Lecture 3: Environment-based computations

Functions as values. Tail recursion. Structural recursion

Mircea Marin
West University of Timișoara
mircea.marin@e-uvt.ro

Recap from Lecture 2

What is the λ-calculus?

The smallest language for FP. It consists of
(1) A language to write expressions, also known as terms.

$$
t::=x\left|\lambda x . t_{1}\right| t_{1} t_{2}
$$

where x is a variable and

- $\lambda x . t$ is an abstraction with intended reading "the function which, for input x computes the value of t."
- λx is the binder of the abstraction
- t is the body (or scope) of the abstraction
- $t_{1} t_{2}$ is an application: t_{1} is applied to argument t_{2}.
(2) Transformation rules
α-conversion: $\lambda x . t \rightarrow_{\alpha} \lambda y .[y / x] t$
if $[y / x] t$ is a capture-free substitution.
β-reduction: $\left(\lambda x . t_{1}\right) t_{2} \rightarrow_{\beta}\left[t_{2} / x\right] t_{1}$
if $\left[t_{2} / x\right] t_{1}$ is a capture-free substitution.

Racket and the λ-calculus

The λ-calculus is the core language of Racket \Rightarrow Racket recognizes the expressions of the λ-calculus, but we should write them in a slightly different way:
(lambda (x) t) instead of $\lambda x . t$
($t_{1} t_{2}$) instead of $t_{1} t_{2}$

Remarks

(1) For efficiency reasons, Racket has built-in values for many useful datatypes including many predefined functions.
(2) The editor of Racket allows us to view the referenced-based representation of λ-terms

- If we hover the mouse over a binder, the editor highlights the occurrences bound to it (see next slide).
- If we hover the mouse over a variable occurrence, we see a reference to its corresponding binder

Racket and the λ-calculus

Referenced-based representations of expressions (snapshot)

Untitled 3 - DrRacket
Untitled 3- (define ...) \Rightarrow Check Syntax © Debug

\#lang racket

 (define y 1)(lambda (k) 2 bound occurrences $(+x \times y))$

- 0	Unitled 3 - rracaket
	Cheas spmax of de
\#lang racket	
(define y 1)	
(+ \times x y)	mported from rack

- Unti

Untitled 3v (define ...) \boldsymbol{y} 氰 Check Syntax
\#lang racket
(define y 1)
(lambda (k) (+x-y))

Transformation rules

The purpose of α-conversion

α-conversion allows us to do harmless renamings of parameters of functions.

Example

Suppose y is a global variable with a given value.

- $\lambda x . y$ is the function which, for every input x, returns the value of y.

$$
\lambda x \cdot y \rightarrow_{\alpha} \lambda z \cdot[z / x] y=\lambda z \cdot y
$$

is harmless because $\lambda x . y$ and $\lambda z . y$ describe the same function. But we are not allowed to perform the variable-capture substitution

$$
\lambda x \cdot y \rightarrow \lambda y \cdot[y / x] y=\lambda y \cdot y
$$

because $\lambda x . y$ and $\lambda y . y$ describe different functions.

Transformation rules

The purpose of β-reduction

β-reduction simulates the first-step of evaluating a function call:
We replace in the body of the function the formal parameters with the input arguments.

Example (Evaluation in Racket)

```
(define y 7)
> ((lambda (x) (+ x y)) 5)
    ->\beta [7/y][5/x](+ x y)
    =(+5 7)
    -> 12
> ((lambda (x) (lambda (y) (+ x y))) 6)
    ->\beta}[6/\textrm{x}](\textrm{lambda (y) (+ x y))
    = (lambda (y) (+ 6 y))
```

Remark: + and y have free occurrences \Rightarrow to use them, we need to know where to find their values.

Environment-based computations

Environment = data structure which stores the values of variables with free occurrences.

- Environment $=$ a list of frames.
- Every frame is a table of values for some variables.

Example (Environment E with two frames)

- The first frame is the top frame.
- Variable lookup: $E(v a r)$ is the value of var found in the first frame, from top to bottom (or left to right) which contains a value for var:
$E(\mathrm{x})=4, E(\mathrm{y})=" \mathrm{abc} ", E(\mathrm{z})=5$
$E(\mathrm{t})$ is not defined.
The binding $\mathrm{z} \mapsto 8$ is shadowed by the binding $\mathrm{z} \mapsto 5$ in the top frame.

