# Lecture 5 <br> Lazy evaluation. Introduction to Haskell 

Mircea Marin<br>West University of Timișoara mircea.marin@e-uvt.ro

Computation by evaluation

Computation (in FP) $=$ evaluation
$=$ sequence of reduction steps that replace a redex with the result of applying a rule of reduction. It stops when we reach a value.

- The most common redexes are function calls, also known as $\beta$-redexes. They are reduced with the rule of $\beta$-reduction

$$
\underbrace{\lambda\left(x_{1} \ldots x_{n}\right) \cdot \text { block } t_{1} \ldots t_{n}}_{\beta \text {-redex }} \rightarrow \underbrace{\left[t_{1} / x_{1}, \ldots, t_{n} / x_{n}\right] \text { block }}_{\text {capture-free substitution }}
$$

- The redexes that are not function calls are called special forms. Every special form has its own rule of reduction, which must be learned separately, from the language specification.


## Computation by evaluation

## Examples of special forms in Racket

- (if $\left.\begin{array}{lll}v & t_{1} & t_{2}\end{array}\right) \rightarrow \begin{cases}t_{1} & \text { if } v \text { is a true value, } \\ t_{2} & \text { if } v \text { is value \#f. }\end{cases}$
- (or $t_{1} \ldots t_{n}$ ) $\rightarrow \begin{cases}\# f & \text { if all } t_{i} \text { s have value \#f, } \\ v_{i} & \text { if } v_{i} \text { is the first true value of a } t_{i} \text {. }\end{cases}$
- (and $\left.t_{1} \ldots t_{n}\right) \rightarrow \ldots$
- (let $\left(\left[x_{1} t_{1}\right] \ldots\left[x_{n} t_{n}\right]\right)$ block) $\rightarrow \ldots$
- (cond [test block $_{1}$ ] ... [test ${ }_{n}$ block $_{n}$ ]) $\rightarrow \ldots$


## Remarks

- Some special forms are syntactic sugar
- The preprocessor of the language translates them (before compilation) into equivalent forms, that produce same result
- Syntactic sugar is easier to write than the equivalent forms
- The other special forms should be as few as possible, to avoid learning too many rules of reduction.


## Recap

## Evaluation strategies

Often, there are many redexes $\Rightarrow$ many ways to compute the same value. Also, some choices can produce infinite computations.

## Example

(define (f x) (cons x (f (+ x 1))))
Remark: (f 3) will run forever, trying to compute the infinite list

```
'(3 4 5 6 7 8 ...)
```

There are many ways to evaluate $(+\underbrace{(+12)}_{\text {redex }}(\operatorname{car} \underbrace{(f 3)}_{\text {redex }}))$ :

```
(+ (+ 1 2) (car (f 3))) ->(+ 3 (car (f 3)))
    ->(+ 3 (car (cons 3 (f 4)))) }->(+3\mathrm{ 3) }->
(+ (+ 1 2) (car (f 3))) ) (+ (+ 1 2) (car (cons 3 (f 4))))
    ->(+ 3 (car (cons 3 (f 4)))) -> (+ 3 (car (cons 3 (cons 4 (f 5)))))
    ->(+ 3 3) }->
(+ (+ 1 2) (car (f 3))) ->(+ 3 (car (f 3))) }->(+3(\operatorname{car (cons 3 (f 4))))
    ->(+3 (car (cons 3 (cons 4 (f 5))))) }->\ldots...\quad\mathrm{ runs forever
```


## Evaluation strategies

Programming languages implement only one way to compute a value, called evaluation strategy. The most popular evaluation strategies are:

- Strict (or call-by-value) evaluation: A function call is reduced only after the function arguments are reduced to values.
$\Rightarrow$ the selected redex is the leftmost innermost (but not in the body of a function definition)
Racket performs strict evaluation.
- Lazy (or call-by-name) evaluation: A function call is reduced as soon as the arguments contain enough information to perform $\beta$-reduction.
Call-by-need evaluation is an optimized implementation of lazy evaluation, which reduces all duplicates of a redex only once (see also Lecture 2).
- Intuition: expression are evaluated on demand, until they contain the information needed to compute the overall result. Haskell performs call-by-need evaluation.


## Lazy evaluation

Case study: Haskell

We will practice lazy functional programming with Haskell.

