
Lecture 5
Lazy evaluation.

Introduction to Haskell

Mircea Marin
West University of Timişoara
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Recap
Computation by evaluation

Computation (in FP) = evaluation
= sequence of reduction steps that replace a redex
with the result of applying a rule of reduction.
It stops when we reach a value.

The most common redexes are function calls, also known as
β-redexes. They are reduced with the rule of β-reduction

λ(x1 . . . xn).block t1 . . . tn︸ ︷︷ ︸
β-redex

→ [t1/x1, . . . , tn/xn]block︸ ︷︷ ︸
capture-free substitution

The redexes that are not function calls are called special
forms. Every special form has its own rule of reduction, which
must be learned separately, from the language specification.
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Computation by evaluation
Examples of special forms in Racket

(if v t1 t2) →
{

t1 if v is a true value,
t2 if v is value #f.

(or t1 . . . tn) →
{

#f if all ti s have value #f,
vi if vi is the first true value of a ti .

(and t1 . . . tn) → . . .

(let ([x1 t1] . . . [xn tn]) block) → . . .

(cond [test1 block1] ... [testn blockn]) → . . .

Remarks

Some special forms are syntactic sugar

The preprocessor of the language translates them (before
compilation) into equivalent forms, that produce same result
Syntactic sugar is easier to write than the equivalent forms

The other special forms should be as few as possible, to avoid
learning too many rules of reduction.
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Recap
Evaluation strategies

Often, there are many redexes ⇒ many ways to compute the same
value. Also, some choices can produce infinite computations.

Example

(define (f x) (cons x (f (+ x 1))))

Remark: (f 3) will run forever, trying to compute the infinite list

’(3 4 5 6 7 8 ...)

There are many ways to evaluate (+ (+ 1 2)︸ ︷︷ ︸
redex

(car (f 3)︸ ︷︷ ︸
redex

)):

(+ (+ 1 2) (car (f 3))) → (+ 3 (car (f 3)))

→ (+ 3 (car (cons 3 (f 4)))) → (+ 3 3) → 6

(+ (+ 1 2) (car (f 3))) → (+ (+ 1 2) (car (cons 3 (f 4))))

→ (+ 3 (car (cons 3 (f 4)))) → (+ 3 (car (cons 3 (cons 4 (f 5)))))

→ (+ 3 3) → 6

(+ (+ 1 2) (car (f 3)))→ (+ 3 (car (f 3))) → (+ 3 (car (cons 3 (f 4))))

→ (+ 3 (car (cons 3 (cons 4 (f 5))))) → . . . runs forever

M. Marin LFP



Evaluation strategies

Programming languages implement only one way to compute a
value, called evaluation strategy. The most popular evaluation
strategies are:

Strict (or call-by-value) evaluation: A function call is reduced
only after the function arguments are reduced to values.

⇒ the selected redex is the leftmost innermost (but not in the
body of a function definition)

Racket performs strict evaluation.

Lazy (or call-by-name) evaluation: A function call is reduced
as soon as the arguments contain enough information to
perform β-reduction.
Call-by-need evaluation is an optimized implementation of
lazy evaluation, which reduces all duplicates of a redex only
once (see also Lecture 2).

Intuition: expression are evaluated on demand, until they
contain the information needed to compute the overall result.

Haskell performs call-by-need evaluation.
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Lazy evaluation
Case study: Haskell

We will practice lazy functional programming with Haskell.

Download Haskell for your own platform (Windows, Linux or
Mac OS X) from https://www.haskell.org/platform/

The platform includes GHCi, which allows to

interactively evaluate Haskell expressions

interpret Haskell programs

load GHC-compiled modules
To start a GHCi session, type ghci at the command prompt:

$ ghci

GHCi, version 8.4.3: http://www.haskell.org/ghc/ :? for help

Prelude>

You will learn at labs 5 and 6 how to use GHCi to interact with Haskell.