Environment-based computations

Preliminary remarks

All evaluations are performed w.r.t. a global environment which stores the values of variables with free occurrences in expressions.
The global environment is initialized with bindings for predefined variables when we start the system

- Built-in functions names are predefined variables with functions as values
The value of an expression expr in an environment E is computed in two steps:
(1) All variables x in expr are replaced with $E(x)$
(2) The new expression is evaluated using the rules of evaluation.

Evaluation of expressions

Example

The value of ($+\mathrm{x}(* \mathrm{y} \mathrm{z})$) in E is computed as follows:
$(+\underline{x}(* \underline{y} \underline{z})) \rightarrow(+4(* 75)) \rightarrow \underline{(+435)} \rightarrow 39$

Remark

From now on we will always assume implicitly that the environment has a frame with bindings for all built-in operations and constants.

Environment-based computations

The interpretation of definitions

When the interpreter reads a definition
(define var expr)
in an environment E, it does the following:
(1) It computes the value v of expr in E
(2) It adds the binding var $\mapsto v$ to the top frame of E.

Example

$$
\begin{aligned}
& \text { > (+ x (* y z)) } \\
& 39
\end{aligned}
$$

The definition (define y 1) changes E to be

> (+ x (* y z))
9

The new binding $y \mapsto 1$ shadows the binding $y \mapsto 8$.

The interpretation of definitions

A word of warning

Bindings can shadow each other, but they can not be overwritten \Rightarrow (define var expr)
is prohibited in an environment E which has a binding of var in the first frame.

Example

We can not redefine x and z in environment

but we can define y .

Blocks and their evaluation

Block $=$ sequence of definitions and expressions, which ends with an expression.

- (local [] comp 1 ... comp ${ }_{n}$ expr)
is a special form for the block made of the sequence of components comp $_{1}, \ldots$, comp $_{n}$ followed by expr.

The evaluation of such a block in an environment E proceeds as follows:
(1) E is extended with a temporary top frame, initially empty.
(2) The all components of the block are interpreted one by one:

- the block definitions add bindings to the (initially empty) top frame
- expr is evaluated and its value is returned as value of the block
(3) E is restored by discarding its temporary top frame.

The evaluation of blocks

Example

Remark

(println expr)

prints the value of expr on a new line, and returns the value \#<void>.
We will use println to illustrate how block-structured evaluation works

Example

```
> (local [ ]
    (define x 1)
    (local [ ]
        (define x 2)
        (define y 3)
        (println (+ x y)))
    (local [ ]
        (define y 4)
        (define z 5)
        (println (+ x y z)))
    (+ x 2))
```


The evaluation of blocks

Example

Remark

(println expr)

prints the value of expr on a new line, and returns the value \#<void>.
We will use println to illustrate how block-structured evaluation works

Example

```
> (local [ ]
    (define x 1)
    (local [ ]
        (define x 2)
        (define y 3)
        (println (+ x y)))
    (local [ ]
        (define y 4)
        (define z 5)
        (println (+ x y z)))
    (+ x 2))
```


The evaluation of blocks

Example

Remark

(println expr)

prints the value of expr on a new line, and returns the value \#<void>.
We will use println to illustrate how block-structured evaluation works

Example

```
> (local [ ]
    (define x 1)
    (local [ ]
        (define x 2)
        (define y 3)
        (println (+ x y)))
    (local [ ]
        (define y 4)
        (define z 5)
        (println (+ x y z)))
    (+ x 2))
```


The evaluation of blocks

Example

Remark

(println expr)

prints the value of expr on a new line, and returns the value \#<void>.
We will use println to illustrate how block-structured evaluation works

Example

```
> (local [ ]
    (define x 1)
    (local [ ]
        (define x 2)
        (define y 3)
        (println (+ x y)))
    (local [ ]
        (define y 4)
        (define z 5)
        (println (+ x y z)))
    (+ x 2))
```


The evaluation of blocks

Example

Remark

(println expr)

prints the value of expr on a new line, and returns the value \#<void>.
We will use println to illustrate how block-structured evaluation works

Example

```
> (local [ ]
    (define x 1)
    (local [ ]
        (define x 2)
        (define y 3)
        (println (+ x y)))
    (local [ ]
        (define y 4)
        (define z 5)
        (println (+ x y z)))
    (+ x 2))
```


