
nat ::= 0 | s(nat)

and define the predicate pow(A,B,C) which takes as input parameters
the numbers A, B represented in Peano arithmetic, and instantiates the
output parameter C with the number A to power B, represented in Peano
arithmetic. For example,

?7- pow(s(s(0)),0,0). % compute 2° =1
C = s(0).

7- pow(s(s(0)),s(s(0)),C). % compute 22 =4
C = s(s(s(s(0)))).

. In Prolog we can not define functions, but we can define predicates that
behave like functions. For example,

e Instead of the function that computes min(z,y), we can define the
predicate minim(X,Y,R) which binds R to min(X,Y):

minim(X,Y,X) :- X =< Y.
minim(X,Y,Y) :- X > Y.

—x ifz <0,

x? ifo<z<?,

x/2 if2 <z <10,

7 if z > 10

we can define the relation £fx(X,R) to hold if R is bound to the value

of f(X):

e For the function f: R = R, f(z) =

fx(X,R) :- X<O0,R is -X.
fx(X,R) :- X>=0,X<2,R is X#X.
fx(X,R) :- X>=2,%X=<10,R is X/2.

fx(X,7) :- X>10.
Define the following relations:

(a) gcd(A,B,D) which holds if D is the greatest common divisor of A and
B. It is assumed that A and B are nonnegative integers. Note that

e If B=0, the ged is A.

e If A < B, the gcd of A and B coincides with the ged of B and A.

e Otherwise, the ged of A and B coincides with the ged of B and R,
where R is the remainder of dividing A by B.

(b) nextPair ((X,Y),(X1,Y1)) which takes as input a pair of integers
(X,Y) that represent the coordinates of a point in the Cartesian
plane, and returns the coordinates (X1,Y1) of the next point on
the spiral depicted below:

(070)3 (170)7 (1a 1)7 (07 1)v (717 1)v (7170)3 (717 *l)a (07 *l)a (17 *l)a ce

A

Note that the pair next to (z,y) is
e (x+ 1Ly ify<Oandy <z < -—y,
o (z,y+1)ifxr>0and —z <y <z,
o (x—1,y)ify>0and —y <z <y,
o (z,y—1l)ifr<Oand x <y < —zx.

4. Define the relation subList (L1,L2) to hold if the elements of list L1 occur
in list L2 in the same order. For example:

?- sublList([2,4,6],[1,2,3,4,5,6,7]).
true .

?- sublList([4,2,6],[1,2,3,4,5,6]).
false .

5. Define the relation countElems (Lst, [X,Y],N) which takes as inputs a list
Lst and a list of two elements [X,Y], and instantiates N with the number
of occurrences of X and Y in Lst. For example,

?-countElems([a,d,c,a,z,c,b,b,c], [a,c],N).
N = 5.

6. Define the predicate shift_left(Lst1,Lst2) which holds if list Lst2 is
a left rotational shift of list Lst1. For example,

7- shift_left([1,2,3,4,5],L1),shift_left(L1,L2).
L1=[2,3,4,5,1],
L2=[3,4,5,1,2].

7.

10.

Define the predicate shift_right (Lst1,Lst2) which holds if list Lst2 is
a right rotational shift of list Lst1. For example,

?7- shift_right([1,2,3,4,5],L1),shift_right(L1,L2).
L1=[5,1,2,3,4],
L2=[4,5,1,2,3].

Define the following relations using one or more accumulators:

(a) fact(N,R) which takes as input a positive integer N and instantiates
the output parameter R with the value of N!. For example,

?- fact(5,R).
R = 120.

(b) £ib(N,R) takes as input a positive integer N and instantiates the
output parameter R with the value of the N-th Fibonacci number.
For example

7- fib(1,R). 7- £fib(2,R). ?- fib(7,R).
R=1. R=1. R = 13.

Define the predicate isSorted(Lst) which takes as input a list of num-
bers and returns true if the elements of Lst are in increasing order. For
example,

?- isSorted([1,2,3]). ?- isSorted([]). ?- isSorted([2,1,3]).
true. true. false.

