L6: Functional and Logic Programming Overloading and type classes. Algebraic types

Mircea Marin
West University of Timişoara
mircea.marin@e-uvt.ro

Functions which work over many types

Overloading and polymorphism

There are two ways to define a function which works over more than one type:
Polymorphism: A function is polymorphic if it has a single definition which works over many types.

$$
\begin{aligned}
& \text { length :: [a] -> Int } \\
& \text { length }[]=0 \\
& \text { length }\left(_: x s\right)=1+\text { length } x s
\end{aligned}
$$

Overloading: A function is overloaded if it has different definitions with the same name over a variety of types.

- Addition (+) is defined over all numeric types, with different definitions.
- Equality (==) is defined over many types, with different definitions.

Why overloading?

```
-- List membership elem without overloading
elemBool :: Bool -> [Bool] -> Bool -- list of Bool
elemBool _ [] = False
elemBool x (y:ys) = (x ===_Bool y) | | elemBool x ys
elemInt :: Int -> [Int] -> Int -- list of Int
elemInt _ [] = False
elemInt x (y:ys) = (x ===Int y) | | elemInt x ys
```

$==_{\text {Bool }},==_{\text {Int }}$ are functions with different implementations.

Why overloading?

```
-- List membership elem without overloading
elemBool :: Bool -> [Bool] -> Bool -- list of Bool
elemBool _ [] = False
elemBool x (y:ys) = (x ===_Bool y) || elemBool x ys
elemInt :: Int -> [Int] -> Int -- list of Int
elemInt _ [] = False
elemInt x (y:ys) = (x ===Int y) | | elemInt x ys
```

$==_{\text {Bool }},==_{\text {Int }}$ are functions with different implementations.
With overloading we can define a type class Eq a

- all types which are instances of Eq a have their own implementation of boolean equality ($==$)
- Bool and Int are instances of type class Eq a

```
elem :: Eq a => a -> [a] -> Bool
elem _ [] = False
elem x (y:ys) = (x == y) || elem x ys
```


Advantages of overloading

Type classes: definition and instantiation

Reuse: The definition of elem can be used over all types with equality (that is, types which are instances of type class Eq a)
Readability: It is much easier to read $==$ than $==_{\text {Int }}$ and so on.

Advantages of overloading

Type classes: definition and instantiation

Reuse: The definition of elem can be used over all types with equality (that is, types which are instances of type class Eq a)
Readability: It is much easier to read $==$ than $==_{\text {Int }}$ and so on. Haskell allows to define and instantiate type classes.

Advantages of overloading

Type classes: definition and instantiation

Reuse: The definition of elem can be used over all types with equality (that is, types which are instances of type class Eq a)
Readability: It is much easier to read $==$ than $==_{\text {Int }}$ and so on. Haskell allows to define and instantiate type classes.
(1) Defining the equality class:

```
class Eq a where
    (==) :: a -> a -> Bool
```


Advantages of overloading

Type classes: definition and instantiation

Reuse: The definition of elem can be used over all types with equality (that is, types which are instances of type class Eq a)
Readability: It is much easier to read $==$ than $==_{\text {Int }}$ and so on. Haskell allows to define and instantiate type classes.
(1) Defining the equality class:
class Eq a where
(==) :: a -> a -> Bool
(2) Defining an instance of the equality class

$$
\begin{aligned}
& \text { instance Eq Bool where } \\
& \text { True }==\text { True }=\text { True } \\
& \text { False }==\text { False } \\
&=\text { True } \\
&-==-\quad=\text { False }
\end{aligned}
$$

Defining functions for type classes

Example: Polymorphic functions which use equality

-- allEqual lst checks if all elements in lst are equal
allEqual :: Eq a $=>$ [a] -> Bool
allEqual [] $\quad=$ True
allEqual [_] = True
allEqual (x:y:xs) = (x==y) \&\& allEqual (y:xs)
> allEqual [1,1,1] -- ok
True
> allEqual $[(+),(+)] \quad-$ function types are not instances of Eq a error:

