
Logic and Functional Programming
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March 3, 2021

The purpose of these labworks is to practice recursive thinking when defining
functions and recursive data types.

Recap

In functional programming, we use the special form

(define id expr)

to give name id to the result of evaluating expr. Typical examples are:

> ; r-Earth is the numeric value of Earth’s radius, in km
(define r-Earth 6371)

> ; Give name equator to the length of Earth’s equator, in km
(define equator (* 2 pi r-Earth))

> equator

40030.173592041145

The define-special form can also be used to define functions. For example

> (define sphere-volume (lambda (r) (* 4 pi (/ (* r r r) 3))))

gives name sphere-volume to the function which takes input argument r and
computes the value of 4πr3/3, which is the volume of a sphere with radius r.

In general, the special form

(lambda (x1 . . . xn) body)

is used to define functions; it has the intended reading “the function which, for
input arguments x1, . . . , xn, computes and returns the value of body.”

After we give names to values (including functions, which are also values),
we can use them to compute more interesting things. For example, to compute
the volume of the Earth (in km3), we can call

> (sphere-volume r-Earth)

1083206916845.7537
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Remark: The explicit defininition of a function f in Racket is

(define f (lambda (x1 . . . xn) body))

Alternatively, we can also write

(define (f x1 . . . xn) body)

The role of naming in programming

A fundamental programming principle is the Principle of Abstraction:

“Each significant piece of functionality in a program should be implemented
in just one place in the source code. Where similar functions are carried out
by distinct pieces of code, it is generally beneficial to combine them into one by
abstracting out the varying parts.”

In functional programming, the Principle of Abstraction is achieved by nam-
ing of all kinds of values (including functions) with define, and using these
names later to write more compact code. Another useful programming capabil-
ity is the usage of function values as first-class programming citizens. A
first-class programming citizen is something that can be

• stored in a composite value (e.g., pair, list, or vector),

• passed as arguments to function calls,

• returned as results of function calls.

The following example illustrates how to respect the Principle of Abstraction
by naming values with define.

1. Suppose we want to compute the value of (a− b + 2)2 + (a− b + 2)/4,
where a, b are names already assigned to some values. The computation

> (+ (expt (+ (+ (- a b) 2)) 2) (/ (+ (+ (- a b) 2)) 4))

is against the Principle of Abstraction because we compute the twice value
of (+ (+ (- a b) 2)). We can avoid this repeated computation by nam-
ing the value of the subexpression which occurs twice:

> (define c (+ (+ (- a b) 2)))

> (+ (expt c 2) (/ c 4))

If c is used only to compute the value of (+ (expt c 2) (/ c 4)), we
can use a let-form to make c visible only during this computation:

> (let ([c (+ (+ (- a b) 2))])

(+ (expt c 2) (/ c 4)))
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2. Suppose we want to compute the sum of areas of three circles with radii
r1, r2 and r3. We know that the area of a circle with radius r is π r2,
thus we wish to evaluate1

(+ (* pi (expt r1 2)) (* pi (expt r2 2)) (* pi (expt r3 2)))

In this case there is a repeated pattern of operations that can be ab-
stracted away, namely the computation of the area of a circle. According
to the Principle of Abstraction, we should abstract this repeated pattern
of operations in a function definition, and reuse it wherever it is needed:

> (define (circle-area r) (* pi (expt r 2)))

> (+ (circle-area r1) (circle-area r2) (circle-area r3))

3. Suppose we wish to compute the sum and product of a list of numbers.
If the list is empty, the sum of it’s elements is assumed to be 0, and the
product of its elements is assumed to be 1.

It is easy to define recursively the sum and product of a list of numbers l:

(a) If l is empty, the sum is 0 and the product is 1.

