Lecture 13: Special Applications of LP

Mircea Marin
West University of Timigoara
mircea.marin@e-uvt.ro

May 24, 2021

mailto:mmarin@info.uvt.ro

1. Binary search trees

An integrated application

Requirements:

@ Manipulation of a simple binary search tree whose nodes
are indexed by integers (student ID), and satellite data is a
string (student name):

bst ::= nil | bt (key, string, bst, bst)
key ::= integer
@ Provide the user with a menu to choose and perform one
of the following possible actions:
@ Create an empty tree (the current tree).
@ Insert/modify a node in the current tree.
© Delete a node with a given key.
© Find a node with a given key and show its content
(=satellite data).
© Show the whole content of tree, in increasing order of the
key nodes.
@ Stop the application.

M. Marin LFP

1. Binary search trees

Data representation. Implementation of a menu

bt (4, "bill", (4,"bill"™)
bt (2, "andy", / \
bt (1, "bob",nil,nil),
T (2,"andy") (5, "john")
bt (3, "sam",nil,nil))

bt (5,"john",nil, nil)) / \

(1, "bob™") (3, "sam")

M. Marin

1. Binary search trees

Data representation. Implementation of a menu

bt (4, "bill", , "bill"™)
bt (2, "andy", /// \\\
bt (1, "bob",nil,nil),
(2 "andyll "jOhl’l")
bt (3, "sam",nil,nil)

bt (5,"john",nil, nil)) / \

(1, "bob™") (3, "sam")

menu (Tree) :—- nl,
writeln(’1l. Create empty tree’),
writeln(’2. Insert or modify node’),
writeln(’3. Delete node’),
writeln(’4. Find node’),
writeln(’5. Show tree’),
writeln(’6. Stop’),
write (' Type option number followed by dot:),
read(Q),0 \= 6,!,
action (Q, Tree,NewTree),
menu (NewTree) .

menu(_) :— writeln(’Stopped.’).

1. Binary search trees

Data representation. Implementation of a menu

bt (4, "bill", , "bill"™)
bt (2, "andy", /// \\\
bt (1, "bob",nil,nil),
(2 "andyll "jOhl’l")
bt (3, "sam",nil,nil)

bt (5,"john",nil, nil)) / \

(1, "bob™") (3, "sam")

menu (Tree) :—- nl,
writeln(’1l. Create empty tree’),
writeln(’2. Insert or modify node’),
writeln(’3. Delete node’),
writeln(’4. Find node’),
writeln(’5. Show tree’),
writeln(’6. Stop’),
write (' Type option number followed by dot:),
read(Q),0 \= 6,!,
action (Q, Tree,NewTree),
menu (NewTree) .

menu(_) :— writeln(’Stopped.’).

Remark: The program is started with 2-menu (nil) .

1. Binary search trees

The menu predicate: Implementation details

menu (+Tree)

1) takes as input the current binary search tree
2) displays a menu and asks the user to choose what to do:

read (—Q)

instantiates Q with the action number chosen by the user.
4) If 9 # 6, answer the sub-query

action (+Q, +Tree, -NewTree)

by performing action @ on the current tree Tree
= the current tree becomes NewTree, and computation
continues with menu (NewTree).
5) If 0 = 6, computation stops after printing the message
" Stopped.’.

M. Marin LFP

1. Binary search trees

Actions: tree creation; node insertion and modification

% tree creation
action(1l,_,nil).

M. Marin

1. Binary search trees

Actions: tree creation; node insertion and modification

% tree creation

action(1l,_,nil).

% node insertion or modification

action (2, Tree,NewTree) :-—
write (’Enter key: ’),read(K),
write ('Enter data: ’),read(D),
insert (K,D, Tree, NewTree) .

1. Binary search trees

Actions: tree creation; node insertion and modification

% tree creation

action(1l,_,nil).

% node insertion or modification

action (2, Tree,NewTree) :-—
write (’Enter key: ’),read(K),
write ('Enter data: ’),read(D),
insert (K,D, Tree, NewTree) .

o

% insert (+K, +D, +Tree, -NewTree)

1. Binary search trees

Actions: tree creation; node insertion and modification

% tree creation

action(1l,_,nil).

% node insertion or modification

action (2, Tree,NewTree) :-—
write (’Enter key: ’),read(K),
write ('Enter data: ’),read(D),
insert (K,D, Tree, NewTree) .