The evaluation of blocks

Example

Remark

(println expr)

prints the value of expr on a new line, and returns the value \#<void>.
We will use println to illustrate how block-structured evaluation works

Example

```
> (local [ ]
    (define x 1)
    (local [ ]
        (define x 2)
        (define y 3)
        (println (+ x y)))
    (local [ ]
        (define y 4)
        (define z 5)
        (println (+ x y z)))
    (+ x 2))
```


The evaluation of blocks

Example

Remark

(println expr)

prints the value of expr on a new line, and returns the value \#<void>.
We will use println to illustrate how block-structured evaluation works

Example

```
> (local [ ]
    (define x 1)
    (local [ ]
        (define x 2)
        (define y 3)
        (println (+ x y)))
    (local [ ]
        (define y 4)
        (define z 5)
        (println (+ x y z)))
    (+ x 2))
5
```


The evaluation of blocks

Example

Remark

(println expr)

prints the value of expr on a new line, and returns the value \#<void>.
We will use println to illustrate how block-structured evaluation works

Example

```
> (local [ ]
    (define x 1)
    (local [ ]
        (define x 2)
        (define y 3)
        (println (+ x y)))
    (local [ ]
        (define y 4)
        (define z 5)
        (println (+ x y z)))
    (+ x 2))
5
```


The evaluation of blocks

Example

Remark

(println expr)

prints the value of expr on a new line, and returns the value \#<void>.
We will use println to illustrate how block-structured evaluation works

Example

```
> (local [ ]
    (define x 1)
    (local [ ]
        (define x 2)
        (define y 3)
        (println (+ x y)))
    (local [ ]
        (define y 4)
        (define z 5)
        (println (+ x y z)))
    (+ x 2))
5
```


The evaluation of blocks

Example

Remark

(println expr)

prints the value of expr on a new line, and returns the value \#<void>.
We will use println to illustrate how block-structured evaluation works

Example

```
> (local [ ]
    (define x 1)
    (local [ ]
        (define x 2)
        (define y 3)
        (println (+ x y)))
    (local [ ]
        (define y 4)
        (define z 5)
        (println (+ x y z)))
    (+ x 2))
5
```


The evaluation of blocks

Example

Remark

(println expr)

prints the value of expr on a new line, and returns the value \#<void>.
We will use println to illustrate how block-structured evaluation works

Example

```
> (local [ ]
    (define x 1)
    (local [ ]
        (define x 2)
        (define y 3)
        (println (+ x y)))
    (local [ ]
        (define y 4)
        (define z 5)
        (println (+ x y z)))
    (+ x 2))
5
10
```


The evaluation of blocks

Example

Remark

(println expr)

prints the value of expr on a new line, and returns the value \#<void>.
We will use println to illustrate how block-structured evaluation works

Example

```
> (local [ ]
    (define x 1)
    (local [ ]
        (define x 2)
        (define y 3)
        (println (+ x y)))
    (local [ ]
        (define y 4)
        (define z 5)
        (println (+ x y z)))
    (+ x 2))
5
10
3
```


The evaluation of blocks

Example

Remark

(println expr)

prints the value of expr on a new line, and returns the value \#<void>.
We will use println to illustrate how block-structured evaluation works

Example

```
> (local [ ]
    (define x 1)
    (local [ ]
        (define x 2)
        (define y 3)
        (println (+ x y)))
    (local [ ]
        (define y 4)
        (define z 5)
        (println (+ x y z)))
    (+ x 2))
5
10
3
```


Other special forms with blocks

(1) The conditional form (cond [test ${ }_{1}$ block $_{1}$]

$$
\left.\left[\text { test }_{n} \text { block }_{n}\right]\right)
$$

where test t_{1}, \ldots, test ${ }_{n}$ are boolean expressions. The evaluation returns the value of the first block block $_{i}$ for which test ${ }_{i}$ is true. If all tests are false, the evaluation returns value \#<void>
(2) Abstractions, which are used to define functions
(lambda ($x_{1} \ldots x_{n}$) block)
(3) let and let*:
(let ([var ${ }_{1}$ expr $\left.r_{1}\right]$
[var ${ }_{n}$ expr $\left._{n}\right]$)
block)
(let* ([var ${ }_{1}$ expr $\left.{ }_{1}\right]$
[var expr $_{n}$])
block)

The boolean operators and and or

and and or are special forms: they are not functions!
(1) (and $t_{1} \ldots t_{n}$) evaluates expressions t_{1}, \ldots, t_{n} from left to right.

