
Logic and Functional Programming
Lecture 1: Introduction

Mircea Marin
West University of Timişoara

mircea.marin@e-uvt.ro

M. Marin LFP

mailto:mmarin@info.uvt.ro

Content of Lecture 1

Organizatorial items
Programming styles in software engineering

Main features
Comparison via an illustated example

Declarative versus imperative programming styles
Characteristics of declarative programming
Characteristics of functional programming

Functional programming languages
Short history
Racket and Haskell

M. Marin LFP

Organization

Weekly lecture.

Topics:
Introduction to Functional Programming (7 weeks):

theoretical aspects: lambda calculus, etc.,
practical programming in Racket and Haskell

Introduction to logic programming (7 weeks):
logical foundations, computational model
practical programming in Prolog: programming techniques;
selected examples; efficiency issues.

Grading:
I in-class quizzes, individual assignments: 20%
I two partial exams: 25% FP; 25% LP
I Written exam: 30%

M. Marin LFP

References
Books

For Functional Programming:

H. Abelson, G. J. Sussman, J. Sussman. Structure and
Interpretation of Computer Programs. MIT Press Ltd. 1996.

M. Marin, V. Negru, I. Drămnesc. Principles and Practice of
Functional Programming. Editura UVT. 2016.

S. Thompson. Haskell: The Craft of Functional Programming.
Second Edition. Pearson Education Ltd. 1999.

Haskell tutorials

For Logic Programming:

W.F. Clocksin and C.S. Mellish. Programming in Prolog. Fifth
edition. Springer. 2003.

M.A. Covington et al. Coding Guidelines for Prolog. Theory and
Practice of Logic Programming. 12(6): 889-927 (2012) (Highly
recommended).

P. Gloess. Constraint Logic Programming (PowerPoint format).

M. Marin LFP

https://wiki.haskell.org/Tutorials
https://staff.fmi.uvt.ro/~mircea.marin/lectures/LFP/ConstraintLogicProgramming.ppt

References
Software

For Functional Programming:

Racket

Haskell

For Logic Programming

SWI-Prolog. For Windows users, there is a convenient
SWI-Prolog editor.

M. Marin LFP

https://racket-lang.org
https://www.haskell.org
https://www.swi-prolog.org
http://arbeitsplattform.bildung.hessen.de/fach/informatik/swiprolog/indexe.html

Getting started
Imperative versus declarative

In IMPERATIVE PROGRAMMING

the programmer describes how to solve a problem with a
set of instructions that change a program’s state.

The execution of every instruction is sensitive to the state of
the program, and can change it

State = data stored in variables, data structures, or
accessible from external sources
Program = collection of instructions: assignments,
changes of mutable data (lists, arrays, etc.), etc.

In DECLARATIVE PROGRAMMING

the programmer describes what relationships hold
between various entities.
Program = collection of definitions of functions or relations.

M. Marin LFP

Main programming styles

In Software Engineering, there are 4 main programming styles:
Two imperative programming styles:

1. Procedural Programming
2. Object-Oriented Programming:

A refinement of procedural programming

Two declarative programming styles:
3. Functional Programming

Programming and computing with functions
4. Logic Programming

Programming and computing with relations

M. Marin LFP

Imperative programming styles
Procedural Programming and Object-Oriented Programming (OOP)

PROCEDURAL PROGRAMMING

Program = collection of procedure definitions.
Procedure = parameterized group of instructions, that can
be called and executed as a single instruction.
Computation = execution of a sequence of instructions.
There is one program state, that can be changed by all
instructions.

Languages that can be used for imperative programming:
Fortran, C.

C is heavily used for systems programming:
implementation of operating systems, and applications for
specific computer architectures (supercomputers,
embedded systems, etc.)

M. Marin LFP

Imperative programming styles
Procedural Programming and Object-Oriented Programming (OOP)

OBJECT-ORIENTED PROGRAMMING (OOP)
Program state is distributed among objects, which are
either

instances of classes (in class-based OOP: Java, C++, etc.)
clones of existing objects, called prototypes (in
prototyped-based OOP: JavaScript, Lua, etc.)

