
L6: Functional and Logic Programming
Overloading and type classes.

Algebraic types

Mircea Marin
West University of Timişoara

mircea.marin@e-uvt.ro

M. Marin FLP

mailto:mmarin@info.uvt.ro

Functions which work over many types
Overloading and polymorphism

There are two ways to define a function which works over more
than one type:
Polymorphism: A function is polymorphic if it has a single

definition which works over many types.
length :: [a] -> Int
length [] = 0
length (_:xs) = 1+ length xs

Overloading: A function is overloaded if it has different
definitions with the same name over a variety of
types.

Addition (+) is defined over all numeric
types, with different definitions.
Equality (==) is defined over many types,
with different definitions.

M. Marin FLP

Why overloading?

-- List membership elem without overloading
elemBool :: Bool -> [Bool] -> Bool -- list of Bool
elemBool _ [] = False
elemBool x (y:ys) = (x ==Bool y) || elemBool x ys

elemInt :: Int -> [Int] -> Int -- list of Int
elemInt _ [] = False
elemInt x (y:ys) = (x ==Int y) || elemInt x ys

==Bool, ==Int are functions with different implementations.

With overloading we can define a type class Eq a

all types which are instances of Eq a have their own
implementation of boolean equality (==)

Bool and Int are instances of type class Eq a

elem :: Eq a => a -> [a] -> Bool
elem _ [] = False
elem x (y:ys) = (x == y) || elem x ys

M. Marin FLP

Why overloading?

-- List membership elem without overloading
elemBool :: Bool -> [Bool] -> Bool -- list of Bool
elemBool _ [] = False
elemBool x (y:ys) = (x ==Bool y) || elemBool x ys

elemInt :: Int -> [Int] -> Int -- list of Int
elemInt _ [] = False
elemInt x (y:ys) = (x ==Int y) || elemInt x ys

==Bool, ==Int are functions with different implementations.
With overloading we can define a type class Eq a

all types which are instances of Eq a have their own
implementation of boolean equality (==)

Bool and Int are instances of type class Eq a

elem :: Eq a => a -> [a] -> Bool
elem _ [] = False
elem x (y:ys) = (x == y) || elem x ys

M. Marin FLP

Advantages of overloading
Type classes: definition and instantiation

Reuse: The definition of elem can be used over all types
with equality (that is, types which are instances of
type class Eq a)

Readability: It is much easier to read == than ==Int and so on.

Haskell allows to define and instantiate type classes.

1 Defining the equality class:
class Eq a where

(==) :: a -> a -> Bool

2 Defining an instance of the equality class
instance Eq Bool where

True == True = True
False == False = True
_ == _ = False

M. Marin FLP

Advantages of overloading
Type classes: definition and instantiation

Reuse: The definition of elem can be used over all types
with equality (that is, types which are instances of
type class Eq a)

Readability: It is much easier to read == than ==Int and so on.
Haskell allows to define and instantiate type classes.

1 Defining the equality class:
class Eq a where

(==) :: a -> a -> Bool

2 Defining an instance of the equality class
instance Eq Bool where

True == True = True
False == False = True
_ == _ = False

M. Marin FLP

Advantages of overloading
Type classes: definition and instantiation

Reuse: The definition of elem can be used over all types
with equality (that is, types which are instances of
type class Eq a)

Readability: It is much easier to read == than ==Int and so on.
Haskell allows to define and instantiate type classes.

1 Defining the equality class:
class Eq a where
(==) :: a -> a -> Bool

2 Defining an instance of the equality class
instance Eq Bool where

True == True = True
False == False = True
_ == _ = False

M. Marin FLP

Advantages of overloading
Type classes: definition and instantiation

Reuse: The definition of elem can be used over all types
with equality (that is, types which are instances of
type class Eq a)

Readability: It is much easier to read == than ==Int and so on.
Haskell allows to define and instantiate type classes.

1 Defining the equality class:
class Eq a where
(==) :: a -> a -> Bool

2 Defining an instance of the equality class
instance Eq Bool where

True == True = True
False == False = True
_ == _ = False

M. Marin FLP

Defining functions for type classes
Example: Polymorphic functions which use equality

-- allEqual lst checks if all elements in lst are equal
allEqual :: Eq a => [a] -> Bool
allEqual [] = True
allEqual [_] = True
allEqual (x:y:xs) = (x==y) && allEqual (y:xs)

> allEqual [1,1,1] -- ok
True
> allEqual[(+),(+)] -- function types are not instances of Eq a
error:
...

M. Marin FLP

Declaring a class
Running example: the Visible class

-- class definition
class Visible a where

toString :: a -> String
size :: a -> Int

Visible things can be viewed using the toString function. Also,
we can get an estimate of their size with the size function.