- if it finds t_{i} with value \#f, it returns \#f
- otherwise, it returns the value of t_{n}.
(2) (or $t_{1} \ldots t_{n}$) evaluates expressions t_{1}, \ldots, t_{n} from left to right.
- if it finds t_{i} whose value is not \#f, it returns the value of t_{i}.
- otherwise, it returns \#f.

Remark: In Racket, all non-\#f values are true. This is similar to language C , where anything non-zero is interpreted as true.

```
> (and 1 (lambda (x) x) #f)
#f
> (and)
#t
> (and 1 "abc" 'abc)
'abc
```

(if test expr r_{1} expr r_{2})
is equivalent with
(cond [test expr ${ }_{1}$]
[\#t expr ${ }_{2}$])

- cond is more general than if, also because its branches can be blocks.
- The branches of if must be expressions.

User-defined functions

- The value of (lambda ($x_{1} \ldots x_{n}$) block) in an environment E is the pair $\left\langle\left(\begin{array}{ll}l a m b d a & \left(x_{1}\right.\end{array} \ldots x_{n}\right)\right.$ block) , $\left.E\right\rangle$
- Such a value is called lexical closure or function closure or closure: it is a pair made of (1) the textual definition of the function and (2) the environment where f was created.
- If f has value $\left\langle\left(\right.\right.$ lambda ($x_{1} \ldots x_{n}$) block), $\left.E\right\rangle$ then the value of ($f t_{1} \ldots t_{n}$) in E^{\prime} is computed as follows:
- compute the values v_{1}, \ldots, v_{n} of t_{1}, \ldots, t_{n} in E^{\prime}
- create the temporary environment

and compute $v=$ the value of block in $E^{\prime \prime}$
- return v as the value of ($\mathrm{f} t_{1} \ldots t_{n}$) in E^{\prime}.

The evaluation of function calls

Illustrated example

Consider the environments E_{1} and E_{2} where

What is the value of (f y) in E_{1} ?

The evaluation of function calls

Illustrated example

Consider the environments E_{1} and E_{2} where

What is the value of (f y) in E_{1} ?
(f y) in $E_{1} \rightarrow(f 4)$ in $E_{1} \rightarrow(+z(* x y))$ in E^{\prime}
where

$$
\begin{aligned}
& >(+\underline{z}(* \underline{x} \underline{y})) \text { in } E^{\prime} \\
& \rightarrow(+3(* 41)) \text { in } E^{\prime} \\
& 7
\end{aligned}
$$

The evaluation of function calls

Illustrated example

Consider the environments E_{1} and E_{2} where

What is the value of ($\mathrm{f} y$) in E_{1} ?
(f y $)$ in $E_{1} \rightarrow(f 4)$ in $E_{1} \rightarrow(+z(* x y))$ in E^{\prime}
where

$$
\begin{aligned}
& >(+\underline{z}(* \underline{x} \underline{y})) \text { in } E^{\prime} \\
& \rightarrow(+3(* 41)) \text { in } E^{\prime} \\
& 7
\end{aligned}
$$

\Rightarrow the value of (f y) in E_{1} is 12 .

Recursive computations

Remarks about recursion

Recursion $=$ technique that allows us to break a problem into one or more subproblems similar to the initial problem.

Recursive computations

Remarks about recursion

Recursion $=$ technique that allows us to break a problem into one or more subproblems similar to the initial problem.

Recursive computations

Remarks about recursion

Recursion $=$ technique that allows us to break a problem into one or more subproblems similar to the initial problem.

- In functional programming
- A function is recursive when it calls itself directly or indirectly.
- A data structure is recursive if it is defined in terms of itself.
- All repetitive computations can be performed only by recursion.

Recursive computations

Remarks about recursion

Recursion $=$ technique that allows us to break a problem into one or more subproblems similar to the initial problem.

- In functional programming
- A function is recursive when it calls itself directly or indirectly.
- A data structure is recursive if it is defined in terms of itself.
- All repetitive computations can be performed only by recursion.

Why learn recursion?

Recursive computations

Remarks about recursion

Recursion $=$ technique that allows us to break a problem into one or more subproblems similar to the initial problem.

- In functional programming
- A function is recursive when it calls itself directly or indirectly.
- A data structure is recursive if it is defined in terms of itself.
- All repetitive computations can be performed only by recursion.