- Download Haskell for your own platform (Windows, Linux or Mac OS X) from https://www.haskell.org/platform/
The platform includes GHCi , which allows to
- interactively evaluate Haskell expressions
- interpret Haskell programs
- load GHC-compiled modules

To start a GHCi session, type ghci at the command prompt:
\$ ghci
GHCi, version 8.4.3: http://www.haskell.org/ghc/ :? for help Prelude>

- You will learn at labs 5 and 6 how to use GHCi to interact with Haskell.
- We will explain the important differences between Racket and Haskell


## A crash course to Haskell

## Syntax

A function call $f\left(\arg _{1} \ldots \arg _{b}\right)$ is written as

- ( $f \arg _{1}^{\prime} \ldots \arg _{n}^{\prime}$ ) in Racket
- $f \arg _{1}^{\prime} \ldots \arg _{n}^{\prime}$ in Haskell

A list with elements $e_{1}, \ldots, e_{n}$ is written as $\left[e_{1}, \ldots, e_{n}\right]$ in Haskell

- All elements $e_{1}, \ldots, e_{n}$ must have same type
- The empty list is []

Some binary functions, such as '+' are written in infix syntax. between their arguments (compare $x+y$ with $f x y$ ).

- Infix functions are called operators. Their names do not contain any numbers or letters of the alphabet.
- To avoid using many parentheses, most operators have predefined precedence and associativity rules. E.g., we write
$x+y+z$ instead of $(x+y)+z$ because + is left associative
$x+y * z$ instead of $x+(y * z)$ because $*$ has higher precedence


## Other rules of disambiguation

- Function application has higher priority than operator application. Example: $f x+g y$ is parsed as $(f x)+(g y)$
- Function application is left-associative: $f x y z$ is parsed as (((fx)y)z).
- Operator application $x$ op $y$ can be converted into function application, by writing (op) $x y$.
Examples:
$3+4 \rightarrow 7$
(+) $34 \rightarrow 7$
- Binary function application $f x y$ can be converted into operator application, by writing $x$ ' $f$ ' $y$.
- Example. mod is a predefined binary function: mod $m \mathrm{n}$ returns the remainder of dividing integer $m$ by integer $n$.
$\bmod 83 \rightarrow 2$
8 'mod' $3 \rightarrow 2$
- A short list of useful predefined functions and operators can be found here.

Every expression has an associated type. The following types are predefined:

- Bool - the type of Boolean values True and False Int - fixed precision integers between $-2^{29}$ and $2^{29-} 1$ Integer - arbitrary precision integers
Char - characters, like 'a', 'A', '!', ', ', 'z', 'Z'
Float - floating-point numbers with single-word precision
Double - floating-point numbers with double-word precision
The most important composite types are lists and tuples:
- If $T$ is a type, then [ $T$ ] is the type of lists $\left[v_{1}, \ldots, v_{n}\right]$ with elements $v_{1}, \ldots, v_{n}$ of type $T$. The empty list is []. Example: [1, $2,3,4]$ is a list of type [Int].
- If $T_{1}, \ldots, T_{n}$ are types, then ( $T_{1}, \ldots, T_{n}$ ) is the type of tuples $\left(v_{1}, \ldots, v_{n}\right)$ with $v_{1}$ of type $T_{1}, \ldots, v_{n}$ of type $T_{n}$. Example: [(1, 'A'), ( 2, ' $\left.x^{\prime}\right)$ ] is a list of tuples; it has type [(Int, Char)]
- The values of simple types. like Int, Char and Float, are literals. Examples of literals: 1, 'A', 3.14
- The values of composite types are built by applying data constructors to component values.
- The constructors of lists are [], _:-, and [...]
- The constructor of tuples is (...)


## Remarks.

- True and False are nullary data constructors.
- Data constructors are a special kind of functions: they are used to build composite values.
- In Haskell, the names of data constructors can not start with a lowercase letter.
- Users can define their own composite types.


## More about lists

The operator ':' is a right-associative data constructor for lists

- $x$ : $x s$ is the list obtained by adding $x$ in front of list $x s$ Remark: $\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is syntactic sugar for $x_{1}: x_{2}: \ldots: x_{n}$ : []
The following operations on lists are predefined:
- $x s++y s$ appends lists $x s$ and $y s$.
- head xs returns first element of xs, and tail xs returns the tail of list xs.
- length xs computes the length of list $x s$.
- reverse xs reverses list xs.
- take n xs returns the list of first n elements of list xs . If xs has less than n elements, it returns xs .