Consider the relation elim(Lst,E,Rest) which has input parameter a list
Lst, and output parameters E and Rest. The following program clauses
define this relation to hold when R is an element of Lst and Rest is the
result of removing E from Lst:

elim(E, [E|Rest] ,Rest).
elim(E, [X|Lst], [X|Rest]) :- elim(E,Lst,Rest).

For example,

?- elim([1,2,3],E,Rest).
R=1,

Rest=[2,3];

R=2,

Rest=[1,3];

R=3,

Rest=[1,2];

false.

11.

12.

13.

14.

A permutation of a list Lst is a rearrangement of the elements of Lst.
Note that Perm is a permutation of a non-empty list Lst if Perm is of the
form [E|Rest] where E is an element of Lst and Rest is a permutation
of Lst without E.

(a) Use the previous observation to define the relation perm(Lst,Perm)
to hold if Perm is a permutation of list Lst.

(b) Use the previously defined predicates isSorted and perm to define
the relation sortList (Lst,S) which takes as input a list of numbers
Lst and binds the output parameter S to the sorted version of list
Lst. For example,

?7- sortList([],S). ?- sortlList([5,1,3,2,4],9).
s= []. s =1[1,2,3,4,5].

Define the relation insert (E,Lst,R) which takes as inputs a number E
and a sorted list of numbers Lst, and binds R to the sorted list produced
by inserting E in Lst at the right place. For example,

?- insert(4,[],R). ?- insert(4,[1,2,8]).
R = [4]. R= [1,2,4,8].

Define the relation insertionSort (Lst,Sorted) which binds the output
parameter Sorted to the sorted version of the list of number Lst, by im-
plementing the algorithm of sorting by insertion. In Prolog this algorithm
is defined as follows:

e If Lst is a nonempty list, take its head H, sort its tail T, and insert H
in the sorted tail at the right place.

Another way to sort a nonempty list of numbers is the following:

1) Take its head H and tail T,

2) Split the tail T into
T1 = the elements of tail smaller than H, and
T2 = the elements of tail larger than H,

3) Sort (recursively) the lists T1 and T2, and
4) Concatenate the sorted version of T1 with [H|S2], where S2 is the
sorted version of list T2.

The predefined predicate append (L1,L2,R) can be used to bind R to
the result of concatenating lists L1 and L2.

Use this method to implement the relation sortV2(Lst,S) which binds
the output parameter S to the sorted list of numbers Lst.

Define a predicate twoTimesLonger (L1,L2) which holds if list L2 is two
times longer than list L1. For example,

15.

16.

17.

?- twoTimesLonger ([1,[1).

true.

?7- twoTimesLonger([1,2], [a,b,c,d]).
true.

?7- twoTimesLonger([a], [a,b,c]).
false.

Define sum_and_squareSum(Lst,S1,S2) which takes as input a list of
numbers Lst and instantiates

S1 with the sum of elements in Lst, and
S2 with the sum of squares of elements in Lst.

For example,

?7- sum_and_squareSum([],S1,S2).

S1 =0,

S2 = 0.

?- sum_and_squareSum([1,-3,2 ,0],S1,S2).
S1 =0,

S2 = 14.

7- sum_and_squareSum([1,2,3,4],51,52).
S1 = 10,

S2 = 30.

Define isPalindrome (Lst) which holds if and only if Lst is a list which
coincides with its reverse. For example,

?- isPalindrome([]). ?- isPalindrome([a,b,b,c]).
true. true

Define the predicate rgb(Lst) if and only if Lst is a list of 0 or more r,
followed by zero or more g, followed by 0 or more b.

For example,

?7- rgb([1). ?7- rgb([r,g,g,bl). ?7- rgb([b,b]).
true. true. true.

?7- rgb([b,r,gl).

false

	Review questions
	Homework (Deadline: May 11, 2021)

