
Advanced Functional and Logic Programming

Labworks 2

October 31, 2018

Deadline: November 15, 2018.

1. Write a tail-recursive version of the function fact, where (fact n) com-
putes the factorial of n.

2. If n is a positive integer then (sum-digits n) computes the sum of its
digits. For example

> (sum-digits 243) > (sum-digits 5)

9 5

(a) Write a recursive definition of sum-digits.

(b) Write a tail-recursive definition of sum-digits.

3. The function call (increasing-digits? n) expects a positive integer n

as input, and should return #t if n is a sequence of digits in increasing
order (e.g., 5, 579, 445677), and #f otherwise.

Write a recursive, preferably tail-recursive, definition of increasing-digits?

4. Write down a tail recursive definition of the function alternating01 such
that (alternating01 l) returns #t if l is a list of alternating 0 and 1,
and #f otherwise. For example:

> (alternating01 ’()) > (alternating01 ’(1 0 1))

#t #t

> (alternating01 ’(0 1)) > (alternating01 ’(0 1 1 0))

#t #f

5. The deep reverse of a list is the list produced by reversing the elements
of all sublists of a list. Implement recursively (deep-reverse l) which
returns the deep revers of list l. For example:

> (deep-reverse ’((a b) (2 (3 4))))

’(((4 3) 2) (b a))

1

6. Define recursively the function (deep-symbol->string l) which replaces
all symbols that occur in list l, at any depth, into strings. Use the pre-
defined function symbol-string which converts a symbol into the corre-
sponding string, and the predicate symbol? which recognises symbols. For
example:

> (deep-symbol->string ’(a b (ab a (c 1 2) ())))

’("a" "b" ("ab" "a" ("c" 1 2) ())))

7. Write a tail-recursive version of the function power-sum such that the
function call (power-sum x n) computes the sum 1 +x+ . . .+xn for any
number x and integer n ≥ 0. In the base case when n = 0, the function
call should return 1.

8. Consider the set of nested lists defined inductively by

〈nlist〉 ::= null | (cons 〈symbol〉 〈nlist〉)
| (cons 〈number〉 〈nlist〉) | (cons 〈nlist〉 〈nlist〉)

and the set of substitutions defined recursively by

〈subst〉 ::= null | ((cons (list 〈symbol〉 〈value〉) 〈subst〉)

where 〈value〉 can be any value. Define recursively the following functions:

(a) The recogniser functions nlist? for 〈nlist〉, and subst? for substi-
tutions.

(b) The function (removeAll nlst s) which removes all occurrences of
symbol s from the nested list nlst. For example,

(removeAll ’(1 s (a s b) s c) ’s)

should return ’(1 (a b) c).

(c) The function (get subst s) which returns the value paired with sym-
bol s in the substitution subst, if it exists, and s is s is not paired
with any value in subst. For example:

> (get ’((a 4) (b 6)) ’b) > (get ’((a 4) (b 6)) ’c)

6 ’c

(d) The function (substitute nlst subst) which computes the nested
list in which every symbol s from nlst is replaced with (get subst s).
For example:

> (substitute ’(s (a ((b)) s (c)) ’((s 1) (b 3)))

’(1 (a ((3)) 1 (c))

(e) The function (countsym nlst) which counts the number of symbol
occurrences in the nested list nlst. For example:

2

> (countsym ’((s (1 a) b (c d) s)))

6

9. Consider the set of lists of symbols defined inductively by

〈slist〉::= null | (cons 〈symbol〉 〈slist〉)

Define recursively the following functions:

(a) (slist? sl) returns #t if sl is a list of symbols, and #f otherwise.

(b) (remove-all sl s) removes all occurrences of symbol s from the
list sl.

(c) (remove-first sl s) removes the first occurrence of symbol s from
the list of symbols sl.

10. Define the function (notate nlst) which replaces every occurrence of a
symbol s in a nested list nlst with the list (list s d), where d is the
nesting depth of the occurrence of s in nlst. For example:

> (notate ’(a b (() (a)))) > (notate ’(1 b (b (b))))

’((a 1) (b 1) (() ((a 3)))) ’(1 (b 1) ((b 2) ((b 3))))

11. Consider the set of binary trees defined inductively by

〈btree〉 ::= 〈number〉 | (list 〈symbol〉 〈btree〉 〈btree〉)

The size of a binary tree bt ∈ 〈btree〉 is the number of numbers and symbols
that occur in bt. The depth of a binary tree is the number of nodes along
the longest path from the root to a leaf node.

(a) Define recursively the following functions:

i. (btsize bt) which computes the size of the binary tree bt.

ii. (btdepth bt) which computes the depth of the binary tree bt.

(b) Prove by induction the following facts:

i. (btsize bt) is an odd number, whenever bt is a binary tree.

ii. If bt is a binary tree which is not a number, then the number of
numbers in bt is an even number.

3

