LOGIC FOR COMPUTER SCIENCE Seminar 3: Relations and Functions

October 19, 2016

- 1. Why is f not a function from \mathbb{R} to \mathbb{R} if
 - (a) f(x) = 1/x?
 - (b) $f(x) = \sqrt{x}?$
 - (c) $f(x) = \pm \sqrt{x^2 + 1}$?
- 2. Determine whether f is a function from \mathbb{Z} to \mathbb{R} id
 - (a) $f(n) = \pm n$. (b) $f(n) = \sqrt{n^2 + 1}$. (c) $f(n) = \frac{1}{n^2 - 4}$.
- 3. Find these values:

- 4. Determine whether each of these functions from $\{a, b, c, d\}$ to $\{a, b, c, d\}$ is injective:
 - (a) f(a) = b, f(b) = a, f(c) = c, f(d) = d
 - (b) f(a) = b, f(b) = b, f(c) = d, f(d) = c
 - (c) f(a) = d, f(b) = b, f(c) = c, f(d) = d
- 5. Determine whether each of these functions from \mathbb{Z} to \mathbb{Z} is injective:
 - (a) f(n) = n 1,
 - (b) $f(n) = n^3$,
 - (c) $f(n) = n^2 + 1$,
 - (d) $f(n) = \left\lceil \frac{n}{2} \right\rceil$
- 6. Which of the following functions $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ is injective?

- (a) f(m,n) = m + n,
- (b) $f(m,n) = m^2 + n^2$,
- (c) f(m, n) = m,
- (d) f(m,n) = |n|,
- (e) f(m,n) = m n.
- 7. Give an example of a function $f: \mathbb{N} \to \mathbb{N}$ that is
 - (a) Injective but not surjective
 - (b) Surjective but not injective
 - (c) Neither injective nor surjective
- 8. Give an explicit formula for a function from $\mathbb Z$ to $\mathbb N$ that is
 - (a) injective but not surjective.
 - (b) surjective but not injective.
 - (c) both injective and surjective.
 - (d) neither injective nor surjective.
- 9. Determine whether each of these functions is a bijection from \mathbb{R} to \mathbb{R} :
 - (a) f(x) = -3x + 4(b) $f(x) = -3x^2 + 7$
 - (b) f(x) = -3x + 7(c) f(x) = (x+1)/(x+2)
 - (c) f(x) = (x + 1)/(x)(d) $f(x) = x^5 + 1$
- 10. Let $S = \{-2, -1, 0, 1, 2, 3\}$. Find f(S) if
 - (a) f(x) = 1
 - (b) f(x) = 2x + 1
 - (c) f(x) = [x/5]
 - (d) $f(x) = |(x^2 + 1)/3|$
- 11. Let f(x) = 2x. What is
 - a) $f(\mathbb{Z})$? b) $f(\mathbb{N})$? c) $f(\mathbb{N})$?
- 12. Let f be a function from the set A to the set B. Let S and T be subsets of A.Show that
 - (a) $f(S \cup T) = f(S) \cup f(T)$. (b) $f(S \cap T) \subseteq f(S) \cap f(T)$.
- 13. Let $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 + 1$ and $g : \mathbb{R} \to \mathbb{R}$, g(x) = x + 2. Find $f \circ g$ and $g \circ f$. Remember that, if $f : B \to C$ and $g : A \to B$ then $f \circ g : A \to C$ and $(f \circ g)(x) = f(g(x))$ for all $x \in A$.