Objects encapsulate
data fields = attributes that characterize their state
procedures, known as methods.

Other features of OOP: encapsulation, dynamic feedback,
inheritance, etc.

M. Marin LFP

Declarative programming styles
Functional Programming and Logic Programming (LP)

FUNCTIONAL PROGRAMMING (FP)
Program = collection of definitions of functions, datatypes,
macros, etc.
Computation = evaluation of an expression using a fixed
and predictable evaluation strategy.

Computation is stateless: it does not depend on a program
state
The result of a function call depends only on the values of
input arguments

Most functional programming languages are either
Strict: they implement the call-by-value evaluation

strategy: Common Lisp, Racket, Scala
Lazy: they implement the call-by-need evaluation

strategy: Haskell

M. Marin LFP

Declarative programming styles
Functional Programming and Logic Programming (LP)

LOGIC PROGRAMMING (LP)
Program = collection of definitions of predicates using
facts and rules.
Computation = answering a a question (a.k.a. query)
using a fixed and predictable search strategy.
A query is a conjunction of atomic queries.

Typical strategy: SLDNF resolution

Language that can be used for LP: Prolog

Logic programming is useful for solving problems related to the
extraction of knowledge from basic facts and relations:

The programmer must describe what he knows as facts
and rules collected in a program.
The compiler (or interpreter) of the programming language
finds the answers to all questions we may ask afterwards
using the built-in search strategy of the language.

M. Marin LFP

Declarative programming styles
Functional Programming and Logic Programming (LP)

LOGIC PROGRAMMING (LP)
Program = collection of definitions of predicates using
facts and rules.
Computation = answering a a question (a.k.a. query)
using a fixed and predictable search strategy.
A query is a conjunction of atomic queries.

Typical strategy: SLDNF resolution

Language that can be used for LP: Prolog
Logic programming is useful for solving problems related to the
extraction of knowledge from basic facts and relations:

The programmer must describe what he knows as facts
and rules collected in a program.
The compiler (or interpreter) of the programming language
finds the answers to all questions we may ask afterwards
using the built-in search strategy of the language.

M. Marin LFP

Characteristics of declarative programming
1. No assignment, but recursive thinking

In declarative programming, changing the the value of a
variable is disallowed⇒ no assignment.

⇒ all repetitive computations are simulated by recursion.

Example (Computing the factorial)
Imperative style Functional style
int fact(int n) { int fact(int n) {
int r=1,i=n; if(n==0)
while(i>=1) { return 1;
r=r*i; else
i=i-1; return n*fact(n-1);

} }
return r;

}

REMARK: All iterative computations can be simulated by
recursion.

M. Marin LFP

Characteristics of declarative programming
2. Data is immutable

Mutable data can be modified after its initial construction,
immutable data can not be modified.

Declarative programming uses immutable data.
There is no assignment to change the value of a variable,
and there are no operations to modify the content of a data
structure (list, array, etc.)

Assignment is used only to define an initial value for a
variable.
Attempts to change the initial value are prohibited.

Imperative programming uses mutable data.

M. Marin LFP

Characteristics of declarative programming
3. Fixed and predictable strategy of computation

All declarative programming languages (FP or LP) implement a
fixed and predictable strategy of computation
I evaluation strategy, in FP
I search for an answer strategy, in LP

Remarks:
In declarative programming, the programmer should focus
on writing a program with correct definitions about what he
knows. He should not care too much about how the result
is found – this is the task of the language designer.
The language designer must implement a strategy that is
correct (computes the right answers) and efficient

To improve the efficiency of computation we should know
how the strategy works.

Compare with imperative programming: the programmer must
write programs that describe how to find the result.

M. Marin LFP

Comparison of programming styles
Illustrated example

We will illustrate how different programming styles can be used
to solve the same, following problem:
Compute/Find the minimum element of a list of numbers, using

the following knowledge:
Fact: The minimum element of a singleton list
made of number m is m.
Rules:

The minimum of x and y is x if x ≤ y .
The minimum of x and y is y if y < x .
The minimum element of a list starting with
x , y followed by sublist t is m if m is the
minimum of x and n, where n is the minimum
element of the list with first element y
followed by sublist t .