-- instantiate Bool to be Visible
instance Visible Bool where

toString True = "True"
toString False = "False"
size _ = 1

-- lists of Visible are Visible
instance Visible a => Visible [a] where

toString = concat . map toString
size = foldr (+) 1 . map size

M. Marin FLP

Built-in type classes
Eq and Ord

class Eq a where
(==),(/=) :: a -> a -> Bool
x /= y = not (x==y) -- default definition
x == y = not (x/=y) -- default definition

class Eq a => Ord a where
(<), (<=), (>), (>=) :: a -> a -> Bool
max, min :: a -> a -> Bool
compare :: a -> a -> Ordering
x <= y = (x < y || x == y)
x > y = y < x
max x y
| x >= y = x
| otherwise = y

min x y
| x <= y = x
| otherwise = y

REMARK: Ord is inheriting the operations of Eq.

M. Marin FLP

Built-in type classes
Eq and Ord

class Eq a where
(==),(/=) :: a -> a -> Bool
x /= y = not (x==y) -- default definition
x == y = not (x/=y) -- default definition

class Eq a => Ord a where
(<), (<=), (>), (>=) :: a -> a -> Bool
max, min :: a -> a -> Bool
compare :: a -> a -> Ordering
x <= y = (x < y || x == y)
x > y = y < x
max x y

| x >= y = x
| otherwise = y

min x y
| x <= y = x
| otherwise = y

REMARK: Ord is inheriting the operations of Eq.

M. Marin FLP

Built-in type classes
Eq and Ord

class Eq a where
(==),(/=) :: a -> a -> Bool
x /= y = not (x==y) -- default definition
x == y = not (x/=y) -- default definition

class Eq a => Ord a where
(<), (<=), (>), (>=) :: a -> a -> Bool
max, min :: a -> a -> Bool
compare :: a -> a -> Ordering
x <= y = (x < y || x == y)
x > y = y < x
max x y

| x >= y = x
| otherwise = y

min x y
| x <= y = x
| otherwise = y

REMARK: Ord is inheriting the operations of Eq.
M. Marin FLP

Functions over ordered types
Example: insertion sort

ins x [] = [x]
ins x (y:ys)
| x<= y = x:(y:ys)
| otherwise =y:ins x ys

iSort [] = []
iSort (x:xs) = ins x (iSort xs)

> :type ins
ins :: Ord t => t -> [t] -> [t]
> :type iSort
iSort :: Ord a => [a] -> [a]
> iSort [7,1,3,2,9,8,10]
[1,2,3,7,8,9,10]

REMARK: Haskell can compute the most general type of ins
and iSort.

M. Marin FLP

Functions over ordered types
Example: insertion sort

ins x [] = [x]
ins x (y:ys)
| x<= y = x:(y:ys)
| otherwise =y:ins x ys

iSort [] = []
iSort (x:xs) = ins x (iSort xs)

> :type ins
ins :: Ord t => t -> [t] -> [t]
> :type iSort
iSort :: Ord a => [a] -> [a]
> iSort [7,1,3,2,9,8,10]
[1,2,3,7,8,9,10]

REMARK: Haskell can compute the most general type of ins
and iSort.

M. Marin FLP

Multiple constraints
Examples

-- multiple inheritance
class (Ord a, Visible a) => OrdVis a

-- multiple constraints in instance declaration
instance (Eq a,Eq b) => Eq (a,b) where

(x,y) == (z,w) = x == z && y == w

M. Marin FLP

More built-in type classes
Enum

Enum types can be used to generate lists like [2,4,6,8] using
enumeration expressions like [2,4..8]. The class definition is

class Ord a => Enum a where
toEnum :: Int a
fromEnum :: a -> Int
enumFrom :: a -> [a] -- [n ..]
enumFromThen :: a -> a -> [a] -- [n,m ..]
enumFromTo :: a -> a -> [a] -- [n .. m]
enumFromThenTo :: a -> a -> a -> [a] -- [n,n’ .. m]

Char and Int are instances of Enum

Examples of built-in functions defined on Enum types:

succ,pred :: Enum a => a -> a -- successor and predecessor
succ = toEnum . (+1) . fromEnum
pred = toEnum . (subtract 1) . fromEnum

M. Marin FLP

More built-in type classes
Enum

Enum types can be used to generate lists like [2,4,6,8] using
enumeration expressions like [2,4..8]. The class definition is

class Ord a => Enum a where
toEnum :: Int a
fromEnum :: a -> Int
enumFrom :: a -> [a] -- [n ..]
enumFromThen :: a -> a -> [a] -- [n,m ..]
enumFromTo :: a -> a -> [a] -- [n .. m]
enumFromThenTo :: a -> a -> a -> [a] -- [n,n’ .. m]

