Programming with streams

November, 2018

The purpose of this labwork is to check if you master programming with streams:

- Define certain streams using stream generators implemented with nullary functions
- Define operations on streams

To solve this lab work, you can use the auxiliary functions and streams implemented in LW5-6.rkt which can be downloaded from the website of this lecture:

all-ones	stream whose elements are all 1
(gen-nats n)	creates the stream of natural numbers starting from n
naturals	the stream of all natural numbers starting from $\boldsymbol{0}$
(s-add s1 s2)	creates the stream which is the componentwise addition of
	streams $s1$ and $s2$
(s-take n s)	list of first n elements of stream s
(s-filter p s)	the stream obtained from stream \mathbf{s} by removing the elements
	which do not fulfil predicate p
(s-map f s)	the stream obtained from stream \mathbf{s} by applying function \mathbf{f}
	to all its elements
fib	stream of all Fibonacci numbers

- L1. Define the operation $(s-drop \ n \ s)$ that returns the stream obtained from stream s by dropping it's first n elements.
- L2. Define the operation (s-between m n s) that returns the list of elements between position m and n (inclusive) in stream s. We assume that the first element of s is at position 1.

<u>Test</u>: The elements of the stream of natural numbers between positions 6 and 8:

> (s-between 6 8 nats)
'(5 6 7)

- L3. Define the operation (s-ref n s) which returns the *n*-th element of stream s.
- L4. Suppose s_1 and s_2 are two streams of increasing numbers:

$$s_1 = (a_1 \ a_2 \ a_3 \ a_4 \ \dots)$$

 $s_2 = (b_1 \ b_2 \ b_3 \ b_4 \ \dots)$

where $a_1 < a_2 < a_3 < a_4 < \dots$ and $b_1 < b_2 < b_3 < b_4 < \dots$

Define the operation

```
(s-merge s_1 s_2)
```

that produces the stream of elements of s_1 and s_2 in increasing order, without duplicates.

<u>TEST</u>: the first 20 elements of the s-merge of the stream of multiples of 5 with the stream of multiples of 7 is

L5. The stream ham of Hamming numbers is the stream of all numbers of the set $H = \{2^m 3^n 5^p \mid m, n, p \in \mathbb{N}\}$ enumerated in strictly increasing order. For example the first 20 elements of this stream are

1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36

Define the stream ham. Observe that ham is the stream that starts with 1, and any other Hamming number is of the form $a \cdot h$ where $a \in \{2, 3, 5\}$ and h is a Hamming number. Therefore, (cdr ham) is equal to the merging (with s-merge) of 3 streams:

- (a) The stream obtained by multiplying all elements of ham with 2,
- (b) The stream obtained by multiplying all elements of ham with 3,
- (c) The stream obtained by multiplying all elements of ham with 5.

<u>TEST</u>: The first 20 Hamming numbers:

> (s-take 20 ham) '(1 2 3 4 5 6 8 9 10 12 15 16 18 20 24 25 27 30 32 36)

- L6. Define the stream all-primes of all prime numbers, using the idea of the Sieve of Erathostenes:
 - (a) Start with the stream s of natural numbers greater or equal with 2: this is the stream (gen-nats 2)
 - (b) The stream of natural numbers is obtained by *sieving* the stream (gen-nats 2). The sieving of stream s is the stream s' computed as follows:
 - (b1) The first element of s' is the first element of s. Let's call this element p.
 - (b2) Let s'' be the stream obtained by filtering out the multiples of p from the tail of s.
 - (b3) The tail of s' coincides with the sieving of s''.
- L7. (Optional) Let $s1 = (a_0 \ a_1 \ a_2 \ \ldots)$ and $s2 = (b_0 \ b_1 \ b_2 \ \ldots)$ be two streams of numbers. Define (s-prod s1 s2) which computes the stream $c = (c_0 \ c_1 \ c_2 \ \ldots)$ where

$$c_i = \sum_{j=0}^i a_j \cdot b_{i-j}$$

for all $i \in \mathbb{N}$.

SUGGESTION: Think of **s1** and **s2** as being the streams of coefficients of $x^0, x^1, x^2, ...$ in the infinite polynomials

$$pa = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots$$
$$pb = b_0 + b_1 x + b_2 x^2 + b_3 x^3 + \dots$$

Then c is the stream of coefficients of x^0, x^1, x^2, \ldots in the polynomial $pa \cdot pb$. Use the fact that

$$\begin{aligned} \mathtt{pa} \cdot \mathtt{pb} &= (a_0 + \mathtt{pa}_1 \cdot x)(b_0 + \mathtt{pb}_1 \cdot x) \\ &= a_0 \cdot b_0 + b_0 \cdot \mathtt{pa}_1 \cdot x + a_0 \cdot \mathtt{pb}_1 \cdot x + \mathtt{pa}_1 \cdot \mathtt{pb}_1 \cdot x^2 \end{aligned}$$

where

$$pa_1 = a_1 + a_2 x + a_3 x^2 + a_4 x^3 + \dots$$

$$pb_1 = b_1 + b_2 x + b_3 x^2 + b_4 x^3 + \dots$$

to identify a definition for the stream c.

Note that the stream of coefficients of $a_0 \cdot pb_1 \cdot x$ is

(cons 0 (s-map (lambda (x) (* a0 x)) (s-drop 1 s2)))

where a0 is the first element of stream $a,\,\mathrm{etc.}$

 $\underline{\text{TESTS}}$:

> (s-take 10 (s-prod all-primes all-primes))
'(4 12 29 58 111 188 305 462 679 968)
> (s-take 10 (s-prod fib fib))
'(1 2 5 10 20 38 71 130 235 420)
> (s-take 10 (s-prod all-primes fib))
'(2 5 12 24 47 84 148 251 422 702)

L8. Suppose $f : \mathbb{N} \to \mathbb{N}$ is a given function that maps natural numbers to natural numbers. Define the function

(s-iterate f k)

which takes as inputs such a function \mathtt{f} and a number $\mathtt{k}\in\mathbb{N},$ and computes a stream for the infinite list

```
k f(k) f(f(k)) f(f(f(k))) ...
<u>TESTS</u>:
> (s-take 6 (s-iterate (lambda (x) (+ x 2))) 0)
'(0 2 4 6 8 10)
> (s-take 4 (s-iterate (lambda (x) (* x 2))) 3)
'(3 6 12 24)
```

L9. Many countable sets can be represented by streams which enumerate all their elements in a some order. For example, the elements of the set of pairs $\{(a, b) \mid a, b \in \mathbb{N}\}$ can be enumerated in the order depicted below:

In this example, the pair enumerated after (a, b) is (a - 1, b + 1) if a > 0, and (b + 1, 0) if a = 0.

- (a) Define the stream nats2 of all distinct lists '(a b) where $a, b \in \mathbb{N}$.
- (b) Define the stream of all distinct lists '(a b) where $a, b \in \mathbb{N}, a > 0, b > 0$, and a is a multiple of b.
- (c) Define the stream nats3 of all distinct lists '(a b c) where $a, b, c \in \mathbb{N}$.
- (d) Define the stream pithagorean of all distinct lists '(a b c) where a, b, c are integers ≥ 1 , and $a^2 + b^2 = c^2$.
- (e) Compute the first five elements of the stream pithagorean.