A string coincides with the list of its component characters. For example, we can write (and see) "abc" instead of ['a', 'b' , 'c']. Strings have type [Char]

## Definitions

A Haskell definition gives a name (or identifier) to an expression of a particular type.

```
name :: type
name = expression
```

-- declare name of type type
-- creates a binding of name to expression

Example:
$\mathrm{x}, \mathrm{y}::$ Int
$\mathrm{x}=12+13$
$y=y+1$
-- declare $x, y$ of type Int
-- example of a recursive binding

- comments start with '--' and are ignored by the compiler
- If we omit type declarations, Haskell tries to infer the type of name from the type of expression
- there are very few cases when this is impossible.
- expression is not evaluated: the environment stores a binding of name to expression.


## Functions

## Simple definitions

- If $T_{1}, T_{2}$ are types then $T_{1}->T_{2}$ is the type of functions which map inputs of type $T_{1}$ to results of type $T_{2}$.

$$
\begin{aligned}
& \text { REMARK: } T_{1} \rightarrow T_{2} \rightarrow \ldots \rightarrow T_{n} \rightarrow T \text { is parsed as } \\
& T_{1} \rightarrow\left(T_{2} \rightarrow\left(\ldots \rightarrow\left(T_{n} \rightarrow T\right) \ldots\right)\right)
\end{aligned}
$$

- We can define $f=\lambda x_{1} . \cdots . \lambda x_{n}$.expr where every $x_{i}$ has type type $T_{1}$ and the result has type $T$, by writing

$$
\begin{aligned}
& f:: T_{1} \text {-> } \ldots \text {-. } T_{n} \rightarrow T \\
& f x_{1} \ldots x_{n}=\text { expr }
\end{aligned}
$$

## Example (A function to compute the area of a rectangle)

rectArea : : Float -> Float -> Float
rectArea $\mathrm{x} \mathrm{y}=\mathrm{x} * \mathrm{y}$
binds rectArea to $\lambda \mathrm{x}::$ Float. $\lambda \mathrm{y}::$ Float. $(x * y)$
rectArea $34=\underline{\lambda x} \cdot \lambda y \cdot(\mathrm{x} * \mathrm{y}) 34 \rightarrow \underline{\lambda y} \cdot(3 * y) 4$
$\rightarrow 3 * 4 \rightarrow 12$

## Functions

## Lambda expressions

Both Racket and Haskell allow us to work with lambda expressions, but with different syntax. For example $\lambda x \cdot \lambda y .(x * y)$ is written
(lambda (x) (lambda (y) (+ x y))) in Racket
\x y -> x*y in Haskell
Remark. In Haskell, \x y z -> expr is shorthand for
\x -> \y -> \z -> expr

## Example

$$
\begin{aligned}
& \text { f : : Float -> Float -> Float } \\
& f=\backslash x \text { y } \rightarrow x * y \quad-- \text { same as } f x y=x * y \\
& \text { f } 34=(\backslash \mathrm{x} \mathrm{y} \rightarrow \mathrm{x} * \mathrm{y}) 34 \\
& \rightarrow \text { (\y -> 3*y) 4 } \\
& \rightarrow \underline{3 * 4} \\
& \rightarrow 12
\end{aligned}
$$

## Patterns

Pattern $=$ expression defined by the grammar
patt ::= _ | variable | literal | C patt ${ }_{1} \ldots$ patt $_{n}$
where $C$ is a data constructor with arity $n$ and every variable occurs at most once.
'_' is called anonymous variable.

## Examples of patterns

```
(x,y,z) -- pattern for tuples with 3 components
True:xs -- pattern for list of Booleans starting with True
[(1,'c'),_] -- pattern for list of two tuples of type (Int,Char)
    -- starting with tuple (1, 'c')
```

The following are not patterns:

| $(\mathrm{x}, \mathrm{x})$ | -- variable x occurs twice |
| :--- | :--- |
| length $\mathrm{x}: \mathrm{xs}$ | -- length x is not data constructor |

## Pattern matching

We can try to match pattern patt with a value $v$. The matching attempt can fail or succeed. If it succeeds, we get
a substitution, called matcher, that binds the variables in patt to component values from $v$.