Why learn recursion?

- New way of thinking

Recursive computations

Remarks about recursion

Recursion $=$ technique that allows us to break a problem into one or more subproblems similar to the initial problem.

- In functional programming
- A function is recursive when it calls itself directly or indirectly.
- A data structure is recursive if it is defined in terms of itself.
- All repetitive computations can be performed only by recursion.

Why learn recursion?

- New way of thinking
- Powerful programming tool

Recursive computations

Remarks about recursion

Recursion $=$ technique that allows us to break a problem into one or more subproblems similar to the initial problem.

- In functional programming
- A function is recursive when it calls itself directly or indirectly.
- A data structure is recursive if it is defined in terms of itself.
- All repetitive computations can be performed only by recursion.

Why learn recursion?

- New way of thinking
- Powerful programming tool
- Divide-and-conquer paradigm

Recursive computations

Remarks about recursion

Recursion $=$ technique that allows us to break a problem into one or more subproblems similar to the initial problem.

- In functional programming
- A function is recursive when it calls itself directly or indirectly.
- A data structure is recursive if it is defined in terms of itself.
- All repetitive computations can be performed only by recursion.

Why learn recursion?

- New way of thinking
- Powerful programming tool
- Divide-and-conquer paradigm

Many computations and data structures are naturally recursive

Recursive function definitions

General structure

- A simple base case (or base cases): a terminating scenario that does not use recursion to produce an answer.
- One or more recursive cases that reduce the computation, directly or indirectly, to simpler computations of the same kind.
- To ensure termination of the computation, the reduction process should eventually lead to base case computations.

Recursive function definitions

General structure

- A simple base case (or base cases): a terminating scenario that does not use recursion to produce an answer.
- One or more recursive cases that reduce the computation, directly or indirectly, to simpler computations of the same kind.
- To ensure termination of the computation, the reduction process should eventually lead to base case computations.
Classic recursive functions:
(1) Factorial function
(2) Fibonacci function
(3) Ackermann function
(9) Euclid's Greatest Common Divisor (GCD) function

How to write a recursive definition?

(1) Try to break a problem into subparts, at least one of which is similar to the original problem.

- There may be many ways to do so. For example, if $m, n \in \mathbb{N}$ and $m>n>0$ then $\operatorname{gcd}(m, n)=\operatorname{gcd}(m-n, n)$, or $\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m \bmod n)$
(2) Make sure that recursion will operate correctly:
- there should be at least one base case and one recursive case (it's OK to have more)
- The test for the base case must be performed before the recursive calls.
- The problem must be broken down such that a base case is always reached in a finite number of recursive calls.
- The recursive call must not skip over the base case.
- The non-recursive portions of the subprogram must operate correctly.

Analysis of recursive computations

Case study: computation of the factorial

(define (fact n)

```
(if (= n 0)
    1
    (* n (fact (- n 1)))))
```

Q1: What is the space and time complexity of computing (fact n) when $n \in \mathbb{N}$?

The factorial function

Time and space complexity of computation

```
(define (fact n) (if (= n 0) 1 (* n (fact (- n 1)))))
```

```
(fact 4) in E
(* n (fact 3)) in }\xrightarrow{\downarrow}{|->4
```



```
(* n (* n (* n (* n (if (= n 0) 1 ...))))) in }|\textrm{n}->->
```



```
(* n (* n (* n 1))) in }\underset{n->2}{->~2}\xrightarrow{n->3}{n->4}
```



```
(* n 6) in }\xrightarrow{n->4}{~}
24 in E
time
```


Analysis of recursive computations

Case study: computation of the factorial
(define (fact n)
(if (= n 0) 1 (* $\mathrm{n}(f a c t(-\mathrm{n} 1))))$
Q1: What is the space and time complexity of computing (fact n) when $n \in \mathbb{N}$?
A1: The computation of (fact n) has
time complexity $2 \cdot(n+1)=O(n)$
space complexity $O(n)$: the maximum number of frames added to E is $n+1$

Analysis of recursive computations

Case study: computation of the factorial
(define (fact n)
(if (= n 0) 1 (* $\mathrm{n}(f a c t(-\mathrm{n} 1))))$
Q1: What is the space and time complexity of computing (fact n) when $n \in \mathbb{N}$?
A1: The computation of (fact n) has
time complexity $2 \cdot(n+1)=O(n)$
space complexity $O(n)$: the maximum number of frames added to E is $n+1$
Q2: Can we reduce the space complexity?