We will explain the important differences between Racket and Haskell
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A crash course to Haskell
Syntax

A function call f (arg1 . . . argb) is written as

(f arg ′
1 . . . arg ′

n) in Racket

f arg ′
1 . . . arg ′

n in Haskell

A list with elements e1, . . . , en is written as [e1, . . . , en] in Haskell

All elements e1, . . . , en must have same type

The empty list is []

Some binary functions, such as ’+’ are written in infix syntax. between
their arguments (compare x + y with f x y).

Infix functions are called operators. Their names do not contain any
numbers or letters of the alphabet.

To avoid using many parentheses, most operators have predefined
precedence and associativity rules. E.g., we write

x+y+z instead of (x+y)+z because + is left associative
x+y*z instead of x+(y*z) because * has higher precedence
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Other rules of disambiguation

Function application has higher priority than operator
application. Example: f x + g y is parsed as (f x) + (g y)

Function application is left-associative: f x y z is parsed as
(((f x) y) z).

Operator application x op y can be converted into function
application, by writing (op) x y .

Examples:
3 + 4 → 7

(+) 3 4 → 7

Binary function application f x y can be converted into
operator application, by writing x ‘f ‘ y .

Example. mod is a predefined binary function: mod m n returns
the remainder of dividing integer m by integer n.

mod 8 3 → 2

8 ‘mod‘ 3 → 2

A short list of useful predefined functions and operators can
be found here.
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Types

Every expression has an associated type. The following types are
predefined:

Bool – the type of Boolean values True and False

Int – fixed precision integers between −229 and 229−1
Integer – arbitrary precision integers
Char – characters, like ’a’, ’A’, ’!’, ’,’, ’z’, ’Z’
Float – floating-point numbers with single-word precision
Double – floating-point numbers with double-word precision

The most important composite types are lists and tuples:

If T is a type, then [T] is the type of lists [v1, . . . , vn] with
elements v1, . . . , vn of type T . The empty list is [].
Example: [1,2,3,4] is a list of type [Int].

If T1, . . . ,Tn are types, then (T1, . . . ,Tn) is the type of
tuples (v1, . . . , vn) with v1 of type T1, . . . , vn of type Tn.
Example: [(1,’A’),(2,’x’)] is a list of tuples; it has
type [(Int,Char)]
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Types and type constructors

The values of simple types. like Int, Char and Float, are
literals. Examples of literals: 1, ’A’, 3.14

The values of composite types are built by applying data
constructors to component values.

The constructors of lists are [], : , and [...]

The constructor of tuples is (...)

Remarks.

True and False are nullary data constructors.

Data constructors are a special kind of functions: they are
used to build composite values.

In Haskell, the names of data constructors can not start with
a lowercase letter.

Users can define their own composite types.
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More about lists

The operator ’:’ is a right-associative data constructor for lists

x : xs is the list obtained by adding x in front of list xs

Remark: [x1, x2, . . . , xn] is syntactic sugar for x1:x2: . . . :xn:[]

The following operations on lists are predefined:

xs ++ ys appends lists xs and ys.

head xs returns first element of xs, and tail xs returns the tail
of list xs.

length xs computes the length of list xs.

reverse xs reverses list xs.

take n xs returns the list of first n elements of list xs. If xs has
less than n elements, it returns xs.

A string coincides with the list of its component characters. For example,
we can write (and see) "abc" instead of [’a’,’b’,’c’].

Strings have type [Char]
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Definitions

A Haskell definition gives a name (or identifier) to an expression of
a particular type.

name :: type -- declare name of type type
name = expression -- creates a binding of name to expression

Example:
x,y :: Int -- declare x,y of type Int

x = 12 + 13

y = y + 1 -- example of a recursive binding

comments start with ‘--’ and are ignored by the compiler

If we omit type declarations, Haskell tries to infer the type of
name from the type of expression

there are very few cases when this is impossible.

expression is not evaluated: the environment stores a binding
of name to expression.
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Functions
Simple definitions

If T1,T2 are types then T1 ->T2 is the type of functions
which map inputs of type T1 to results of type T2.