Declaring a class

Running example: the Visible class

```
-- class definition
class Visible a where
    toString :: a -> String
```

 size :: a -> Int
 Visible things can be viewed using the tostring function. Also, we can get an estimate of their size with the size function.

```
-- instantiate Bool to be Visible
instance Visible Bool where
    toString True = "True"
    toString False = "False"
    size - \(=1\)
-- lists of Visible are Visible
instance Visible a => Visible [a] where
    toString \(=\) concat . map toString
    size \(=\) foldr (+) 1 . map size
```


Built-in type classes

Eq and Ord
class Eq a where

$$
\begin{array}{lll}
(==),(/=):: ~ a ~->~ a ~ & \text { Bool } \\
x /=y=\operatorname{not}(x==y) & & -- \text { default definition } \\
x=y=\operatorname{not}(x /=y) & & -- \text { default definition }
\end{array}
$$

Built-in type classes

Eq and Ord
class Eq a where

$$
\begin{array}{lll}
(==),(/=):: ~ a ~->~ a ~ & \text { Bool } \\
x /=y=\operatorname{not}(x==y) & & -- \text { default definition } \\
x=y=\operatorname{not}(x /=y) & & -- \text { default definition }
\end{array}
$$

class Eq a $=>$ Ord a where

$$
\begin{aligned}
& (<), \quad(<=), \quad(>), \quad(>=):: a->a->\text { Bool } \\
& \max , \min :: a->a->\text { Bool } \\
& \text { compare }:: a->a->\text { Ordering } \\
& x<=y=(x<y \quad| | x==y) \\
& x>y=y<x \\
& \max x y \\
& \quad \mid x>=y \\
& \quad \text { otherwise }=y
\end{aligned}
$$

$$
\min x y
$$

$$
\mid x<=y \quad=x
$$

$$
\mid \text { otherwise }=y
$$

Built-in type classes

Eq and Ord
class Eq a where

$$
\begin{aligned}
& (==),(/=): \text { a } \rightarrow \text { a } \rightarrow \text { Bool } \\
& x /=y=\operatorname{not}(x==y) \quad-- \text { default definition } \\
& x==y=\operatorname{not}(x /=y) \quad-- \text { default definition }
\end{aligned}
$$

class Eq a $=>$ Ord a where

$$
\begin{aligned}
& (<), \quad(<=), \quad(>), \quad(>=): \text { a }->\text { a }->\text { Bool } \\
& \text { max, min : : a }->\text { a }->\text { Bool } \\
& \text { compare : }: ~ a \rightarrow \text { a } \rightarrow \text { Ordering } \\
& x<=y=(x<y| | x==y) \\
& x>y=y<x \\
& \max x y \\
& \mid x>=y \quad=x \\
& \text { | otherwise }=Y \\
& \min x y \\
& \mid x<=y \quad=x \\
& \text { | otherwise }=Y
\end{aligned}
$$

REMARK: Ord is inheriting the operations of Eq.

Functions over ordered types

Example: insertion sort

```
ins \(x\) [] \(=[x]\)
ins \(x\) (y:ys)
    \(\mid x<=y \quad=x:(y: y s)\)
    | otherwise =y:ins x ys
iSort [] = []
iSort (x:xs) \(=\) ins \(x\) (iSort \(x\) )
> :type ins
ins : : Ord \(t=>\) t \(->\) [t] \(->\) [ \(t]\)
> :type iSort
iSort : : Ord a => [a] -> [a]
\(>\) iSort \([7,1,3,2,9,8,10]\)
\([1,2,3,7,8,9,10]\)
```


Functions over ordered types

Example: insertion sort

```
ins x [] = [x]
ins x (y:ys)
    | x<= y = x:(y:ys)
    | otherwise =y:ins x ys
iSort [] = []
iSort (x:xs) = ins x (iSort xs)
> :type ins
ins :: Ord t => t -> [t] -> [t]
> :type iSort
iSort :: Ord a => [a] -> [a]
> iSort [7,1,3,2,9,8,10]
[1,2,3,7,8,9,10]
```

Remark: Haskell can compute the most general type of ins and isort.