- the anonymous variable '_' matches any value.

| Pattern patt | Value $v$ | match(patt, v) |
| :---: | :---: | :---: |
| ( $\mathrm{x}, \mathrm{y}$ ) | (1,True) | [1/x, True/y] |
| ( $\mathrm{x}, \mathrm{H}):(\mathrm{l}, \mathrm{y}): \mathrm{z}$ | $[(1,2),(3,4)]$ | [1/x, 4/y, []/z] |
| -:- | [] | fail |
| [-, x, , ] | $[1,2,3]$ | [2/x] |

## Pattern matching

We can try to match pattern patt with a value $v$. The matching attempt can fail or succeed. If it succeeds, we get
a substitution, called matcher, that binds the variables in patt to component values from $v$.

- the anonymous variable '_' matches any value.

| Pattern patt | Value $v$ | match $($ patt,$v)$ |
| :--- | :--- | :--- |
| $(\mathrm{x}, \mathrm{y})$ | $(1$, True $)$ | $[1 / \mathrm{x}$, True $/ \mathrm{y}]$ |
| $\left(\mathrm{x}, \mathrm{I}_{-}\right):\left(\mathrm{C}_{-}, \mathrm{y}\right): \mathrm{z}$ | $[(1,2),(3,4)]$ | $[1 / \mathrm{x}, 4 / \mathrm{y},[] / \mathrm{z}]$ |
| $-:_{-}$ | [] | fail |
| $\left[_{-}, \mathrm{x}, \mathrm{H}_{-}\right]$ | $[1,2,3]$ | $[2 / \mathrm{x}]$ |

Modern functional programming languages, including Haskell, allow us to define functions with pattern matching (see next.)

## Function definitions by pattern matching

A function $f:: T_{1}->\ldots->T_{n}->T$ can be defined by $k \geq 1$ equations
$f$ patt $_{1,1} \ldots$ patt $_{1, n}=$ expr $_{1}$
$f$ patt $_{k, 1} \ldots$ patt $_{k, n}=\operatorname{expr}_{n}$
which satisfy the condition that every
( patt $_{i, 1}, \ldots$, patt $_{i, n}$ ) can match a value of type ( $T_{1}, \ldots, T_{n}$ )

How do we evaluate ( $f$ expr $r_{1} \ldots$ expr $_{m}$ ) for $m \leq n$ ?

```
for i from 1 to k
```



```
    [0]= match((patti,1 , .., patti,m}),(\mp@subsup{expri}{1}{\prime},\ldots,\mp@subsup{exprrm}{m}{\prime}))\mathrm{ succeeds or fails
    if [0]= fail
    continue
else
```



```
    break
```

This kind of computation is called call-by-need (or lazy) reduction.

## Function definitions by pattern matching

## Examples

(1) A function to concatenate two lists (it does the same thing as the operator ++):
app [] ys = ys
app (x:xs) ys = x:(app xs ys)
(2) A function to get the $n$-th element of a list:
nth 1 ( $\mathrm{x}: \mathrm{f}_{\mathrm{f}}$ ) $=\mathrm{x}$
nth $n\left(\_: x s\right)=n t h(n-1) x s$
(3) A function that computes the infinite list $[n, n+1, n+2, \ldots]$ for an integer n :
intsFrom::Integer-> [Integer]
intsFrom $\mathrm{n}=\mathrm{n}$ :intsFrom ( $\mathrm{n}+1$ )
(3) The infinite list of natural numbers, starting from 1 :
nats $=$ intsFrom 1

A definitional equation of the form

$$
\begin{aligned}
f & \text { patt }_{1} \ldots \text { patt } \\
= & \text { if } \text { test }_{1}
\end{aligned} \quad \begin{aligned}
& \text { then expr } \\
& \text { else if test }
\end{aligned}
$$

can be rewritten in the more readable form
f patt par $_{1}$... patt ${ }_{n}$
| test $_{1} \quad=$ expr $_{1}$
| test $_{2}=$ expr $_{2}$
| otherwise $=$ expr $_{n}$
The blue-colored parts are called guards.
Remark. Indentation is important in Haskell: indent with the same amount!