Remark: T1 ->T2 -> . . . ->Tn ->T is parsed as
T1 -> (T2 -> (. . . -> (Tn ->T ) . . .))

We can define f = λx1. · · · .λxn.expr where every xi has type
type T1 and the result has type T , by writing

f :: T1 -> ... -> Tn -> T
f x1 . . . xn = expr

Example (A function to compute the area of a rectangle)

rectArea :: Float -> Float -> Float

rectArea x y = x * y

binds rectArea to λx :: Float.λy :: Float.(x ∗ y)

rectArea 3 4 = λx.λy.(x ∗ y) 3 4 → λy.(3 ∗ y) 4

→ 3*4 → 12
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Functions
Lambda expressions

Both Racket and Haskell allow us to work with lambda expressions,
but with different syntax. For example λx .λy .(x ∗ y) is written

(lambda (x) (lambda (y) (+ x y))) in Racket
\x y -> x*y in Haskell

Remark. In Haskell, \x y z -> expr is shorthand for

\x -> \y -> \z -> expr

Example

f :: Float -> Float -> Float

f = \x y -> x*y -- same as f x y = x*y

f 3 4 = (\x y -> x*y) 3 4

→ (\y -> 3*y) 4

→ 3*4

→ 12
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Patterns

Pattern = expression defined by the grammar

patt ::= _ | variable | literal | C patt1 . . . pattn

where C is a data constructor with arity n and every variable occurs at
most once.
’_’ is called anonymous variable.

Examples of patterns

(x,y,z) -- pattern for tuples with 3 components
True:xs -- pattern for list of Booleans starting with True

[(1,’c’),_] -- pattern for list of two tuples of type (Int,Char)

-- starting with tuple (1,’c’)

The following are not patterns:

(x,x) -- variable x occurs twice
length x:xs -- length x is not data constructor
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Pattern matching

We can try to match pattern patt with a value v . The matching
attempt can fail or succeed. If it succeeds, we get

a substitution, called matcher, that binds the variables in patt
to component values from v .

the anonymous variable ’_’ matches any value.

Pattern patt Value v match(patt, v)

(x,y) (1,True) [1/x,True/y]

(x, ):( ,y):z [(1,2),(3,4)] [1/x,4/y,[]/z]

: [] fail

[ ,x, ] [1,2,3] [2/x]

Modern functional programming languages, including Haskell,
allow us to define functions with pattern matching (see next.)
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Function definitions by pattern matching

A function f ::T1->...->Tn->T can be defined by k ≥ 1 equations
f patt1,1 . . . patt1,n = expr1

...

f pattk,1 . . . pattk,n = exprn
which satisfy the condition that every
(patti ,1, . . . , patti ,n) can match a value of type (T1, . . . ,Tn)

How do we evaluate (f expr1 . . . exprm) for m ≤ n?

for i from 1 to k
reduce expr1 → expr ′1, . . . , exprm → expr ′m until

[θ] = match((patti,1, . . . , patti,m),(expr ′1, . . . , expr
′
m)) succeeds or fails

if [θ] = fail
continue

else
reduce (f expr1 . . . exprm) → [θ]expri
break

This kind of computation is called call-by-need (or lazy) reduction.
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Function definitions by pattern matching
Examples

1 A function to concatenate two lists (it does the same thing as
the operator ++):

app [] ys = ys

app (x:xs) ys = x:(app xs ys)

2 A function to get the n-th element of a list:

nth 1 (x:_) = x

nth n (_:xs) = nth (n-1) xs

3 A function that computes the infinite list [n, n + 1, n + 2, . . .]
for an integer n:

intsFrom::Integer->[Integer]

intsFrom n = n:intsFrom (n+1)

4 The infinite list of natural numbers, starting from 1:

nats = intsFrom 1
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Function definitions with guards

A definitional equation of the form

f patt1 . . . pattn
= if test1

then expr1

else if test2

then expr2

else if ...

can be rewritten in the more readable form

f patt1 . . . pattn
| test1 = expr1

| test2 = expr2

...

| otherwise = exprn

The blue-colored parts are called guards.