M. Marin LFP

Comparison of programming styles
Example illustrated in Procedural Programming

minList(L,n)
r = L[0];
while i < n do

r = min(r ,L[i]);
end while
return r;

min(a,b)
if a < b then

m = a;
else

m = b;
endif
i = i + 1;
return m;

Program = collection of two procedure definitions:
minList is not a function in the mathematical sense: It
depends on the value of the program variable i .
min changes the program state (the value of variable i)

Computation = the sequence of instructions
i = 1︸ ︷︷ ︸

assignment

; minList([4,2,5,1,6],5)︸ ︷︷ ︸
procedure call

⇒ result 1.

M. Marin LFP

Comparison of programming styles
Example illustrated in FP (Haskell)

We encode problem-specific knowledge with definitions of
functions, in a program

minList (x:[]) = x
minList (x:y) = minim x (minList y)
minim x y
| x <= y = x
| x > y = y

Computation = evaluation of the expression
minList [4,2,5,1,6]⇒ value 1.

The evaluation of the expression is stateless: the result of
function calls depends only on the values of input
arguments.

M. Marin LFP

Comparison of programming styles
Example illustrated in LP (Prolog)

We use facts and rules to encode problem-specific knowledge
with facts and rules in a program

% min(A,B,C) is defined to hold if
% C is the minimum of A and B
min(X,Y,X) :- X =< Y.
min(X,Y,Y) :- Y < X.

% minList(T,X) is defined to hold if
% X is the smallest number in list T
minList([X],X).
minList([X,Y|T],M) :-
minList([Y|T],M1), min(X,M1,M).

Computation = answering the query "who is the minimum
element X of list [4,2,5,1,6]?"
?- minList([4,2,5,1,6],X).
X = 1.

M. Marin LFP

What will we learn?

This lecture is intended to familiarize you with the declarative
programming styles, by practicing programming with

1 Racket: a strict functional programming language
2 Haskell: a lazy functional programming language
3 SWI-Prolog: a popular implementation of Prolog, for logic

programming.
All languages are freely available on all major platforms:
Windows, Unix, Mac OS

We will start practicing functional programming.

M. Marin LFP

https://racket-lang.org
https://www.haskell.org
https://www.swi-prolog.org

What will we learn?

This lecture is intended to familiarize you with the declarative
programming styles, by practicing programming with

1 Racket: a strict functional programming language
2 Haskell: a lazy functional programming language
3 SWI-Prolog: a popular implementation of Prolog, for logic

programming.
All languages are freely available on all major platforms:
Windows, Unix, Mac OS

We will start practicing functional programming.

M. Marin LFP

https://racket-lang.org
https://www.haskell.org
https://www.swi-prolog.org

Characteristics of functional programming
1. Functions are not procedures. Referential transparency

In Functional Programming, functions are pure: there is no
program state that is changed by function calls or operations on
mutable data.
⇒ the same function call always produces the same result.
⇒ referential transparency: we can replace "equals by

equals" without changing the result of computation.
⇒ programs can be verified for correctness, optimized, or

parallelized by clever compilers
In Procedural Programming, procedure calls can change
program state (e.g., values of program variables)
⇒ the same procedure call always can produce different

results.
⇒ referentially opaque: we can not perform equational

reasoning to understand program behavior.

M. Marin LFP

Characteristics of functional programming
2. Strict or lazy evaluation

Every (functional) language implements a particular evaluation
strategy. Most FP languages implement one of the following
two evaluation strategies:

1 Strict evaluation: we always reduce the arguments of
function calls to values before calling the function. Racket
is a strict functional programming language.

2 Lazy evaluation: we reduce the arguments of function
calls only when they are really needed. Haskell is a lazy
functional programming language.

Other evaluation strategies may exist, e.g., parallel evaluation.

M. Marin LFP

Characteristics of functional programming
2. Strict or lazy evaluation: Examples

Consider the function definition double(x) = x+ x. Also, lazy
FP languages know that 0 ∗ x = 0 for every number x.