Char and Int are instances of Enum

Examples of built-in functions defined on Enum types:

succ,pred :: Enum a => a -> a -- successor and predecessor
succ = toEnum . (+1) . fromEnum
pred = toEnum . (subtract 1) . fromEnum

M. Marin FLP

More built-in type classes
Enum

Enum types can be used to generate lists like [2,4,6,8] using
enumeration expressions like [2,4..8]. The class definition is

class Ord a => Enum a where
toEnum :: Int a
fromEnum :: a -> Int
enumFrom :: a -> [a] -- [n ..]
enumFromThen :: a -> a -> [a] -- [n,m ..]
enumFromTo :: a -> a -> [a] -- [n .. m]
enumFromThenTo :: a -> a -> a -> [a] -- [n,n’ .. m]

Char and Int are instances of Enum

Examples of built-in functions defined on Enum types:

succ,pred :: Enum a => a -> a -- successor and predecessor
succ = toEnum . (+1) . fromEnum
pred = toEnum . (subtract 1) . fromEnum

M. Marin FLP

More built-in type classes
Show

Show is a type class for types whose values can be written as strings.

type ShowS = String -> String
showsPrec :: Int -> a -> ShowS
show :: a -> String
showList :: [a] -> ShowS

Possible instance declarations might be

instance (Show a,Show b) => Show (a,b) where
show (x,y) = "(" ++ show x ++ "," ++ show y ++ ")"

M. Marin FLP

More built-in type classes
Show

Show is a type class for types whose values can be written as strings.

type ShowS = String -> String
showsPrec :: Int -> a -> ShowS
show :: a -> String
showList :: [a] -> ShowS

Possible instance declarations might be

instance (Show a,Show b) => Show (a,b) where
show (x,y) = "(" ++ show x ++ "," ++ show y ++ ")"

M. Marin FLP

Algebraic types
What types did we see until now?

Basic types: Int, Integer, Float, Double, Bool, Char
Composite types:

tuple types (T1,T2, . . . ,Tn)
list types [T1]
function types (T1->T2) where T1,T2, . . . ,Tn are
themselves types.

In Haskell, programmers can define their own data types, with
the data construct (see next slide).

M. Marin FLP

Algebraic types
What types did we see until now?

Basic types: Int, Integer, Float, Double, Bool, Char
Composite types:

tuple types (T1,T2, . . . ,Tn)
list types [T1]
function types (T1->T2) where T1,T2, . . . ,Tn are
themselves types.

In Haskell, programmers can define their own data types, with
the data construct (see next slide).

M. Marin FLP

Algebraic types
A first example

1 A data type for numeric trees:
data NTree = NilT

| Node Integer NTree NTree

This data declaration defines two things:
1 A type constructor: NTree
2 Two data constructors: NilT (for the empty tree) and Node

for a tree with two subtrees.

Note: NTree is a recursive type.

2 The predefined Maybe type – used in modeling program
errors:
data Maybe a = Nothing | Just a

Note: Maybe is a polymorphic type.

M. Marin FLP

Algebraic types
A first example

1 A data type for numeric trees:
data NTree = NilT

| Node Integer NTree NTree

This data declaration defines two things:
1 A type constructor: NTree
2 Two data constructors: NilT (for the empty tree) and Node

for a tree with two subtrees.

Note: NTree is a recursive type.
2 The predefined Maybe type – used in modeling program

errors:
data Maybe a = Nothing | Just a

Note: Maybe is a polymorphic type.

M. Marin FLP

Algebraic type definitions

data Typename
= Con1 T1,1 . . . T1,k1
| Con2 T2,1 . . . T2,k2

...
| Conn Tn,1 . . . Tn,kn

Each data constructor Coni is followed by ki types. We
build elements of type Typename by applying these data
constructors to arguments of the types given in the
definition , so that
Coni vi,1 . . . vi,ki
will be a member of the type Typename if vi,j is of type
Ti,j for 1 ≤ j ≤ ki.

Note: The data declaration defines every Coni as a function
with the type

Coni :: Ti,1− > . . . Ti,ki -> Typename

M. Marin FLP

A algebraic type for geometric shapes

data Shape = Circle Float | Rectangle Float Float

Definitions over algebraic types use pattern matching both to
distinguish between different alternatives and to extract
components from particular elements:

area :: Shape -> Float
area (Circle r) = pi*r*r
area (Rectangle a b) = a*b

When we introduce a ned algebraic type, we can derive
instances of built-in type classes, including Eq, Ord, Enum,
Show, and Read.
Example:

data Season = Spring | Summer | Autumn | Winter
deriving (Eq,Ord,Enum,Show,Read)

E.g., we can write [Spring..Autumn] instead of
[Spring,Summer,Autumn].