% insert (+K, +D, +Tree, -NewTree)
% base case 1
insert (K,D,nil,bt (K,D,nil,nil)) .

1. Binary search trees

Actions: tree creation; node insertion and modification

% tree creation

action(1l,_,nil).

% node insertion or modification

action (2, Tree,NewTree) :-—
write (’Enter key: ’),read(K),
write ('Enter data: ’),read(D),
insert (K,D, Tree, NewTree) .

% insert (+K, +D, +Tree, -NewTree)

% base case 1

insert (K,D,nil,bt (K,D,nil,nil)) .

% base case 2: node found = update satellite data

insert (K,D,bt (K,_,T1,T2),bt (K,D,T1,T2)) :— !.

1. Binary search trees

Actions: tree creation; node insertion and modification

% tree creation

action(1l,_,nil).

% node insertion or modification

action (2, Tree,NewTree) :-—
write (’Enter key: ’),read(K),
write ('Enter data: ’),read(D),
insert (K,D, Tree, NewTree) .

% insert (+K, +D, +Tree, -NewTree)

% base case 1

insert (K,D,nil,bt (K,D,nil,nil)) .

% base case 2: node found = update satellite data

insert (K,D,bt (K,_,T1,T2),bt (X,D,T1,T2)) :— !'.

% recursive case 1

insert (K,D, bt (K1,D1,T1,T2),bt (K1,D1,NewTl,T2)) :-
K<K1, !, insert (K,D,T1l,NewTl) .

% recursive case 2

insert (K,D,bt (K1,D1,T1,T2),bt (K1,D1,T1,NewT2)) :—
insert (K,D, T2, NewT2) .

1. Binary search trees

Node deletion (1)

% node deletion

action (3, Tree,NewTree) :-—
write ("Enter key of node to delete: '),
read(Key) ,elim(Key, Tree,NewTree) .

elim (+K, +Tree, -NewTree)

base case

elim(_,nil,nil) .

elim(K,bt (K1,D,T1,T2),bt (K1,D,NewTl,T2)) :-
K<K1l,!,elim(K,T1l,NewT1l) .

elim (K, bt (K1,D,T1,T2),bt (K1,D,T1l,NewT2)) :-—
K>K1,!,elim (K, T2,NewT2) .

elim(K,bt (K,_,nil,T2),T2):-!.

elim(K,bt (K,_,Tl,nil),T1) :-"!.

% recursive case: T1 and T2 are not nil

elim(K,bt (K,D,T1,T2),NewIree):— ... % See nextslide

o
°
)

°

M. Marin

1. Binary search trees

Node deletion: the recursive case (2)

How to delete the root node of bt (X, D, T1, T2) when both T1, T2
arenotnil?

Main idea: insert subtree T2 in T1, as right subtree of node P with
largest key in T1.
Note: P is the root of a binary search tree bt (K1,D1,T1,nil)

elim(K,bt (K,D,T1,T2),NewTree) :—
insertTree (T1l, T2, NewTree) .

insertTree (+Tree, +T, -NewTree)

binds NewTree to the result of inserting T in Tree,

as right subtree of the node with largest key in Tree
insertTree (bt (K,D,Tl,nil),T,bt (XK,D,T1,T)) :-"!.
insertTree (bt (K,D,T1,T2),T,bt (K,D,Tl,NewT2)) : -
insertTree (T2, T, NewT2) .

o® o o

M. Marin

1. Binary search trees

Action: node finding

% find a node

action (4, Tree, Tree) :-—
write ('Enter key of node to find: 7),
read (Key), findNode (Key, Tree) .

% findNode (+K, +Tree)

findNode (_,nil) :— writeln("Node not found").
findNode (K, bt (K,D, _,_)) :— 1!,

writeln (D) .
findNode (K, bt (K1,_,T1,_)) :— K<K1,!,

findNode (K, T1) .
findNode (K,bt (_,_,_,T2)) :-
findNode (K, T2) .

M. Marin

1. Binary search trees

Action: display tree content (in inorder)

action (5, Tree, Tree) :-—
showTree (Tree) .

% showTree (+Tree)

showTree (nil) .

showTree (bt (K,D,T1,T2)) :—
showTree (T1),
write('Key: ’),write(K),
write(’, data: '), writeln(D),
showTree (T2) .