Examples of strict evaluations:
double(1+2)=double(3)=3+3=6
0*(1+2*3)=0*(1+6)=0*7=0

Strict evaluation proceeds bottom-up, from left to right.
Examples of lazy evaluations:
double(1+2)=(1+2)+(1+2)=3+(1+2)=3+3=6
0*(1+2*3)=0

Lazy evaluation proceeds top-down, from left to right.

M. Marin LFP

Characteristics of functional programming
3. Functions are values

Values can be
named,
passed as argument to a function,
returned as result of a function call,
stored in a data structure (e.g., as element of a list)

Values can belong to various datatypes: integers, booleans,
strings, lists, pairs, etc.

In FP, functions are values that belong to the function type
⇒ we can define a function that takes function(s) as
argument(s) and/or returns a function as value.
I Such functions are called higher-order functions

M. Marin LFP

Declarative versus imperative programming styles
Summary of major differences

Declarative Imperative
Focus on ”what” Focus on “how”
Stateless Uses state
Functions without side effects Functions with side effects

(can change program state)
Uses recursion to iterate Uses loops and assignment

to iterate
Functions are values Functions are not values.

M. Marin LFP

Pros and cons of functional programming
Pros

“No state, no side-effects” in functional programming help
to write bugs-free code or less error-prone code.
Functional code is compact, easier to maintain, reuse, and
test.
Functional programs consist of independent blocks that
can run concurrently⇒ improved efficiency.
They are close to mathematics, which is advantageous
when proving their properties.
Functions as values are a very powerful programming
feature.

Recommended reading:
J. Hughes. Why Functional Programming Matters. 1984.

M. Marin LFP

http://www.cse.chalmers.se/~rjmh/Papers/whyfp.pdf

Pros and cons of functional programming
Cons

The absence of state requires to create new objects whenever
we perform actions
⇒ Functional Programming requires large memory space.
⇒ Garbage collection must be used to reclaim memory

occupied by objects that become inaccessible.
Historical note: Garbage collection was invented in 1959 by
John McCarthy, the inventor of Lisp, the second-oldest
high-level programming language.

Recursion is usually slower than iteration.
This is not so bad: modern languages have efficient
garbage collectors⇒ some recursive computations can be
as fast as iterative computations.

M. Marin LFP

A word of warning

Functional Programming (FP) and Logic Programming (LP) are
declarative programming styles:

Programming = encode “what” you know in a program,
without caring too much how the result/answer is
computed
I trust the built-in strategy of the language (FP: evaluation

strategy; LP: resolution strategy). which always finds the
right result/answer

Good thing: Declarative programs are referentially
transparent: they are easy to understand and verify if they
are correct (with equational reasoning tools)
Bad thing: Declarative programs can become very
inefficient (See next slides)

M. Marin LFP

Efficiency in FP
Example: computing Fibonacci numbers

1. Easy to understand recursive definition, but awfully
inefficient:

fib(n) =

{
1 if n = 1 or n = 2,
fib(n− 1) + fib(n− 2) if n > 2.

2. Less readable recursive definition, but very efficient:

fib(n) = fibA(n,1,1) where

fibA(n,a1,a2) =

{
a2 if n = 1,
fibA(n − 1,a2,a1 + a2) if n > 1.

M. Marin LFP

Example: computing Fibonacci numbers
Trace of computations

.
fib(37) fib(36) fib(36) fib(35) fib(36) fib(35) fib(35) fib(34)

fib(38) fib(37) fib(37) fib(36)

fib(40)

fib(39) fib(38)

⇒ fib(40) performs 331 160 281 recursive function calls!

fibA(40,1,1) = fibA(39,1,2) = fibA(38,2,3) = . . .

= fibA(1,102334155,165580141) = 165580141

⇒ fibA(40,1,1) performs only 39 recursive function calls.

M. Marin LFP

Functional programming languages
Short history

1955: John McCarthy (MIT): proposed the study of Artificial
Intelligence (AI): “the science and engineering of making
intelligent machines.”

Inventor of Lisp (1958) = first language with notable
functional programming capabilities

Second oldest high-level programming language–only
Fortran is 1 year older (from 1957)
Both Fortran and Lisp are in widespread use today
Lisp stands for List processing: linked lists are the main
data structure, used to represent both source code
(programs) and data.
Lists were used mainly for algebraic processing in AI
Other data types (besides lists): numbers and symbols

Initially, Lisp was not standardized: many people
developed their own versions of Lisp (a.k.a.Lisp dialects)
⇒ standardization became necessary.