M. Marin FLP

A algebraic type for geometric shapes

data Shape = Circle Float | Rectangle Float Float

Definitions over algebraic types use pattern matching both to
distinguish between different alternatives and to extract
components from particular elements:

area :: Shape -> Float
area (Circle r) = pi*r*r
area (Rectangle a b) = a*b

When we introduce a ned algebraic type, we can derive
instances of built-in type classes, including Eq, Ord, Enum,
Show, and Read.
Example:

data Season = Spring | Summer | Autumn | Winter
deriving (Eq,Ord,Enum,Show,Read)

E.g., we can write [Spring..Autumn] instead of
[Spring,Summer,Autumn].

M. Marin FLP

Recursive algebraic types
Example: arithmetic expressions

data Expr = Lit Integer |
Add Expr Expr |
Sub Expr Expr

Given an expression, we might want to
1 evaluate it (eval)
2 turn it into a string, which is then printed
3 estimate its size: how many operators does it have?

eval :: Expr -> Integer
show :: Expr -> String
size :: Expr -> Integer
...

M. Marin FLP

Recursive algebraic types
Example: numeric binary trees

data NTree = NilT | Node Integer NTree NTree

Define the functions

sumtree, depth :: NTree -> Integer
occurs :: NTree -> Integer -> Integer

such that
sumtree nt returns the sum of numbers in nt

depth nt returns the depth of]tt nt. For example,
depth NilT must be 0.
occurs nt p returns how many times number p occurs
in nt.

M. Marin FLP

Recursive types
Quiz: rearranging expressions

Addition of integers is associative⇒ we may want to write a
program that turns expressions into right bracketed form, as
shown in the following table:

Initial expression Right bracketed result
(2 + 3) + 4 2 + (3 + 4)
((2 + 3) + 4) + 5 2 + (3 + (4 + 5))
((2− ((6 + 7) + 8)) + 4) + 5 (2− (6 + (7 + 8))) + (4 + 5)

Define a recursive function rassoc::Expr->Expr that does
this transformation.

M. Marin FLP

Recursive types
Quiz: rearranging expressions (continued)

First attempt
rassoc :: Expr->Expr
rassoc (Lit n) = Lit n
rassoc (Add (Add e1 e2) e3) = Add e1 (Add e2 e3)
rassoc (Add e1 e2) = Add (rassoc e1) (rassoc e2)
rassoc (Sub e1 e2) = Sub (rassoc e1) (rassoc e2)

1 Is this definition doing the desired transformation? Why/why not?

2 Find a better implementation (Second attempt).

M. Marin FLP

Recursive types
Quiz: rearranging expressions (continued)

First attempt
rassoc :: Expr->Expr
rassoc (Lit n) = Lit n
rassoc (Add (Add e1 e2) e3) = Add e1 (Add e2 e3)
rassoc (Add e1 e2) = Add (rassoc e1) (rassoc e2)
rassoc (Sub e1 e2) = Sub (rassoc e1) (rassoc e2)

1 Is this definition doing the desired transformation? Why/why not?

2 Find a better implementation (Second attempt).

M. Marin FLP

Recursive types
Quiz: rearranging expressions (continued)

First attempt
rassoc :: Expr->Expr
rassoc (Lit n) = Lit n
rassoc (Add (Add e1 e2) e3) = Add e1 (Add e2 e3)
rassoc (Add e1 e2) = Add (rassoc e1) (rassoc e2)
rassoc (Sub e1 e2) = Sub (rassoc e1) (rassoc e2)

1 Is this definition doing the desired transformation? Why/why not?

2 Find a better implementation (Second attempt).

M. Marin FLP

Polymorphic algebraic types

Algebraic type definitions can contain type variables a,b and so
on, defining polymorphic types. The definitions are as before,
with the type variables used in the definition appearing after the
type name on the left side of the definition.

Example (Polymorphic pairs)
data Pairs a = Pr a a

Then

Pr True False :: Pairs Bool
Pr [] [3] :: Pairs [Int]
Pr [] [] :: Pairs [a]

We can define

equalPair :: Eq a => Pairs a -> Bool
equalPair (Pr x y) = (x==y)

M. Marin FLP

Polymorphic algebraic types
Example: Binary trees

data Tree a = Nil | Node a (Tree a) (Tree a)
deriving (Eq,Ord,Show,Read)

Elements have arbitrary type a.
The definitions of depth and occurs from NTree remain
unchanged for (Tree a).

M. Marin FLP

References

Chapter 13: Overloading, type classes and type checking and
Chapter 14: Algebraic types from

Simon Thompson: Haskell: The Craft of Functional
Programming. Second edition. Pearson Addison Wesley.
1999.

M. Marin FLP