Multiple constraints

Examples

-- multiple inheritance
class (Ord a, Visible a) => OrdVis a
-- multiple constraints in instance declaration
instance (Eq a,Eq b) => Eq (a,b) where
$(x, y)==(z, w)=x==z \& \& y==w$

More built-in type classes

Enum

Enum types can be used to generate lists like $[2,4,6,8]$ using enumeration expressions like $[2,4 . .8]$. The class definition is

```
class Ord a => Enum a where
    toEnum :: Int a
    fromEnum :: a -> Int
    enumFrom :: a -> [a] -- [n .. ]
    enumFromThen :: a -> a -> [a] -- [n,m ..]
    enumFromTo :: a -> a -> [a] -- [n .. m]
    enumFromThenTo :: a -> a -> a -> [a] -- [n,n' .. m]
```


More built-in type classes

Enum

Enum types can be used to generate lists like [2, 4, 6, 8] using enumeration expressions like $[2,4 \ldots 8]$. The class definition is

```
class Ord a => Enum a where
    toEnum :: Int a
    fromEnum :: a -> Int
    enumFrom :: a }->>[\textrm{a}]\quad--[n .. 
    enumFromThen :: a }->>\mathrm{ a }->>\mathrm{ [a] -- [n,m ..]
    enumFromTo :: a -> a -> [a] -- [n ..m]
    enumFromThenTo :: a -> a -> a -> [a] -- [n,n' .. m]
```

- Char and Int are instances of Enum

More built-in type classes

Enum

Enum types can be used to generate lists like $[2,4,6,8]$ using enumeration expressions like $[2,4 . .8]$. The class definition is

```
class Ord a => Enum a where
    toEnum :: Int a
    fromEnum :: a -> Int
    enumFrom : : a m [a] -- [n .. ]
    enumFromThen :: a m a -> [a] -- [n,m ..]
    enumFromTo :: a -> a -> [a] -- [n ..m]
    enumFromThenTo :: a ma a -> a -> [a] -- [n,n' .. m]
```

- Char and Int are instances of Enum
- Examples of built-in functions defined on Enum types:

```
succ,pred :: Enum a => a -> a -- successor and predecessor
succ = toEnum . (+1) . fromEnum
pred = toEnum . (subtract 1) . fromEnum
```


More built-in type classes

Show

Show is a type class for types whose values can be written as strings.

```
type ShowS = String -> String
showsPrec :: Int -> a -> ShowS
show :: a -> String
showList : : [a] -> ShowS
```


More built-in type classes

Show

Show is a type class for types whose values can be written as strings.

```
type ShowS = String -> String
showsPrec :: Int -> a -> ShowS
show :: a }->\mathrm{ String
showList : : [a] -> ShowS
```

Possible instance declarations might be

```
instance (Show a,Show b) => Show (a,b) where
    show (x,y) = "(" ++ show x ++ "," ++ show y ++ ")"
```


Algebraic types

What types did we see until now?

- Basic types: Int, Integer, Float, Double, Bool, Char
- Composite types:
- tuple types ($\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{\mathrm{n}}$)
- list types [T_{1}]
- function types ($\mathrm{T}_{1}->\mathrm{T}_{2}$) where $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{\mathrm{n}}$ are themselves types.

Algebraic types

What types did we see until now?

