LoaGIic AND FUNCTIONAL PROGRAMMING

Labwork 9 — Answers

April 26, 2021

Warmup exercises
. Consider the following logic program:

% thief (X) expresses the fact that X is thief

thief (bob) .

% likes(X,Y) expresses the fact that X likes Y
likes(mary,candies) .

likes(mary,wine) .

likes(bob,X) :- likes(X,wine).

% may_steal(X,Y) expresses the fact that X may steal Y
may_steal(X,Y) :- thief(X), likes(X,Y).

The query
?-may_steal (bob,X) .

asks Prolog to find all X that Bob may steal.

. Assume the following relations have already been defined in a program:

e father(X,Y) to indicate that X is the father of Y
mother (X,Y) to indicate that X is the mother of Y

man (X) to indicate that X is a man

woman (X) to indicate that X is a woman

Extend this program with definitions of the following relations:

[

) parent(X,Y) to indicate that X is a parent of Y
isFather (X) to indicate that X is a father
isMother (X) to indicate that X is a mother
sister(X,Y) to indicate that Y is the sister of X
grandpa(X,Y) to indicate that X is the grandpa of Y

—_~ 0~ T
o A& o T
NN N



parent(X,Y) :-father(X,Y) .

parent (X,Y) : -mother (X,Y) .

isFather (X) :-father(X,_).

isMother (X) :-mother(X,_).

sister(X,Y) :-woman(X) ,parent (P,X) ,parent (P,Y) ,X\=Y.
grandpa(X,Y) :-man(X) ,parent (X,P) ,parent (P,Y).

3. Consider the problem of finding all elements which appear in two given
lists, by defining a predicate member_both(X,L1,L2) to hold if X is both
an element of list L1 and list L2.

member_both(X,L1,L2) :—-member (X,L1) ,member (X,L2).

4. Consider the problem of defining the relation neighbor (X,Y) for the fact
that X is neighbor of Y. This relation is assumed to be symmetric: if X is
neighbor of Y, then Y is neighbor of X.

(a) How would you encode the following knowledge base: ” Alan is neigh-
bor of Bob. Bob is neighbor of Caleb. Caleb is neighbor of Dan and
Dick. Dan is neighbor of Erin.”

(b) Write a query for the question “Who are the neighbors of Dan?”
What answers will you get?

neighboril(alan,bob) .
neighbor1(bob,caleb) .
neighborl(caleb,dan) .
neighborl(caleb,dick) .
neighborl(dan,erin).
neighbor (X,Y) : -neighbori (X,Y).
neighbor (X,Y) : -neighbori(Y,X).

?- neighbor(dan,X).

5. app([],L,L).
app([HIT],L, [HIR]):-app(T,L,R).

(a) app(L1,L2,[1,2,3,4]) computes all lists L1,L2 whose concatena-
tion is [1,2,3,4].
(b) app(L,_,[1,2,3,4]) computes all prefixes L of [1,2,3,4].

(c¢) Tt is easy to observe that S is sublist of L if and only if it is a suffix
of a prefix of L.

sublist(S,L) :-app(P,_,L) ,app(_,S,P).




6. Consider the problem of arranging three 1’s, three 2’s, ..., three 9’s in
sequence so that for all 1 < ¢ < 9 there are exactly ¢ numbers between
successive occurrences of 7. Use Prolog to define the relation niceList (L)
for lists which have this property.

niceList (L) :-

L_[—:—)—9—’—,—y—,— - —’—’—,—’—’—3—s—’—:—s—’—’—,—,—,—’—’—] >

sublist([1,_,1,_,1],L),

sublist([2,_,_,2,_,_,2]1,L),
sublist([3,_,_,_,3,_,_,_,3]1,L),

sublist([4, _,_,_,_,4,_,_,_,_,41,L),
sublist([5,_,_,_,_,_,5,_,_,_,_,_,5],L),

sublist([5, _,_,_,_,_,_+6,_,_s_s_,_,_,61,L),

sublist ([7, _, sy sssTysss—ss_s_»71,L),

sublist ([8, _, ., s sy s 38y s s ss—s_»r_»_»81,L),
sublist([9, _, _, _,_ s s s_s_s39s s s_s_s—s—sr_r_»>_,9]1,L).

Remark: By default, SWI-Prolog shows only the first 10 elements of long
lists. To see more list elements, e.g.., 28 elements, run the query:

7-set_prolog_flag(answer_write_options,
[quoted(true) ,portray(false) ,max_depth(28),spacing(next_argument)]).

This is a typical problem to be solved with the method of generate-and-
test.

?- niceList(L).
L=1[1,9,1,2,1,8,2,4,5,2,7,9,4,5,8,6,3,4,7,5,3,9,6,8,3,5,7] ;
L=1[1,8,1,9,1,5,2,5,7,2,8,5,2,9,6,4,7,5,3,8,4,6,3,9,7,4,3] ;
L = [1,9,1,5,1,8,2,5,7,2,6,9,2,5,8,4,7,6,3,5,4,9,3,8,7,4,3] ;
L [3,4,7,8,3,9,4,5,3,5,7,4,8,5,2,9,6,2,7,5,2,8,1,6,1,9,1] ;
L= [3,4,7,9,3,5,4,8,3,5,7,4,6,9,2,5,8,2,7,6,2,5,1,9,1,8,1] ;
L = [7,5,3,8,5,9,3,5,7,4,3,6,8,5,4,9,7,2,6,4,2,8,1,2,1,9,1] ;
false

7. Consider the program defined by

part(_,[1,01,[1).
part (X, [HIT], [HIL],R) :- H<X,part(X,T,L,R).
part(X, [HIT],L, [HIR]) :- H>=X,part(X,T,L,R).

(a) Use SWI-Prolog to compute the answers to the queries

?-part(4,[1,7,3,5],L,R).
?-part(6,[10,1,3,7,5,9,20],L,R).
(b) ?- part(X,Lst,L,R).
binds L to the list of elements in Lst smaller than X, and R to the list
of elements in Lst greater than or equal to X.



Unification: exercises
. £(X,Y,2) and £(a,Z,h(a))

f(X,Y,Z2)=f(a,Z,h(a)) = X=a,¥=Z,Z=h(a) = X=a,Y=h(a),Z=h(a).

We obtained the mgu {X — a,Y — h(a),Z — h(a)}.
- £(g(X), g(c),Y) and £(g(g(Y)), X, 2)
f(g(X),glc),V=f(g(g(¥)) ,X,a) = gX)=g(g(¥)),g(c)=X,¥Y=a =

g(X)=g(g(a)),g(c)=X,Y=a = X=g(a),g(c)=X,¥Y=a =
X=g(a),g(c)=g(a),Y=a = X=g(a),c=a,¥=a = fail.

These two terms are not unifiable.
- £(h(b),X,X,Y) and £(h(b),g(Y),&(g(2)), g(2))

f(h(b),X, X, V=), gV, glg(Z)), gla)) =

h(b)=h(b) ,X=g(Y) ,X=g(g(Z)) ,Y=g(a) =

b=b,X=g(Y) ,X=g(g(2)) ,Y=g(a) =

b=b,X=g(¥) ,g(Y)=g(g(Z)),Y=g(a) = b=b,X=g(¥),Y=g(Z),¥=g(a) =
X=g(Y),Y=g(2) ,Y=g(a) = X=g(g(a)),g(a)=g(2),Y=g(a) =
X=g(g(a)),a=Z,Y=g(a) = X=g(g(a)),Z=a,¥=g(a)

We obtained the mgu {X — g(g(a)),Y — g(a),Z — a}.



	Warmup exercises
	Unification: exercises