(b) Otherwise:

• The sum is the result of adding the first element of l with the
sum of elements of the rest of l,

• The sum is the result of multiplying the first element of l with
the product of elements of the rest of l,

(define (sum-list l)

(if (null? l) 0 (+ (car l) (sum-list (cdr l)))))

(define (prod-list l)

(if (null? l) 1 (* (car l) (prod-list (cdr l)))))

The definitions of f ∈ {sum-list, prod-list} are very similar: Their
bodies are of the form

(if (null? l) v (op (car l) (f (cdr l)))

where v and op are the things that differ between their definitions. Ac-
cording to the Principle of Abstraction, we should try to abstract away
this common pattern of computation. We can do so by defining a function
(fold op v l) which behaves like (sum-list l) when op is + and v is
0, and behaves like (prod-list l) when op is * and v is 1:

1In Racket, pi is a predefined name for the numeric value of π.
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(define (fold op v l)

(if (null? l) v (op (car l) (fold op v (cdr l))))

(define (sum-list l) (fold + 0 l))

(define (prod-list l) (fold * 1 l))

Note that, if l is a list of elements v1, v2, . . . , vn in this order, then

(fold op v0 l)

computes the value of the expression

(op v1 (op v2 . . . (op vn v0) . . .))

In the special case when l is the empty list null

(fold op v0 l)

returns v0.

The role of recursion in functional programming

1) Repetitive computations

In pure functional programming, we can not change the value assigned to a
name. This means that:

I A variable defined in a scope has always the same value

I We can not work with repetitive instructions specific to imperative pro-
gramming, such as for and while, because these instructions usually
change the value of some variables. In pure functional programming, we
can not change the value of a variable.

In pure functional programming, all repetitive computations are performed by
calling functions defined recursively.

For example, suppose we want to compute the factorial value 1 · 2 · . . . · n for
all integers n > 0. In an imperative programming language (e.g., C or Pascal),
we could implement the pseudocode for the procedure

int procedure fact(int n)

int result=1;

for (int i=1;i<=n,i++)

result *=i;

return result

In functional programming, we observe that the factorial value is computed by
the recursive (mathematical) function

fact : N→ N, fact(n) :=

{
1 if n = 1,
n · fact(n− 1) if n > 1.

The encoding in Racket of this recursive function is

(define fact (lambda (n) (if (= n 1) 1 (* n (fact (- n 1))))))
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2) Recursive data types

Another place where recursion appears in computer science is in the definition
of recursive data structures. Like recursive functions, recursive data structures
(also known as recursive data types) are defined by cases, and we distinguish

• One or more base cases, which indicate the most elementary values of
the recursive data type.

• One or more recursive cases, which indicate how to build composite
values from smaller values, including values of the same type.

A popular way to define the syntax of recursive data types and programming
constructs is with context-free grammars in Backus-Naur form (BNF). In gen-
eral, the BNF definition of a recursive datatype type looks as follows:

type ::= case1 | . . . | casen

where ‘|’ is a separator between different alternatives, and every alternative
casei indicates how to build a value of type from other values, including smaller
values of type type. Te alternatives which indicate the construction of a value
from smaller values of type type are the recursive cases, and the remaining
alternatives are the base cases.

The following are typical examples of recursive datatypes:

I Lists of arbitrary values

lst ::= null ; base case
| (cons v lst) ; recursive case

where v is any value (e.g., an integer, string, boolean, symbol, etc.).

Defining a recognizer lst? for values of type lst is straightforward: We
just have to check that one of the cases holds:

(define (lst? l)

(or (null? l)

(and (cons? l) (lst? (cdr l)))))

I The type BT of binary trees of integers or symbols can be defined recur-
sively as follows:

– Every integer or symbol is of type BT.

– Every other binary tree bt of integers or symbols is of the form

v

bt1 bt2
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where v is an integer or symbol, and bt1, bt2 are values of type BT. We
decide to represent such a binary tree with the list (list v bt1 bt2).
The BNF definition of this encoding of values of type BT is

BT ::= v ; base case
| (list v BT BT) ; recursive case

where v is an integer or symbol. Defining a recognizer BT? for values
of type BT is straightforward:

(define (BT? bt)

(or (number? bt)

(symbol? bt)

(and (list? bt)

(= 3 (length bt))

(or (number? (car bt)) (symbol? (car? bt)))

(BT? (cadr bt))

(BT? (caddr bt)))))

3) Defining recursive functions by structural induction

Several functions take one or more arguments of a recursively defined type. In
such situations, we should try to define them by induction on the structure of
that argument. Typical examples of such functions are the type recognisers
of recursively defined datatypes (e.g., lst? and BT? which we have already
defined). Below are more examples.