Analysis of recursive computations

Case study: computation of the factorial
(define (fact n)
(if (= n 0) 1 (* $\mathrm{n}(f a c t(-\mathrm{n} 1))))$
Q1: What is the space and time complexity of computing (fact n) when $n \in \mathbb{N}$?
A1: The computation of (fact n) has
time complexity $2 \cdot(n+1)=O(n)$
space complexity $O(n)$: the maximum number of frames added to E is $n+1$
Q2: Can we reduce the space complexity?
A2: Main idea: Add an extra argument to accumulate and propagate the result computed so far.
(define (fact n) (fact-acc n 1))
(define (fact-acc n a)
(if (= n 0) a (fact-acc (- n 1) (* a n))))

Analysis of recursive computations

Case study: computation of the factorial
(define (fact n)
(if (= n 0) 1 (* $\mathrm{n}(f a c t(-\mathrm{n} 1))))$
Q1: What is the space and time complexity of computing (fact n) when $n \in \mathbb{N}$?
A1: The computation of (fact n) has time complexity $2 \cdot(n+1)=O(n)$
space complexity $O(n)$: the maximum number of frames added to E is $n+1$
Q2: Can we reduce the space complexity?
A2: Main idea: Add an extra argument to accumulate and propagate the result computed so far.
(define (fact n) (fact-acc n 1))
(define (fact-acc n a)
(if (= n 0) a (fact-acc (- n 1) (* a n))))

- (fact-acc $n a$) computes $n!\cdot a$, therefore (fact-acc $n 1$) computes n !

The factorial function

Towards a space-efficient implementation

A space-efficient implementation

```
(define (fact n)
    (fact-acc n 1))
(define (fact-acc \(n\) a)
    (if (= n 0)
    1
    (fact-acc (- n 1) (* a n))))
```

The red-colored frames contain useless information for the computation of the result \Rightarrow they can be discarded (garbage-collected) by a clever compiler
\Rightarrow the space complexity of computing (fact-acc $n 1$) becomes constant, $O(1)$

A space-efficient implementation

Example: computation of (fact-acc 4 1)

(fact-acc 4 1) in E	
	sion af E with at most one frame (constant space of memory)

Tail-call optimization

The space-efficient computation of (fact-acc 4 1) is an example of
tail-call optimization $=$ compiler optimization technique which garbage-collects frames and bindings that become inaccessible.

Remarks

- A function is tail recursive if it is defined such that the recursive call is the last thing executed by the function.
- Tail-call optimization is always applicable to calls of tail recursive functions
\Rightarrow for efficient computation of repetitive computations, try to implement them with tail recursive functions.
$(+)$ all iterative computations can be implemented with tail recursion.
(-) Some recursive computations can not be implemented with tail recursion.
$(+)$ We will learn techniques to translate some recursive definitions into tail recursive definitions.

Simulating for loops by tail recursion

Imperative version
for (i = 1; i $\leq n ; i++$) body

Tail recursive version
where
(define (f n [i 1])
(cond [(<= in) body

$$
(f \mathrm{n}(+i 1))]))
$$

REmark: In Racket, functions can have optional arguments:

declares function f with mandatory arguments x_{1}, \ldots, x_{n} and optional arguments y_{1}, \ldots, y_{m} :

- f can be called with argument values for y_{1}, \ldots, y_{m}.
- It no inputs are provided for y_{1}, \ldots, y_{m}, they take the values of t_{1}, \ldots, t_{m}.

Simulating for loops by tail recursion

Examples

(1) Print the numbers from 1 to n (define (printn n [i 1]) (cond [(<= i n) (println i) (printn n (+ i 1))]))
(2) Compute the sum of numbers from 1 to n by translating for (i=0; $s=0 ; i \leq n ; i++$) $s:=s+i ;$ return s;
into tail recursive code:
; (sumto n i s) computes the value of $\mathrm{s}+\mathrm{i}+(\mathrm{i}+1) \ldots+\mathrm{n}$
(define (sumto n [i 0] [s 0])
(cond [(<= i n) (sumto n (+ i 1) (+ s i))] [\#t s])
REmARK: Every variable modified by a for loop becomes a parameter in the tail recursive function definition.