- Basic types: Int, Integer, Float, Double, Bool, Char
- Composite types:
- tuple types ($\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{\mathrm{n}}$)
- list types [T_{1}]
- function types ($\mathrm{T}_{1}->\mathrm{T}_{2}$) where $\mathrm{T}_{1}, \mathrm{~T}_{2}, \ldots, \mathrm{~T}_{\mathrm{n}}$ are themselves types.
In Haskell, programmers can define their own data types, with the data construct (see next slide).

Algebraic types

A first example
(1) A data type for numeric trees:

```
data NTree = NilT
    | Node Integer NTree NTree
```

This data declaration defines two things:
(1) A type constructor: NTree
(2) Two data constructors: Nilt (for the empty tree) and Node for a tree with two subtrees.
Note: NTree is a recursive type.

Algebraic types

A first example

(1) A data type for numeric trees:

```
data NTree = NilT
    | Node Integer NTree NTree
```

This data declaration defines two things:
(1) A type constructor: NTree
(2) Two data constructors: NilT (for the empty tree) and Node for a tree with two subtrees.
Note: NTree is a recursive type.
(2) The predefined Maybe type - used in modeling program errors:
data Maybe $a=$ Nothing | Just a
Note: Maybe is a polymorphic type.

Algebraic type definitions

data Typename

$$
\begin{aligned}
& =\operatorname{Con}_{1} \mathrm{~T}_{1,1} \ldots \mathrm{~T}_{1, \mathrm{k}_{1}} \\
& \text { | } \operatorname{Con}_{2} \quad \mathrm{~T}_{2,1} \ldots \mathrm{~T}_{2, \mathrm{k}_{2}} \\
& \text { ••• } \\
& \text { | } \operatorname{Con}_{\mathrm{n}} \mathrm{~T}_{\mathrm{n}, 1} \ldots \mathrm{~T}_{\mathrm{n}, \mathrm{k}_{\mathrm{n}}}
\end{aligned}
$$

- Each data constructor $\mathrm{Con}_{\mathrm{i}}$ is followed by k_{i} types. We build elements of type Typename by applying these data constructors to arguments of the types given in the definition, so that
$\operatorname{Con}_{i} \quad \mathrm{v}_{\mathrm{i}, 1} \ldots \mathrm{v}_{\mathrm{i}, \mathrm{k}_{\mathrm{i}}}$
will be a member of the type Typename if $\mathrm{v}_{\mathrm{i}, \mathrm{j}}$ is of type $\mathrm{T}_{\mathrm{i}, \mathrm{j}}$ for $1 \leq j \leq \mathrm{k}_{\mathrm{i}}$.
Note: The dat a declaration defines every $\mathrm{Con}_{\mathrm{i}}$ as a function with the type

Con $_{i}:: \mathrm{T}_{\mathrm{i}, 1}->\ldots \mathrm{T}_{\mathrm{i}, \mathrm{k}_{\mathrm{i}}}$-> Typename

A algebraic type for geometric shapes

```
data Shape = Circle Float | Rectangle Float Float
```

- Definitions over algebraic types use pattern matching both to distinguish between different alternatives and to extract components from particular elements:

```
area :: Shape -> Float
area (Circle r) = pi*r*r
area (Rectangle a b) = a*b
```


A algebraic type for geometric shapes

data Shape $=$ Circle Float \mid Rectangle Float Float

- Definitions over algebraic types use pattern matching both to distinguish between different alternatives and to extract components from particular elements:

```
area :: Shape -> Float
area (Circle r) = pi*r*r
area (Rectangle a b) = a*b
```

- When we introduce a ned algebraic type, we can derive instances of built-in type classes, including Eq, Ord, Enum, Show, and Read.
Example:

$$
\begin{aligned}
\text { data Season }= & \text { Spring | Summer | Autumn | Winter } \\
& \text { deriving (Eq,Ord, Enum, Show, Read) }
\end{aligned}
$$

E.g., we can write [Spring. .Autumn] instead of [Spring, Summer, Autumn].