1. The function (map f l) which takes as input arguments a unary function
f and a list l, and returns the list of values obtained by applying functionf
to each element of l. This function can be defined by induction on the
structure of l, which is a value of the recursive type list:

(define (map f l)

(if (null? l) l (cons (car l) (map f (cdr l)))))

2. The function (filter pred l) which takes as input arguments a predi-
cate pred and a list l, and returns the list of elements of l which satisfy
predicate pred. For example, even? is a predicate that recognises even in-
tegers, and the function call (filter even? ′(1 2 3 4 5)) should return
the list ′(2 4).

(define (filter pred l)

(cond

[(null? l) l]

[(list? l)

(if (pred (car l))

(cons (car l) (filter pred (cdr l)))

(filter pred (cdr l)))]))
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3. The function (join l1 l2) which joins two lists l1 and l2. For example
(join ′(1 2 3) ′(4 5)) should return ′(1 2 3 4 5).

(define (join l1 l2)

(if (null? l1) l2 (cons (car l1) (join (cdr l1) l2))))

Note that both arguments of join are of the recursive type list, and we
could try to define join by induction on the structure of l2. However,
the attempt to define join by induction on the structure of l2 fails.

Labworks

LW1 Consider binary trees of integers defined by the BNF

BTI ::= n
| (list n BTI BTI)

where n is an integer. For example, the binary trees of integers

1

2 5

3 4 6 7

is represented by the list ′(1 (2 3 4) (5 6 7)). Also, consider the fol-
lowing tree traversal strategies:

preorder: visit root, then left subtree, then right subtree.

inorder: visit left subtree, then root, then right subtree.

postorder: visit left subtree, then right subtree, then root.

Define recursively the functions (preorder bti), (inorder bti), and
(postorder bti) which return the list of nodes in the binary treee of
integers bti in the order in which they are visited. For example:

> (preorder ′(1 (2 3 4) (5 6 7)))
′(1 2 3 4 5 6 7)

> (inorder ′(1 (2 3 4) (5 6 7)))
′(3 2 4 1 6 5 7)

> (postorder ′(1 (2 3 4) (5 6 7)))
′(3 4 2 6 7 5 1)

LW2 A nested list of numbers is either the empty list, or a list whose elements
are either numbers, or nested lists of numbers.

(a) Write down the BNF definition for the recursive type nlist of nested
lists of numbers.
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(b) Define recursively the recogniser (nlist? l) for values of type nlist.
For example:

> (nlist? null) > (nlist? ′(((1) 2) 3.2 ((4))))

#t #t

> (nlist? 1) > (nlist? ′(4 ((-5) a)))

#f #f

LW3. The decimal representation of a non-negative integer N is dndn−1 . . . d1d0
where n ≥ 0, and the sum of its digits is d0 + d1 + . . .+ dn−1 + dn.

Suppose we wish to define the function

(digit-sum N)

which computes the sum of digits of the non-negative integer N.

Note, again, that N does not have an explicitly defined recursive structure.
However, we observe that non-negative integers do have a recursively
defined structure, but we have to define our own recognisers and selectors
for it:

Base case: N consists of a single decimal digit. In this case (digit-sum N)

coincides with N.

Recursive case: N is of the form 10 · M + D where M < N is a positive
integer, and D is the last decimal digit of N. In this case, we must
add D with the value of (digit-sum M).

To take advantage of this structure of non-negative integers, we must
define the recogniser

I (is-digit? N) which recognises if N is a decimal digit

and the selectors

I (drop-last-digit N) which returns the number M obtained by drop-
ping the last digit of N, and

I (last-digit N) which returns the value of last digit D of N.

when N > 10.

LW4. Define the function (flatten sl) which takes as input a nested list of
symbols, and returns the list of symbols contained in sl in the order in
which they occur when sl is printed. Intuitively, flatten removes all the
inner parentheses form its argument. For example:

> (flatten ′(a b c))
′(a b c)

> (flatten ′((a b) c (((d)) e)))
′(a b c d e)

> (flatten ′((a) () (b ()) () (c)))
′(a b c)
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Suggestion: First, write a recursive definition (BNF) for the nested lists
of symbols.

LW5. Define the function (swapper s1 s2 sl) which takes as input the sym-
bols s1 and s2 and the list of symbols sl, and returns the list of symbols
which is the same as sl, but with all occurrences of s1 replaced with s2

and all occurrences of s2 replaced by s1.

For example, (swapper ’a ’b ’(a b r a c a d a b r a)) should pro-
duce the list ’(b a r b c b d b a r b)
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