Remark. Indentation is important in Haskell: indent with the
same amount!
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Examples of lazy evaluation

Computing the infinite list of natural numbers:

nats = intsFrom 1 → 1:intsFrom 2

→ 1:2:intsFrom 3 → . . .
never ending computation
GHCi displays the list elements, as they are are generated
progressively (on demand)

Compute the second element of nats:
nth 2 nats = nth 2 intsFrom 1 -- reduction on demand
→[1/n] nth 2 (1:intsFrom 2)

→[2/n,(intsFrom 2)/xs] nth 1 intsFrom 2 -- red. on demand
→[2/n] nth 1 (2:intsFrom 3)

→[2/x] 2

Remarks

Lazy languages allow us to define and work with infinite data
structures (e.g., nats), because reduction is on demand

Strict languages (e.g., Racket) try to compute the complete values
of function arguments ⇒ nonterminating reductions.
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More examples

In lazy languages, many special forms can be defined as functions
that are evaluated on demand. For example:

1 if is a special form in Racket, but in Haskell we can define it
as a function:

if’::Bool->a->a->a

if’ True x _ = x

if’ False _ y = y

Remark: if’ has a polymorphic type: the branches and
result of if’ must have same type, which can be any type a.

2 A function definition of boolean operator && for conjunction:

and False _ = False

and True x = x

3 The Boolean operator || for disjunction is a special form in
Racket, but we can define it as a function in Haskell (how?).
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More examples
A lazy definition of the stream of Fibonacci numbers

Quiz: Use Haskell to define the infinite list fib=[f1, f2, f3, . . .] of
Fibonacci numbers, where f1 = f2 = 1 and fn = fn−1 + fn−2 if
n > 2. Use the fact that, if we add componentwise fib with tail

fib we obtain

fib =[ f1, f2, f3, f4, . . . ] +
tail fib =[ f2, f3, f4, f5, . . . ]

[ f3, f4, f5, f6, . . . ] = tail (tail fib)

Note that tail is a predefined function in Haskell.

Haskell solution:

-- this auxiliary function adds componentwise
-- two infinite lists of numbers
addLists :: [Integer] -> [Integer] -> [Integer]

addLists (x:xs) (y:ys) = (x+y):addLists xs ys

fib::[Integer]

fib = 1:1:addLists fib (tail fib)
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More examples
A lazy definition of the stream of Fibonacci numbers (continued)

Finding the n-th Fibonacci number

nthFib n = nth n fib

Example (Computation of the 3-rd Fibonacci number)

nthFib 3 →[3/n,1:1:(addLists fib (tail fib))/fib]

nth 3 1:1:addLists fib (tail fib)

→[3/n,1:addLists fib (tail fib)/xs] nth 2 1:addLists fib (tail fib)

→[2/n,addLists fib (tail fib)/xs] nth 1 addLists fib (tail fib)

= nth 1 addLists (1:1:addLists fib (tail fib))

tail (1:1:addLists fib (tail fib))

→ nth 1 addLists (1:1:addLists fib (tail fib))

(1:addLists fib (tail fib))

→ nth 1 2:addLists (1:addLists fib (tail fib))

addLists fib (tail fib)

→ 2
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Higher-order functions on lists

1 -- map has definition like in Racket
map::(a->b)->[a]->[b]

map _ [] = []

map f (x:xs) = (f x):(map f xs)

2 filter::(a -> Bool) -> [a] -> [a]

filter _ [] = []

filter p (x:xs) = if (p x)

then filter p xs

else x:filter p xs

3 -- foldl f v lst behaves like
-- (foldl (lambda x y) (f y x) v lst) in Racket
foldl::(b -> a -> b) -> b -> [a] -> b

foldl _ v [] = v

foldl f v (x:xs) = foldl f (f v x) xs

-- foldr behaves like in Racket
foldr::(a -> b -> b) -> b -> [a] -> b

foldr f v lst = foldl (\x y->f y x) v (reverse lst)

