Logic and Functional Programming
 Labwork 4

March 21, 2021

Labworks related to lecture 4.

1. Define foldr with foldl and reverse, and indicate the runtime complexity of this definition.
2. Define filter with foldr.
3. Define length with foldl.
4. Define the following higher-order functions:
(a) (nest $f n$) which takes as input a function $f: A \rightarrow A$ and $n \in \mathbb{N}$, and returns the function that maps $x \in A$ to the value of $\underbrace{f(\ldots f}(x) \cdots)$. If $n=0$ then $\underbrace{f}_{n \text { times }}$ (nest $f 0$) should return the identity function (lambda (x) x).
(b) (nestwhile $f v p$) which takes as inputs a function $f: A \rightarrow A$, a predicate $p: A \rightarrow$ bool and a value $v \in A$, and returns the value $w=f^{n}(v)$ for the smallest $n \in \mathbb{N}$ such that ($p w$) is \#f.
5. Use foldr to define the variadic function
$\left(\begin{array}{lll}\operatorname{comp} & f_{1} & \ldots\end{array} f_{n}\right)$
which takes as inputs $n \geq 0$ unary functions f_{1}, \ldots, f_{n} and returns the function that maps x to the value of
$\left(f_{1} \ldots\left(f_{n} x\right) \ldots\right)$
6. Define the function (list->set lst), which drops the duplicate occurrences of elements from a list lst.
Suggestion: express the computation of (list->set lst) as (foldr f null lst) with a suitable function f. You can use the built-in function (member e 1) which is true if e is an element of list 1 and \#f otherwise.
7. Consider the problem of counting the number of occurrences of every word in a document d. More precisely, let d be a list of symbols (the words of document d). We wish to define (count-words d) which returns the list of pairs (cons $w n$) where w is a string in d , and n is the number of occurrences of w in d. For example
```
> (count-words '(a b a b b c x z z x))
'((a . 2) (b . 3) (c . 1) (z . 2) (x . 2))
```

8. Give recursive definitions to the following variadic functions:
(a) (fmap-2 ab $f_{1} \ldots f_{n}$) which computes (list $w_{1} \ldots w_{n}$) where w_{i} is the value of ($f_{i} a b$) for every $1 \leq i \leq n$. For example:
$>(f m a p-242+* /)>(f m a p-242)$ '(6 8 2)
'()
(b) (inc? $a_{1} \ldots a_{n}$) which takes as inputs $n \geq 0$ integers and returns \#t if and only if $a_{1}<a_{2}<\ldots<a_{n}$. For example:

(c) (dec? $a_{1} \ldots a_{n}$) which takes as inputs $n \geq 0$ integers and returns \#t if and only if $a_{1}>a_{2}>\ldots>a_{n}$. For example:
> (inc? 143) > (dec?) >(dec? 1) >(dec? 9750)
\#f \#t \#t \#t
(d) Find the common pattern of computation of inc? and dec? and define
(sorted? cmp $a_{1} \ldots a_{n}$)
which returns \#t if and only if ($\operatorname{cmp} a_{i} a_{i+1}$) is true for all $1 \leq i<n$.
(e) (monotone? $a_{1} \ldots a_{n}$) which takes as inputs $n \geq 0$ integers and returns \#t if and only if

$$
a_{1}<a_{2}<\ldots<a_{n} \quad \text { or } \quad a_{1}>a_{2}>\ldots>a_{n}
$$

9. Define (f-inc n) which takes an input $n \in \mathbb{N}$ and computes the list of functions (list $f_{1} \ldots f_{n}$) where, for all $k \geq 1,\left(f_{k} x\right)$ returns the value of $x+k$.
