
Logic and Functional Programming

Labwork 12: Deep lists. Difference lists.

Applications

1 Deep lists

A deep list is a recursive datatype defined by the grammar:

dlist ::= [] | [h|dlist] where
h ::= atom | number | string | dlist

Note that dlist is a deep list if and only if it is a list made of atoms,
numbers, strings, anf deep lists.

The program ListApps.pl contains, among other things, the implementations
of the following predicates for deep lists:

• depth(+DL,-N) which instantiates N with the depth of the deep list
DL. For example,

?- depth([],N). ?- depth([[1,[2,3]],[[],[[4,5],6,[7]]]],N).

N = 1. N = 4.

• flatten(+DL,-SL) which instantiates SL with the shallow list pro-
duced by flattening the deep list DL. For example,

?- flatten([[1,[2,3]],[[],[[4,5],6,[7]]]],SL).

SL = [1,2,3,4,5,6,7].

Proposed exercises I

Define the following predicates on deep lists:

1

https://staff.fmi.uvt.ro/~mircea.marin/lectures/LFP/ListApp.pl

1. heads(DL,Hs) which instantiates Hs with the list of all elements which
are at the head of a shallow list in DL. For example,

heads([1,[2,[[3],4],[5,[],6]]],L).

L = [1,2,3,5].

2. member1(X,DL) which holds if X occurs, at any depth, as an element
of DL. For example,

member1([3],[[a,b],[2,[[3],4],[5,[a,b],6]]]).

true.

3. member2(X,DL) which holds if X is non-list which occurs, at any depth,
as an element of DL. For example,

member2(a,[2,[[3],4],[5,[a,b],6]]]).

true.

2 Difference lists

An open list is a data structure of the form

openList ::= H | [term1, . . . , termn|H]

where H is a free variable. Note that an open list is not a list, because
lists must end with the empty list.

A difference list is a data structure of the form

diffList ::= dList(openList,H)

where openList is an openList: either H or [term!, . . . , termn|H].

• dList(H,H) represents the empty list [].

• dList([term1, . . . , termn|H],H) represents the list
[term1, . . . , termn].

• The free variable H is like a pointer to the end of the list.

2

The program ListApps.pl contains, among other things, the implementations
of the following predicates for difference lists:

• dAdd(+DL1,+DL2,-DL): binds DL to the deep list which represents the
result of appending the deep lists DL1 and DL2. For example,

?- dAdd([1,2,3,4|H1],[5,6,7|H2],DL).

H1 = [5,6,7|H2],

DL = dList([1,2,3,4,5,6,7|H2],H2).

• addToEnd(+DL,+E,-L) binds L to the list obtained from DL by adding
element E at its end. For example,

?- addToEnd(dList([1,2,3|H],H),4,L).

H=[4],

L=[1,2,3,4].

• member_open(?X,+DL) checks if X is an element of the list represented
by the deep list DL. For example,

?- member_open(X,dList([1,2|H],H)).

X=1 ;

X=2 ;

false.

We considered binary trees defined by the grammar

btree ::= nil | bt(integer, btree, btree)

and defined the following predicate on them (see Lecture 12):

• inorder(+BT,-L) binds L to the list of numbers in the binary tree
BT, in the order given by the inorder traversal of BT. The predicate is
implemented efficiently with difference lists.

We considered mazes consisting of rooms connected by doors, and repre-
sented by facts of the form

door1(A,B). % there is a door between rooms A and B

and defined the following predicates for mazes:

3

https://staff.fmi.uvt.ro/~mircea.marin/lectures/LFP/ListApp.pl
https://staff.fmi.uvt.ro/~mircea.marin/lectures/LFP/Curs-12.pdf

• go(+X,+Y,-Trail): binds Trail to a trail (or path) from X to Y, if
there is one,

A trail from X to Y is a list [X1, X2, . . . , Xn] of rooms, such that
X1 = X,Xn = Y, and for every 1 ≤ 1 < n, there is a door between
rooms Xi and Xi+1.

• goV2(+X,+Y,-Trail): does the same thing as goV2(+X,+Y,-Trail),
but it is more efficient because it is implemented with difference lists.

• goBF(+X,+Y,-Trail): finds a shortest trail from X to Y, if there is one,
with breadth-first search strategy. Here, ’shortest’ means ’minimum
number of edges’.

Proposed exercises II

Define the following predicates with difference lists:

1. flatten(DL,SL) which instantiates SL with the shallow list produced
by flattening the deep list DL.

2. preorder(BT,L) which instantiates L with the list of nodes in binary
tree BT produced by the preorder traversal of BT. For example,

?- preorder(bt(3,bt(1,bt(5,nil.nil),bt(7,nil,nil))

bt(4,nil,nil)),L).

L=[3,1,5,7,4].

3. postorder(BT,L) which instantiates L with the list of nodes in binary
tree BT produced by the postorder traversal of BT. For example,

?- postorder(bt(3,bt(1,bt(5,nil.nil),bt(7,nil,nil))

bt(4,nil,nil)),L).

L=[4,5,7,1,3].

4

	Deep lists
	Difference lists

