
Advanced Functional and Logic Programming

Mini-project: Programming with Functionals

November 2018

The objective of this mini-project is to check if you master programming
with functionals. A functional is a function that takes one or more functions as
argument(s), or computes a function as returned value.

1 Description

The goal of this homework is to implement the game 2048. The way of playing
this game is described at

https://en.wikipedia.org/wiki/2048_(video_game)#Gameplay

In the end, the implemented program

1. should allow a human user to play the game

2. should be able to play alone, based on a simple heuristics

2 Requirements

To solve this problem, you are expected to add the missing implementations of
some operations in the source file game2048.rkt which can be downloaded from
the website of this lecture.

2.1 The table and the moves

The current state of the game is represented by a structure defined by

(struct Game (board score) #:transparent)

where (Game-board game) holds a representation of the tiles of the 4 × 4 grid
of the game, and (Game-score game) is an integer that represents the current
score of the game. For example, the structure for the game with score 88 and
snapshot

1



is equal to

(Game ’((4 8 16 2) (0 0 4 4) (0 0 2 8) (0 0 0 2)) 88)

Thus, we represent the board by a list of four rows of length four, whose elements
store the values of tiles on the grid of the game. 0 represents an empty tile (or
cell).

To complete the program, you should implement the following functions from
the file game2048.rkt:

1. (zero-replace n v l)

replaces the n-th zero in list l with value v. For example,

• (zero-replace 1 4 ’(4 0 8 0 0 0 5 8)) yields ’(4 4 8 0 0 0 5 8)

• (zero-replace 3 2 ’(4 0 8 0 0 0 5 8)) yields ’(4 0 8 0 2 0 5 8)

2. (isWon? game)

detects if the game is won (that is, there is a tile with value 2048 on the
board of the game)

3. (isLost? game)

detects if the game is lost. A game is lost if all of the following conditions
hold:

(a) it is not won,

(b) there are no more zero tiles, and

(c) there are no collisions of tiles with same value on horizontal or vertical
direction.

4. (moveRight game)

computes the new game obtained by a right shift of all tiles. Note that
this operation collapses all rows of game by a right shift, and increments
the previous score with the sum of values produced by collisions along all
four rows.

5. (moveDown game)

computes the new game obtained by a down shift of all tiles. Note that
this operation collapses all columns of game, and increments the previous
score with the sum of values produced by collisions along all four columns.

2



After you implement these methods, you should be able to play this game in
interactive mode by running game-2048.rkt and evaluating the nullary function

> (interactive)

A snapshot of two consecutive moves of the game is shown below:

The keys to be pressed for up/down/left/right shift of the tiles are w/s/a/d

2.2 A simple heuristics for playing 2048

The function (choose-next-game game) brings the game game to a new state
by choosing a move that produces the maximum number of empty cells. The
moves that do not modify the game are not taken into account.

This function is used to implement the nullary function (solitary) which,
when called, allows the user to play with the computer, where the compute uses
this simple heuristic to choose the next move.

Review of useful functionals

1. ((compose f1 f2 . . . fn) v) = (f1 (f2 ... (fn v)...))

compose takes as inputs n unary functions f1, f2, . . . , fn and returns a
function that behaves like the functional composition f1 ◦ f2 ◦ . . . ◦ fn.

2. (filter p l)

returns the list of elements e from list l for which (p e) holds.

3. (foldl f v0 (list v1 v2 . . . vn))
computes (f vn (f vn−1 (... (f v1 v0) ...)))

4. (foldr f v0 (list v1 v2 . . . vn))
computes (f v1 (f v2 (... (f vn v0) ...)))

5. (map f l1 l2 . . . ln)

where f is a function which takes n arguments, and l1, . . . , ln are lists of
the same length. This function call computes . . . (see lecture notes)

3



6. (apply f (list v1 . . . vn)) computes the result of the function call
(f v1 . . . vn)

Review of some other useful functions on lists

1. (drop L n) drops the first n elements from list L. If L has less than n

elements, it returns the empty list null.

2. (take L n) returns the list made of the first n elements of list L. If L has
less than n elements, it returns list L.

4


	Description
	Requirements
	The table and the moves
	A simple heuristics for playing 2048