M. Marin

Goal: Move n disks from peg 1 to peg 3

Rules of the game: move repeatedly only one disk from
one peg on another peg. A disk must always be taken from
top, and placed on the floor or on top of a larger disks.
Initial configuration: All disks are on peg 1, in decreasing
order of size.

Example (Goal: move n = 5 disks from peg 1 on peg 2)

peg 1 peg 2 peg 3

M. Marin LFP

Goal: Move n disks from peg 1 to peg 3

Rules of the game: move repeatedly only one disk from
one peg on another peg. A disk must always be taken from
top, and placed on the floor or on top of a larger disks.
Initial configuration: All disks are on peg 1, in decreasing
order of size.

Example (Goal: move n = 5 disks from peg 1 on peg 2)

ey

peg 1 peg 2 peg 3
We can decompose this goal into 3 subgoals:

M. Marin LFP

Goal: Move n disks from peg 1 to peg 3

Rules of the game: move repeatedly only one disk from
one peg on another peg. A disk must always be taken from
top, and placed on the floor or on top of a larger disks.
Initial configuration: All disks are on peg 1, in decreasing
order of size.

Example (Goal: move n = 5 disks from peg 1 on peg 2)

1 oo,

peg 1 peg 2 peg 3
We can decompose this goal into 3 subgoals:
@ Move all disks, except the largest one, from peg 1 to peg 3.

M. Marin LFP

Goal: Move n disks from peg 1 to peg 3

Rules of the game: move repeatedly only one disk from
one peg on another peg. A disk must always be taken from
top, and placed on the floor or on top of a larger disks.
Initial configuration: All disks are on peg 1, in decreasing
order of size.

Example (Goal: move n = 5 disks from peg 1 on peg 2)

1

peg 1 peg 2 peg 3
We can decompose this goal into 3 subgoals:
@ Move all disks, except the largest one, from peg 1 to peg 3.
© Move the largest disk from peg 1 on peg 2.

M. Marin LFP

Goal: Move n disks from peg 1 to peg 3

Rules of the game: move repeatedly only one disk from
one peg on another peg. A disk must always be taken from
top, and placed on the floor or on top of a larger disks.
Initial configuration: All disks are on peg 1, in decreasing
order of size.

Example (Goal: move n = 5 disks from peg 1 on peg 2)

ey

peg 1 peg 2 peg 3
We can decompose this goal into 3 subgoals:
@ Move all disks, except the largest one, from peg 1 to peg 3.
© Move the largest disk from peg 1 on peg 2.
© Move all disks from peg 3 on peg 2.

M. Marin LFP

2. Hanoi towers
Auxiliary predicates

@ hanoi (N) moves N disks from peg 1 to peg 2 using peg 3
as intermediary. It is assumed that, initially, the disks are
placed in decreasing order of their size.

@ move (+N, +A, +B, +C) moves the top N disks from peg A
to peg B, using peg C as an intermediary peg.

@ A movement from peg A to peg B is signaled by writing the
message move from A to B

hanoi (N) : —-move (N, 1,2, 3) .
move (0, _,_,_) :— '.
move (N,A,B,C) :-
M is N-1,
move (M,A,C,B),
write ("move from ’),write(d),
write(’ to ’),writeln(B),
move (M,C,B,A) .

M. Marin LFP

3. Weighted digraphs

Finding shortest paths from a source node with best-first strategy

@ Assume a weighted digraph whose arcs are represented
by facts
arc(X,Y, W)
where W is a numeric value for the weight of the arc from x
to v.

Example

arc (newcastle,carlisle, 58).
arc(carlisle,penrith, 23).
arc(smallville,metropolis,15).
arc (penrith,darlington, 52).
arc(smallville, ambridge, 10) .
arc (workington,carlisle, 33).
arc (workington, ambridge, 5) .
arc (workington, penrith, 39).
arc (darlington, metropolis, 25).

M. Marin LFP

3. Weighted digraphs

The best-first search strategy for weighted graphs

Best-first search strategy = adjustment of breadth-first search
strategy (for shortest paths, as number of edges), which finds a
path with minimum weight from a given source node to a given
destination node.

@ For every shortest path found so far, it retains a record of

its length
o r (W, [Xy, ..., Xo, X11) is a weight-annotated path.
It records the fact that [X1, ..., X,] is a shortest path from

Xi to X, with weight W. Note: W is the sum of weights of
arcs X1 — Xo, ..., Xn_1 — Xy of path [X1, Xo, ..., X;1.

