
Logic and Functional Programming

Prolog: Searching in an infinite space

Deadline: 25.05.2021.

Objectives

• the usage of predicates and of logic programming to solve a simple AI
problem: searching objects in an infinite space.

• for bonus: a more advanced search, in a space with some obstacles

Problem description

A robot is placed in a room from an infinite space of square-shaped rooms, placed
one-near-another on an infinite surface. Every room has four neighboring rooms
into which the robot can move with a single operation.

Some rooms may contain boxes. The task of the robot is to pick them up and
bring them back in the room where the robot was initially placed (the origin).
The robot is asked to bring back a specified number of boxes, which is known
to exist for sure in the environment.

The robot can not see from one room to another. Therefore, in order to find
out if a room contains a box (or more), the robot must go into that room.

Every time, the robot can carry at most one box which, once it is picked up,
he must carry to the origin.

To orient itself, the robot will use the cardinal points north-south-east-west,
which are the directions where it can move.

Requirements

Implement the predicates initMyData and perform from file t3.pl.
The predicate perform is evaluated at every step to decide the next action

of the robot. The decision must be made depending on the fact if there is a box
at the current position, and the internal state of the robot. The signature of
the predicate is:

perform(+ProgramData, +ContainsBox, -Action, -ProgramDataUpdated)

1



The predicate receives in ContainsBox the value true if its current position
contains at least one box, or false is there are no boxes at the current position.

The predicate will instantiate Action to the action that the robot decides
to perform, which is one of:

done, pickBox, deliverBox, move(north), move(south), move(east),
move(west), moveWithBox(north), moveWithBox(south), moveWithBox(east),
moveWithBox(west)

The robot can keep its internal state, which is passed between two evaluations
of the predicate perform.

The initial state is specified by the program using the predicate

initMyData(+NBoxesToPick, -ProgramData)

which specifies the number of boxes that the robot should collect and deliver,
and instantiates ProgramData with the initial state of the robot. Afterwards,
every call of the predicate perform will receive the previous state of the robot,
and produces a new state for the robot (in accordance with the chosen action),
which is used to instantiate the argument ProgramDataUpdated.

The internal state of the robot is accessed only through the predicates
initMyData and perform. Therefore, the programmer is free to choose how
to represent the internal state.

The actions of the robot must respect the following restrictions:

• action move can be performed only if the robot does not carry a box at that
moment (if the robot performed pickBox, he should also have perfomed
deliverBox afterwards).

• action moveWithBox can be performed only if the robot carries a box at
that moment (the robot performed action pickBox but did not perform
yet deliverBox).

• action pickBox can be performed only if the robot does not carry a box,
and it is in a room which contains a box. After the robot picks a box, he
carries it and that box is no more in that room.

• action deliverBox can be performed only if the robot carries a box and
it is in the origin.

• action done can be performed only if the robot has delivered the required
number of boxes, it is in the origin, and does not carry any box.

If there are boxes in the origin, the robot must perform pickBox followed by
deliverBox for each of them to be delivered.

There can be more boxes in one room. Every box requires separate delivery.

Example

Assume the following configuration of rooms with boxes B, and the initial posi-
tion of the robot R depicted below:

2



R

B

B

A correct sequence of actions performed by the robot could be:

move(east)

move(north)

move(west)

move(west)

pickBox (here ContainsBox is true)
moveWithBox(east)

moveWithBox(south)

deliverBox

move(north)

move(west)

move(south)

pickBox (here ContainsBox is true)
moveWithBox(east)

deliverBox

done

Bonus: Obstacles

For bonus, it is required to allow the robot to act in an environment with
unavailable rooms, with the following amendments:

• an unavailable room can not have neighbors which are unavailable rooms.

• there is no unavailable common neighbor of the common neighbors of an
unavailable room.

For bonus, you should implement the predicate

perform(+ProgramData, +ContainsBox, +AvailableDirections,

-Action, -ProgramDataUpdated)

The argument AvailableDirections will be a list with the directions to avail-
able rooms. The predicate perform for the problem without bonus is identical
with perform for the problem with bonus, with the argument AvailableDirec-
tions instantiated with the list [north,south,east,west].

For the bonus, you should implement the predicate perform with both four
and five arguments.

3



Programming guidelines

Download the text files:

• t3.pl: This is the file where you should add our own code. You should
implement the predicates

initMyData/2, perform/4; and perform/5 for the bonus

but you can also define and use as many auxiliary predicates as you want.

• t3t.pl: This file contains a Prolog program to test the correctness of your
implementation.

To test your implementation, consult the program t3t.pl after you
finished editing the file t3t.pl.

Every definition of the predicate t3test/4 contains a test, caracterised
by an identifier, the number of boxes to be delivered, the positions of the
boxes as list of pairs of coordinates, and a limit imposed on the length of
the solution.

– for testing a certain test, use the predicate t3test/1, with the iden-
tifier of the test. Run

?- t3test(testid).

where testid ∈ {a3,b1,b2, c1, c2,d1,d2,d3,d4,d5, e1, e2,bonus1}.

– for testing all tests, with a final report, use t3testallinone/0.

?- t3testallinone.

Initially, consult the file t3t.pl in Prolog, which will load the file t3.pl.

When you are done, upload the file t3.pl with your implementation.

4