Remarks

In Haskell, all functions have a fixed arity ⇒ there is no function equivalent to apply.
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Another example: Hamming numbers

A Hamming number is of the form 2i3j5k where i , j , k are non-negative
integers. The first five Hamming numbers are:

1 = 203050 2 = 213050 3 = 203150 4 = 223050 5 = 203051

Quiz: Generate the list ham of all Hamming numbers in ascending order.
Make use of the following observations:

1 The list starts with 1.

2 Every Hamming number h > 1 is of the form a · h′ where
a ∈ {2, 3, 5} and h′ is a Hamming number

⇒ the tail of ham is obtained by merging the following lists in
increasing order

map (\x -> 2*x) ham -- Hamming numbers multiple of 2
map (\x -> 3*x) ham -- Hamming numbers multiple of 3
map (\x -> 5*x) ham -- Hamming numbers multiple of 5

⇒ Define an auxiliary function merge xs ys to merge two infinite lists
of numbers which are in strict increasing order. The result should
contain all numbers in strict increasing order.
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Some nice features of Haskell
Sections

If op is a binary operator and v some value, we can write

(v op) instead of \x -> (v op x)

(op v) instead of \x -> (x op v)

These abbreviations are called sections.

Example

> map (+3) [1,2,4] -- increment all list elements by 3
[4,5,7]

> filter (5<) [6,2,7,4,9] -- keep the numbers > 5
[6,7,9]
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Hamming numbers (contd.)

merge::[Integer]->[Integer]->[Integer]

merge (x:xs) (y:ys)

| (x<y) = x:merge xs (y:ys)

| (x==y) = x:merge xs ys

| otherwise = y:merge (x:xs) ys

ham::[Integer]

ham = 1:merge (merge (map (*2) ham)

(map (*3) ham))

(map (*5) ham)

We can get the first n Hamming number with the predefined
function take:

> take 20 ham -- get the first 20 Hamming numbers
[1,2,3,4,5,6,8,9,10,12,15,16,18,20,24,25,27,30,32,36]
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Local definitions in Haskell

In Racket, we can work with blocks.
Haskell has no blocks but the following constructs:

let

definition1 -- can be function definitons, too
...

definitionn

in expr

or

expr where

definition1

...

definitionn

Remark. All local definition should be indented with same
non-empty amount.
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Some nice features of Haskell
List comprehensions

If m, n are integers, then

[m..n] is the list of numbers from m to n

[m..] is the list of numbers starting from m, in increasing order

Other list comprehensions, by example:

> [2*i | i<- [2..6]]

[4,6,8,10,12]

> [i | i<-[1..50],i ‘mod‘ 7==0]

[7,14,21,28,35,42,49]

> [(a,b,c) | a<-[1..10],b<-[1..10],c<-[1..10],a^2+b^2==c^2]

[(3,4,5),(4,3,5),(6,8,10),(8,6,10)]

> lst = [(i,j) | i<-[1..],j<-[1..]]

> take 6 lst

[(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)]

What is the n-th element of lst?
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Quiz

Consider the following definitions:

sieve1,sieveAll::[Integer]->[Integer]

sieve1 (x:xs) = x:filter (\y->(mod y x) > 0) xs

sieveAll (x:xs)

= x:sieveAll (filter (\y->(mod y x) > 0) xs)

What does sieve1 [n..] compute for n ∈ N, n > 1?

Suggestion: check the results returned by
take 10 (sieve1 [n..]) for n ∈ {2, 3, 4}

What does sieve1 [1..] compute?

Does the computation terminate?

What does sieveAll [2..] compute?

Suggestion: check the result returned by
take 20 (sieveAll [2..])
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