@ Each time, best-first search selects and extends the path in
the record r (W, [X;,..., X5, X11) for which W has the

smallest value.

M. Marin LFP

3. Best-first search strategy for weighted graphs

Auxiliary predicates

propagate_min (+1, —R) takes as input a nonempty list L. of
shortest-path records, and binds R to a rearrangement of list
where a record with minimum weight occurs first.

propagate_min ([Rec], [Rec]) :—!.

propagate_min ([Rec|L], [A,B|T]) :—
propagate_min (L, [Recl|T]),
rearrange (Rec,Recl,A,B).

% rearrange (+R1, +R2, -A, -B) —- what is this doing?
rearrange (r (W1, Xs),r (W2,Ys),
r(W2,Ys), r(Wl,Xs)) :— W1l>W2,!.

rearrange (R1,R2,R1,R2) .

M. Marin LFP

3. Best-first search strategy for weighted graphs

Auxiliary predicates

propagate_min (+1, —R) takes as input a nonempty list L. of
shortest-path records, and binds R to a rearrangement of list
where a record with minimum weight occurs first.

propagate_min ([Rec], [Rec]) :—!.

propagate_min ([Rec|L], [A,B|T]) :—
propagate_min (L, [Recl|T]),
rearrange (Rec,Recl,A,B).

% rearrange (+R1, +R2, -A, -B) —- what is this doing?
rearrange (r (W1, Xs),r (W2,Ys),
r(W2,Ys), r(Wl,Xs)) :— W1l>W2,!.

rearrange (R1,R2,R1,R2) .

?-propagate min([zr (3, [a,x]),r (1, [b,x]),r (0, [x])],R).
a,

R = [r(0, [x]),r(3,[a,x]),r(l, [b,x])].

M. Marin

3. Best-first search strategy for weighted graphs

Auxiliary predicates

extension_ok (Y,[Xn, ..., Xi], W, NewW) holds if
@ [Xi,...,Xn]is a path from X;j to X, with weight W
@ arc (X, Y,D) is afact

@ Y ¢&[Xy,..., Xy, thusitis ok to build the extended path
[Xi,..., Xn, Y] with weight NewW = W + D

extension_ok (Y, [X|Xs],W,NewW) :—- arc(X,Y,D),
not (member (Y, [X|Xs])),NewW is W+D.

M. Marin LFP

3. Best-first search strategy for weighted graphs

Auxiliary predicates

extend (+WAPaths, +Y, -WAPath) binds WAPath to a
weight-annotated path wapath with minimum weight to destination v,
by extending with best-first strategy the weight-annotated paths from
the list wAPaths:

extend ([r (W, [Y|Xs])|_1,Y,r (W, [Y|Xs])) := !.
extend([r (W, Xs) |[Rs],Y,WAPath) :-—-
findall (r (NewW, [Z|Xs]),
extension_ok (Z,Xs, W, NewW) ,
Rsl),
append (Rs, Rsl, LsNew),
propagate_min (LsNew, RsNew) ,
extend (RsNew, Y, WAPath) .

M. Marin

3. Best-first search strategy for weighted graphs

Auxiliary predicates

best_path (+X,+Y, r (-W, -Path)) binds Path to a path with
minimum weight, if there is one, and w to its weight. The path is found
with best-first search strategy.

best_path (X, Y, r (W,Path)) :-
extend ([r (0, [X])],Y, (W, T)),
reverse (T,Path) .

M. Marin LFP

3. Best-first search strategy for weighted graphs

Auxiliary predicates

best_path (+X,+Y, r (-W, -Path)) binds Path to a path with
minimum weight, if there is one, and w to its weight. The path is found
with best-first search strategy.

best_path (X, Y, r (W,Path)) :-
extend ([r (0, [X])],Y, (W, T)),
reverse (T,Path) .

?— best_path (workington,darlington, WAPath) .
WAPath = r (91, [workington,penrith,darlington]).

M. Marin

References

@ Chapter 7 from
» W.F. Clocksin, C.S. Mellish. Programming in Prolog, Fifth
Edition. Springer 2003.
@ Section 9.4 from
» A. M. Florea, B. Dorohonceanu, C. Francu. Programare in
Prolog pentru Inteligenta Artificiala. Universitatea
“Politehnica” Bucuresti. 1997.

M. Marin LFP