Recursive algebraic types

Example: arithmetic expressions

$$
\begin{aligned}
\text { data Expr }= & \text { Lit Integer } \\
& \text { Add Expr Expr } \\
& \text { Sub Expr Expr }
\end{aligned}
$$

Given an expression, we might want to
(1) evaluate it (eval)
(2) turn it into a string, which is then printed
(3) estimate its size: how many operators does it have?

```
eval :: Expr -> Integer
show :: Expr -> String
size :: Expr -> Integer
```


Recursive algebraic types

Example: numeric binary trees

data NTree $=$ NilT \mid Node Integer NTree NTree
Define the functions
sumtree, depth : : NTree $->$ Integer
occurs : : NTree -> Integer -> Integer
such that

- sumtree nt returns the sum of numbers in nt
- depth nt returns the depth of]tt nt. For example, depth NilT must be 0 .
- occurs nt p returns how many times number p occurs in $n t$.

Recursive types

Quiz: rearranging expressions

Addition of integers is associative \Rightarrow we may want to write a program that turns expressions into right bracketed form, as shown in the following table:

Initial expression	Right bracketed result
$(2+3)+4$	$2+(3+4)$
$((2+3)+4)+5$	$2+(3+(4+5))$
$((2-((6+7)+8))+4)+5$	$(2-(6+(7+8)))+(4+5)$

Define a recursive function rassoc: :Expr->Expr that does this transformation.

Recursive types

Quiz: rearranging expressions (continued)

First attempt

```
rassoc :: Expr->Expr
rassoc (Lit n) = Lit n
rassoc (Add (Add e1 e2) e3) = Add e1 (Add e2 e3)
rassoc (Add e1 e2) = Add (rassoc e1) (rassoc e2)
rassoc (Sub e1 e2) = Sub (rassoc e1) (rassoc e2)
```


Recursive types

Quiz: rearranging expressions (continued)

First attempt

```
rassoc :: Expr->Expr
rassoc (Lit n) = Lit n
rassoc (Add (Add e1 e2) e3) = Add e1 (Add e2 e3)
rassoc (Add e1 e2) = Add (rassoc e1) (rassoc e2)
rassoc (Sub e1 e2) = Sub (rassoc e1) (rassoc e2)
```

(1) Is this definition doing the desired transformation? Why/why not?

Recursive types

Quiz: rearranging expressions (continued)

First attempt

```
rassoc :: Expr->Expr
rassoc (Lit n) = Lit n
rassoc (Add (Add e1 e2) e3) = Add e1 (Add e2 e3)
rassoc (Add e1 e2) = Add (rassoc e1) (rassoc e2)
rassoc (Sub e1 e2) = Sub (rassoc e1) (rassoc e2)
```

(1) Is this definition doing the desired transformation? Why/why not?
(2) Find a better implementation (Second attempt).

Polymorphic algebraic types

Algebraic type definitions can contain type variables a, b and so on, defining polymorphic types. The definitions are as before, with the type variables used in the definition appearing after the type name on the left side of the definition.

Example (Polymorphic pairs)

```
data Pairs a = Pr a a
```

Then
Pr True False : : Pairs Bool
Pr [] [3] :: Pairs [Int]
Pr [] [] :: Pairs [a]
We can define

```
equalPair :: Eq a => Pairs a -> Bool
equalPair
(Pr x y) = (x==y)
```


Polymorphic algebraic types

Example: Binary trees

$$
\begin{aligned}
\text { data Tree } a= & \text { Nil } \mid \text { Node } a \text { (Tree a) (Tree a) } \\
& \text { deriving (Eq, Ord,Show, Read) }
\end{aligned}
$$

- Elements have arbitrary type a.
- The definitions of depth and occurs from NTree remain unchanged for (Tree a).

References

Chapter 13: Overloading, type classes and type checking and
Chapter 14: Algebraic types from
Simon Thompson: Haskell: The Craft of Functional Programming. Second edition. Pearson Addison Wesley. 1999.