## Examples of lazy evaluation

- Computing the infinite list of natural numbers:

$$
\begin{aligned}
\text { nats } & =\text { intsFrom } 1 \rightarrow 1: \text { intsFrom } 2 \\
& \rightarrow 1: 2: \text { intsFrom } 3 \rightarrow \ldots
\end{aligned}
$$

- never ending computation
- GHCi displays the list elements, as they are are generated progressively (on demand)
- Compute the second element of nats: nth 2 nats $=$ nth 2 intsFrom 1
$\rightarrow_{[1 / \mathrm{n}]}$ nth 2 (1:intsFrom 2)
$\rightarrow_{[2 / n,(\text { intsFrom } 2) / x s]}$ nth 1 intsFrom 2 -- red. on demand
$\rightarrow[2 / \mathrm{n}]$ nth 1 (2:intsFrom 3)
$\rightarrow_{[2 / \mathrm{x}]} 2$


## Remarks

- Lazy languages allow us to define and work with infinite data structures (e.g., nats), because reduction is on demand
- Strict languages (e.g., Racket) try to compute the complete values of function arguments $\Rightarrow$ nonterminating reductions.


## More examples

In lazy languages, many special forms can be defined as functions that are evaluated on demand. For example:
(1) if is a special form in Racket, but in Haskell we can define it as a function:
if': :Bool->a->a->a
if' True $x_{1}=x$
if' False _ y = y
REmark: if' has a polymorphic type: the branches and result of if' must have same type, which can be any type a.
(2) A function definition of boolean operator \&\& for conjunction:

> and False _ = False
and True $\mathrm{x}=\mathrm{x}$
(3) The Boolean operator \|| for disjunction is a special form in Racket, but we can define it as a function in Haskell (how?).

## More examples

## A lazy definition of the stream of Fibonacci numbers

Quiz: Use Haskell to define the infinite list $\mathrm{fib}=\left[f_{1}, f_{2}, f_{3}, \ldots\right]$ of Fibonacci numbers, where $f_{1}=f_{2}=1$ and $f_{n}=f_{n-1}+f_{n-2}$ if $n>2$. Use the fact that, if we add componentwise fib with tail fib we obtain

$$
\begin{aligned}
\text { fib }=\left[\begin{array}{llllll}
f_{1}, & f_{2}, & f_{3}, & f_{4}, & \ldots & ]
\end{array}\right] \\
\text { tail fib }=\left[\begin{array}{llllll}
f_{2}, & f_{3}, & f_{4}, & f_{5}, & \ldots & ]
\end{array}\right]
\end{aligned}
$$

Note that tail is a predefined function in Haskell.

## More examples

A lazy definition of the stream of Fibonacci numbers
Quiz: Use Haskell to define the infinite list $\mathrm{fib}=\left[f_{1}, f_{2}, f_{3}, \ldots\right]$ of Fibonacci numbers, where $f_{1}=f_{2}=1$ and $f_{n}=f_{n-1}+f_{n-2}$ if $n>2$. Use the fact that, if we add componentwise fib with tail fib we obtain

$$
\begin{aligned}
\text { fib }=\left[\begin{array}{llllll}
f_{1}, & f_{2}, & f_{3}, & f_{4}, & \ldots & ]
\end{array}\right] \\
\text { tail fib }=\left[\begin{array}{llllll}
f_{2}, & f_{3}, & f_{4}, & f_{5}, & \ldots & ]
\end{array}\right]
\end{aligned}
$$

Note that tail is a predefined function in Haskell.

## Haskell solution:

-- this auxiliary function adds componentwise
-- two infinite lists of numbers
addLists :: [Integer] -> [Integer] -> [Integer]
addLists ( $x: x s$ ) ( $y: y s$ ) $=(x+y):$ addLists $x s$ ys
fib:: [Integer]
fib = 1:1:addLists fib (tail fib)

## More examples

A lazy definition of the stream of Fibonacci numbers (continued)

Finding the $n$-th Fibonacci number nthFib $n=n t h n f i b$

Example (Computation of the 3-rd Fibonacci number)

```
nthFib 3 [ [3/n,1:1:(addLists fib (tail fib))/fib]
    nth 3 1:1:addLists fib (tail fib)
    [3/n,1:addLists fib (tail fib)/xs] nth 2 1:addLists fib (tail fib)
    [2/n,addLists fib (tail fib)/xs] nth 1 addLists fib (tail fib)
    = nth 1 addLists (1:1:addLists fib (tail fib))
                        tail (1:1:addLists fib (tail fib))
    -> nth 1 addLists (1:1:addLists fib (tail fib))
        (1:addLists fib (tail fib))
    -> nth 1 2:addLists (1:addLists fib (tail fib))
    ->2
```