M. Marin LFP

Functional programming languages
Short history

There are 2 main dialects of Lisp, standardized and in
widespread use:

1 Common Lisp: industrial standard developed by the Lisp
community to combine the features from earlier Lisp
dialects; became an ANSI standard in 1994

Huge, multi-paradigm programming language
2 Scheme: a Lisp dialect developed at MIT for instructional

use; became an IEEE standard in 1990 (IEEE 1990), and
was recently renamed to RACKET

Small, modular, easy-to-learn programming language

We will practice functional programming in RACKET

M. Marin LFP

Functional programming languages
Short history

The first FP languages were strict: Lisp (1958), Common
Lisp, Scheme, etc. Also, most FP languages developed
afterwards are strict.
Lazy FP languages emerged much later: SASL (1972),
KRC (1981), Miranda (1985), Lazy ML, etc.
Haskell (1987) emerged from an effort to standardize the
lazy FP languages.

We will practice functional programming in HASKELL

M. Marin LFP

Peculiarities of Racket and Haskell

Racket, and all dialects of Lisp, use a weird syntax to write
expressions, called fully parenthesised syntax. For example:

Instead of f (v1, . . . , vn) we write (f v1 . . . vn)

Instead of if cond then branch1 else branch2
we write
(if cond branch1 branch2)
etc.

Haskell requires the usage of parentheses only for two
purposes: (1) to disambiguate the order of operator application
(e.g., in arithmetic expressions), and (2) to build tuples (a
composite datatype). For example:

Instead of f (v1, . . . , vn) we write f v1 . . . vn

M. Marin LFP

Evaluation strategies
Strict and lazy languages

Most functional languages (including Racket) are strict:
Whenever we evaluate a function call, we first evaluate all
function arguments to values, and then call the function
with the values of the arguments:
EXAMPLE:
(+ (/ 4 (− 3 1)) (∗ 2 5)) = (+ (/ 4 2) (∗ 2 5)) =
(+ 2 (∗ 2 5)) = (+ 2 10) = 12

Sometimes, argument evaluation is useless:

(∗ 0 (/ (− (sqrt (−17 1)) (− 3 1)))) = 0

The evaluation of red argument is time-consuming and useless
Lazy functional languages evaluate only needed
arguments

Representative language: Haskell (standardized in 1990)

M. Marin LFP

What is Racket?

A strict functional programming language: the entire language
is built on top of a few primitive operations for list manipulation.

enormous volume of educational material which created
for it.
Easy to get.

Easiest way to interact with Racket, is via DrRacket = widely
used IDE among introductory Computer Science courses that
teach Scheme or Racket

Freely available for all major platforms: Windows, MacOS,
UNIX, Linux with X Window system
Recommended textbooks:

“Structure and Interpretation of Computer Programs”,
arguably the best textbook about functional programming.
“How to Design Programs” (from http://www.htdp.org)

M. Marin LFP

More about strict functional programming
and Racket, in particular

Every expression is evaluates to a value, by a stepwise
process called reduction.
Values are expressions that evaluate to themselves.

Can be primitive or composite
A function expression is evaluated to a function object

Racket is dynamically typed:
We don’t have to declare the types of variables, functions,
etc.
The interpreter computes the types of expressions at
runtime.

Type = set of values with common properties.
type checking is performed at runtime, and can raise
runtime type errors.

M. Marin LFP

What is Haskell?

A lazy functional language created in the 1980’s by a
committee of academicians:

Functional Functions are first-class citizens: they are values
which can be used as any other sort of value.

Lazy: Computation = evaluation of expressions using
lazy evaluation

expressions are not evaluated until their
results are actually needed

Pure: Expressions are referentially transparent:
no side effects
calling the function with same inputs produces
the same output every time

Statically typed: every expression has a type, which is checked
at compile-time. Programs with type errors will not
run because they will not even compile.

M. Marin LFP

