
Delayed evaluation
Application: Working with streams

Delayed evaluation



Lazy evaluation with nullary functions
Main idea

I To delay the execution of a sequence of definitions and
expressions, wrap it in (lambda () ...)

⇒ a nullary function whose body is executed only when we
call it.

Example
sum12 is a nullary function with body (+ 1 2). To trigger the
computation of the body, we must call (sum12):

> (define sum12 (lambda () (+ 1 2)))
> sum12
#<procedure:sum12>
> (sum12)
3

Delayed evaluation



Lexical closures

Function values are lexical closures: They remember the values
of the variables from the context when they were created.

Example (A function that returns a nullary function as result)
> (define (sum x y) (lambda () (+ x y)))
> (define sum34 (sum 3 4))
> sum34
#<procedure>

I sum34 is the value of the nullary function
(lambda () (+ x y)).

I When sum34 was created, x was 3, and y was 4
⇒ sum34 will “remember” these values for x and y:
> (sum34) ; compute 3+4
7

Delayed evaluation



Lazy evaluation with delay/force

Example (delayed evaluation of sum)
The conventional definition of sum is:

> (define sum (lambda (x y) (+ x y)))

To delay it’s evaluation, call

> (define s (delay (sum 1 2)))
> s
#promise

To perform a delayed computation c, call (force c):

> (force s)
3

Delayed evaluation



Functions definitions as delayed computations
Main ideas

1 Whenever we wish to delay some computation body, we
can wrap it in the body of a nullary function:
> (define delayed-work (lambda () body))

2 When we wish to perform the computation of body, we call
the nullary function
> (delayed-work)

With this technique, we have full control of the evaluation
process:
B We can delay computations and execute them only when

really needed.
This way of computing is called lazy evaluation.

Delayed evaluation



Applications of lazy evaluation
Streams

Stream: a finite representation of an infinite list, where we know
how to generate new elements from previous elements.
Examples of steeams:

All ones: (1 1 1 ...)
Next element is always 1.

Natural numbers: (0 1 2 3 ...)
Next element is successor or previous one.

Fibonacci numbers: (1 1 2 3 5 8 13 ...)
Every element, except first two, is sum of previous
two elements.

Prime numbers: (2 3 5 7 11 13 ...)
Every next element is the first natural number
different from 1, which is not a multiple of previous
elements. (This is the idea of the Sieve of
Erathostenes)

Delayed evaluation



Application: Streams
Main idea

How to represent in a finite way a stream?

(a1 a2 a3 ...)

(a1 . . . ak . gen)

where gen is a nullary function that can generate more
elements on demand:
I (gen) computes (ak+1 . . . a`. gen′)

gen is called the stream generator.
A generator is just a function, and function gen is
recognised with (procedure? gen)

Delayed evaluation



Application: Streams
Main idea

How to represent in a finite way a stream?

(a1 a2 a3 ...)

(a1 . . . ak . gen)

where gen is a nullary function that can generate more
elements on demand:
I (gen) computes (ak+1 . . . a`. gen′)

gen is called the stream generator.
A generator is just a function, and function gen is
recognised with (procedure? gen)

Delayed evaluation



Streams

Examples
(define gen-ones

(lambda () (cons 1 gen-ones)))
; stream of all ones
(define all-ones (cons 1 gen-ones))

(define (gen-nats n)
(cons n (lambda () (gen-nats (+ n 1)))))

; stream of all naturals
(define nats (gen-nats 0))

> all-ones
’(1 . #<procedure:gen-ones>)

> naturals
’(0 . #<procedure>)

Delayed evaluation



Working with streams
Utility functions: s-take and s-filter

; list of first n elements from stream s
(define (s-take n s)

(cond [(= n 0) ’()]
[(procedure? s) ; s is the stream generatoe

(s-take n (s))]
[#t (cons (car s) (s-take (- n 1) (cdr s)))]))

; stream of all elements of s which satisfy predicate p
(define (s-filter p s)

(cond [(procedure? s) ; s is the stream generator
(s-filter p (s))]
[(p (car s))

(cons (car s)
(lambda () (s-filter p (cdr s))))]

[#t (s-filter p (cdr s))]))

> (s-take 5 (s-filter even? nats))
’(0 2 4 6 8)

Delayed evaluation



Working with streams
Utility functions: s-map

(s-map f s)

I takes as inputs a stream s and a function that computes a
value for any element of s

I returns the stream obtained by applying function f to all
elements of s

(define (s-map f s)
(if (procedure? s) (s-map f (s))

(cons (f (car s))
(lambda () (s-map f (cdr s))))))

> (define cubes
(s-map (lambda (x) (* x x x)) nats))

> (s-take 7 cubes)
’(0 1 8 27 64 125 216)

Delayed evaluation



Utility functions on streams of numbers
s-add

(s-add s1 s2)
I takes as inputs two streams of numbers

s1 = (a1 a2 . . .)
s2 = (b1 b2 . . .)

I returns the stream a1 + b1 a2 + b2 . . .)

(define (s-add s1 s2)
(cond [(procedure? s1) (s-add (s1) s2)]

[(procedure? s2) (s-add s1 (s2))]
[#t (cons (+ (car s1) (car s2))

(lambda ()
(s-add (cdr s1) (cdr s2))))]))

> ; stream of numbers n2 + n for all n
(define ns (s-add (s-map (lambda (x) (* x x)) nats)

nats))
> (s-take 6 ns)
’(0 2 6 12 20 30)

Delayed evaluation



Stream of Fibonacci numbers

Useful observation: the stream fib of Fibonacci numbers has
the following useful property:

Adding streams fib and (cdr fib) yields (cddr fib)

fib = f0 f1 f2 . . . +
(cdr fib) = f1 f2 f3 . . .

f0 f1 f2 f3 f4 . . .

Once we know the first two elements f0 and f1, we can start
generating the rest of the stream:
(define fib

(cons 1
(cons 1

(lambda () (s-add fib (cdr fib))))))

> (s-take 10 fib)
’(1 1 2 3 5 8 13 21 34 55)

Delayed evaluation