## Higher-order functions on lists

(1) -- map has definition like in Racket
map: : (a->b) $->[\mathrm{a}]->[\mathrm{b}]$
map _ [] $=$ []
map $f(x: x s)=(f x):(m a p ~ f x s)$
(2) filter::(a -> Bool) -> [a] -> [a]
filter _ [] = []
filter $p$ ( $x: x s$ ) $=$ if ( $p$ x)
then filter p xs
else x:filter p xs
(3) -- foldl $f$ v lst behaves like
-- (foldl (lambda x y) (f y x) v lst) in Racket
foldl::(b -> a -> b) -> b -> [a] -> b
foldl _ v [] = v
foldl f $v(x: x s)=$ foldl $f(f \quad v x) x s$
-- foldr behaves like in Racket
foldr::(a -> b -> b) -> b -> [a] -> b
foldr f v lst = foldl ( $\backslash x$ y->f y x) v (reverse lst)

## Higher-order functions on lists

(1) -- map has definition like in Racket
map: : (a->b) $->[\mathrm{a}]->[\mathrm{b}]$
map _ [] $=$ []
map $f(x: x s)=(f x):(m a p ~ f x s)$
(2) filter::(a -> Bool) -> [a] -> [a]
filter _ [] = []
filter $p$ ( $x: x s$ ) = if ( x )
then filter $p$ xs
else x:filter p xs
(3) -- foldl $f$ v lst behaves like
-- (foldl (lambda x y) (f y x) v lst) in Racket
foldl::(b -> a -> b) -> b -> [a] -> b
foldl _ v [] = v
foldl f $v(x: x s)=$ foldl $f(f \quad v x) x s$
-- foldr behaves like in Racket
foldr::(a -> b -> b) -> b -> [a] -> b
foldr f v lst $=$ foldl ( $\mathrm{x}_{\mathrm{x}} \mathrm{y}->\mathrm{f} \mathrm{y}$ x) v (reverse lst)

## Remarks

In Haskell, all functions have a fixed arity $\Rightarrow$ there is no function equivalent to apply.

## Another example: Hamming numbers

A Hamming number is of the form $2^{i} 3^{j} 5^{k}$ where $i, j, k$ are non-negative integers. The first five Hamming numbers are:

$$
1=2^{0} 3^{0} 5^{0} \quad 2=2^{1} 3^{0} 5^{0} \quad 3=2^{0} 3^{1} 5^{0} \quad 4=2^{2} 3^{0} 5^{0} \quad 5=2^{0} 3^{0} 5^{1}
$$

Quiz: Generate the list ham of all Hamming numbers in ascending order. Make use of the following observations:
(1) The list starts with 1.
(2) Every Hamming number $h>1$ is of the form $a \cdot h^{\prime}$ where $a \in\{2,3,5\}$ and $h^{\prime}$ is a Hamming number

## Another example: Hamming numbers

A Hamming number is of the form $2^{i} 3^{j} 5^{k}$ where $i, j, k$ are non-negative integers. The first five Hamming numbers are:

$$
1=2^{0} 3^{0} 5^{0} \quad 2=2^{1} 3^{0} 5^{0} \quad 3=2^{0} 3^{1} 5^{0} \quad 4=2^{2} 3^{0} 5^{0} \quad 5=2^{0} 3^{0} 5^{1}
$$

Quiz: Generate the list ham of all Hamming numbers in ascending order. Make use of the following observations:
(1) The list starts with 1 .
(2) Every Hamming number $h>1$ is of the form $a \cdot h^{\prime}$ where $a \in\{2,3,5\}$ and $h^{\prime}$ is a Hamming number
$\Rightarrow$ the tail of ham is obtained by merging the following lists in increasing order

$$
\begin{aligned}
& \operatorname{map}(\backslash x->2 * x) \text { ham }- \text { Hamming numbers multiple of } 2 \\
& \operatorname{map}(\backslash x->3 * x) \text { ham } \\
& \text { map }(\backslash x->5 * x) \text { hamming numbers multiple of } 3 \\
& \text {-- Hamming numbers multiple of } 5
\end{aligned}
$$

## Another example: Hamming numbers

A Hamming number is of the form $2^{i} 3^{j} 5^{k}$ where $i, j, k$ are non-negative integers. The first five Hamming numbers are:

$$
1=2^{0} 3^{0} 5^{0} \quad 2=2^{1} 3^{0} 5^{0} \quad 3=2^{0} 3^{1} 5^{0} \quad 4=2^{2} 3^{0} 5^{0} \quad 5=2^{0} 3^{0} 5^{1}
$$