Linear recursive functions are tail recursive

A linear recursive function f of degree k is defined by k initial values f_{1}, \ldots, f_{k} as follows:

$$
f(n):= \begin{cases}f_{n} & \text { if } 1 \leq n \leq k \\ c_{1} \cdot f(n-1)+c_{2} \cdot f(n-2)+\ldots c_{k} \cdot f(n-k) & \text { if } n>k\end{cases}
$$

where c_{1}, \ldots, c_{k} are some numeric constants.

Example

The sequence of Fibonacci numbers is defined by linear recursion: $f i b(1)=f i b(2)=1, \quad f i b(n)=\operatorname{fib}(n-1)+\operatorname{fib}(n-2)$ if $n>2$.

General form of a tail recursive definition for f :
(define ($f \mathrm{n}\left[\begin{array}{ll}\mathrm{i} & 1\end{array}\right]\left[\begin{array}{ll}a_{1} & \left.f_{1}\right] \ldots\left[a_{k}\right. \\ f_{k}\end{array}\right]$) (cond [(= i n) $\left.a_{1}\right]$
[\#t (f n (+ i 1) $a_{2} \ldots a_{k}\left(+\left(\begin{array}{lll}* & c_{1} & \left.a_{k}\right)\end{array}\right.\right.$
$\left.\left.\left(* c_{k} a_{1}\right)\right)\right]$))

Primitive recursive functions are tail recursive

A primitive recursive function is of the form
$h: \mathbb{N} \times A_{1} \times \ldots \times A_{k} \times B \rightarrow B$ where
(1) $h\left(0, x_{1}, \ldots, x_{k}\right):=f\left(x_{1}, \ldots, x_{k}\right)$
(base case)
(2) $h\left(n+1, x_{1}, \ldots, x_{k}\right):=g\left(n, h\left(n, x_{1}, \ldots, x_{k}\right), x_{1}, \ldots, x_{k}\right)$ for all $n \in \mathbb{N}$.
(recursive case)

Remark

h has a tail recursive definition:

$$
\begin{aligned}
& \text { (define (} h \mathrm{n} x_{1} \ldots x_{k}\left[\begin{array}{ll}
\mathrm{i} & 0
\end{array}\right] \\
& \left.\left[\operatorname{prev}\left(\begin{array}{llll}
f & x_{1} & \ldots & x_{k}
\end{array}\right)\right]\right) \\
& \text { (cold [(= i n) prev] } \\
& \text { [\#t (h n } x_{1} \ldots x_{k}(+i 1) \\
& \left(\begin{array}{l}
\text { i prev } x_{1} \\
\ldots
\end{array} x_{k}\right) \text {)])) }
\end{aligned}
$$

Recursive functions with invariant parameters (1)

The parameter n in the recursive function definition
(define (sumto n [iol [s 0])
(cond [(<= i n) (sumto n (+ i 1) (+ s i))]
[\#t s]))
is invariant, and passing it as argument to recursive calls is timeand space- consuming.
We can avoid passing invariant arguments to recursive calls. For example:
(define (sumto n)
(define sumAux i s)
(cond [(<= i n) (sumAux (+ i 1) (+ s i))] [\#t s])
(sumAux 0 0))

Recursive functions with invariant parameters (2)

Suppose E is an environment with sumto defined in it.
(sumto 10) in E

Possible pitfalls with recursion

Is recursive computation fast?

- Yes: some tail-recursive functions are remarkably efficient
- No: We can easily write elegant, but spectacularly inefficient recursive programs, e.g.
(define (fib n)
(if (or (= n 0) (= n 1))
1
(+ (fib (- n 1)) (fib (-n 2))))
Recursion can take a long time if it needs to repeatedly recompute intermediate results

General principle: Whenever possible, use tail recursion to make your functions efficient.

Conclusion

Environment-based computation is a standard technique to keep track of the meaning of names in a program.

- Environment $=$ list of frames; every frame is a table that maps distinct names to values.
- Definitions add bindings to the top (=first) frame of the environment
- Evaluation of blocks extends the environment with a temporary top frame, to store the bindings of local definitions. The top frame and its bindings are garbage collected when block evaluation ends.
- In FP, all recursive computations are performed by recursion.
- Every recursive step extends environment with a new frame \Rightarrow deep recursive calls produce stack overflow
- Tail recursion = compiler optimization technique which garbage-collects frames and bindings that become inaccessible