Quiz: Generate the list ham of all Hamming numbers in ascending order. Make use of the following observations:
(1) The list starts with 1 .
(2) Every Hamming number $h>1$ is of the form $a \cdot h^{\prime}$ where $a \in\{2,3,5\}$ and $h^{\prime}$ is a Hamming number
$\Rightarrow$ the tail of ham is obtained by merging the following lists in increasing order

$$
\begin{array}{lll}
\operatorname{map}(\backslash x->2 * x) & \text { ham } & --H a m m i n g ~ n u m b e r s ~ m u l t i p l e ~ o f ~ \\
2 \\
\operatorname{map}(\backslash x->3 * x) & \text { ham } & \text {-- Hamming numbers multiple of } 3 \\
\operatorname{map}(\backslash x->5 * x) \text { ham } & \text {-- Hamming numbers multiple of } 5
\end{array}
$$

$\Rightarrow$ Define an auxiliary function merge xs ys to merge two infinite lists of numbers which are in strict increasing order. The result should contain all numbers in strict increasing order.

## Some nice features of Haskell

## Sections

If $o p$ is a binary operator and $v$ some value, we can write ( $v o p$ ) instead of $\backslash \mathrm{x} \rightarrow$ ( $v$ op x )
(op $v$ ) instead of $\backslash \mathrm{x}->$ ( x op $v$ )
These abbreviations are called sections.

## Example

$>\operatorname{map}(+3)[1,2,4]$-- increment all list elements by 3
$[4,5,7]$
> filter (5<) $[6,2,7,4,9]$-- keep the numbers > 5
[6, 7,9$]$

## Hamming numbers (contd.)

```
merge::[Integer]-> [Integer]-> [Integer]
merge (x:xs) (y:ys)
    | (x<y) = x:merge xs (y:ys)
    | (x==y) = x:merge xs ys
    | otherwise = y:merge (x:xs) ys
ham::[Integer]
ham = 1:merge (merge (map (*2) ham)
                                (map (*3) ham))
(map (*5) ham)
```

We can get the first $n$ Hamming number with the predefined function take:
> take 20 ham -- get the first 20 Hamming numbers
$[1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,27,30,32,36]$

## Local definitions in Haskell

In Racket, we can work with blocks.
Haskell has no blocks but the following constructs:
let
definition $_{1}$-- can be function definitons, too

```
    definitionn
in expr
or
expr where definition \(_{1}\) definition \(_{n}\)
```

Remark. All local definition should be indented with same non-empty amount.

## Some nice features of Haskell

## List comprehensions

If $m, n$ are integers, then

- $[m . . n]$ is the list of numbers from $m$ to $n$
- [m..] is the list of numbers starting from $m$, in increasing order
- Other list comprehensions, by example:

```
\(>\) [2*i | i<- [2..6]]
[4, \(6,8,10,12]\)
```

$>$ [i | i<-[1..50],i 'mod' 7==0]
[7, 14, 21, 28, 35, 42, 49]
$>\left[(a, b, c) \mid a<-[1 . .10], b<-[1 . .10], c<-[1 . .10], a^{\wedge} 2+b^{\wedge} 2==c^{\wedge} 2\right]$
$[(3,4,5),(4,3,5),(6,8,10),(8,6,10)]$
$>$ lst $=[(i, j) \mid i<-[1 .],. j<-[1 .]$.
> take 6 lst
$[(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)]$

What is the $n$-th element of lst?

## Quiz

Consider the following definitions:

```
sieve1,sieveAll::[Integer]-> [Integer]
sieve1 (x:xs) = x:filter (\y->(mod y x) > 0) xs
sieveAll (x:xs)
    = x:sieveAll (filter (\y->(mod y x) > 0) xs)
```

- What does sieve1 [n..] compute for $\mathrm{n} \in \mathbb{N}, \mathrm{n}>1$ ?

Suggestion: check the results returned by take 10 (sieve1 [n..]) for $n \in\{2,3,4\}$

- What does sieve1 [1..] compute?

Does the computation terminate?

- What does sieveAll [2..] compute?

Suggestion: check the result returned by take 20 (sieveAll [2..])
(1) Simon Thompson. Haskell: the craft of functional programming. Third Edition. Pearson Education Limited. 2011.
(2) Paul Hudak. The Haskell School of Expression. Learning Functional Programming through Multimedia. Cambridge University Press. 2007 (8th printing)

