
Mini-project

Prolog: searching in an infinite space

October 2016

Goals

• Use first-order logic predicates with the Logic Programming paradigm to
solve a simple AI problem: searching objects in an infinite space.

Deadline:

November 15, 2016.

Description of the problem

A robot is placed in one of an infinite number of square rooms, placed one near
each other on an infinite surface. Every room has four neighbouring rooms to
which the robot can move by performing only one operation.

Some rooms contain boxes, which the robot can pick up by performing one
operation. The task of the robot is to pick up all boxes, to carry and deliver them
in the room where he was initially placed (the origin). The robot is informed
to deliver a specified number of boxes to the origin, which we know for sure to
exist in the search space of the robot (the robot is not asked to deliver more
boxes than there exist).

The robot can not see from one room into another, thus in order to learn
if one or more boxes exist in a room, the robot must move into that room. At
any time, the robot can carry at most one box. Once the robot picks up a box,
he must carry it back to the origin.

To orient itself, the robot will use the Cardinal points North-South-East-
West, which are also the directions where it can move.

Requirements

Implement the predicates initMyData and perform from the file t3.pl.

The predicate perform is evaluated at every step to decide the next action
of the robot. The decision should be made depending on

1



• whether there exists a box at the current position, and

• the internal state of the robot.

The signature of the predicate perform is

perform(+ProgramData, +ContainsBox, -Action, -ProgramDataUpdated)

where the arguments prefixed with + indicate input arguments, and the argu-
ments prefixed with - indicate output arguments:

• The argument ProgramData is a term which represents the current state
of the robot. Here, the robot stores all information he needs to know in
order to decide what to do next.

I You are free to decide the structure and content of the state of the
robot. Note that the robot should keep track of its current position
on the surface, and how many boxes he has to find and deliver.

I The argument ContainsBox is either true or false, and it tells the robot
if there is at least one box in the room where he is (its current position).

Based on the values of ProgramData and ContainsBox, the robot must compute
the values of the following two arguments:

I Action, which indicate the action decided by the robot, which can be one
of the following:

done: the robot decided to stop.

pickBox: the robot decided to pick up a box.

deliverBox: the robot decided to drop the box he has in the room
where he is.

move(north), move(east), move(south), move(west): the robot
decided to move without box in the specified direction.

moveWithBox(north), moveWithBox(east), moveWithBox(south),
moveWithBox(west): the robot decided to carry a box in the speci-
fied direction.

I ProgramDataUpdated: The state of the robot after Action is performed.
This updated state is passed to the next call of the predicate perform.

The initial state of the robot will be ProgramData, whose value will be deter-
mined by the call of the predicate

initMyData(+NBoxesToPick, -ProgramData)

which receives as input the number of boxes which the robot should pick up. The
internal state of the robot is accessed only by the predicates initMyData and
perform, thus you are free to choose one that is suitable to solve this problem.

There are a few restrictions on the actions the robot can make:

2



B the move action can be made only if the robot does not carry any box
at that moment (if he performed pickBox, he should have performed also
deliverBox);

B the moveWithBox action can be made only if the robot carries a box at
that moment (he performed pickBox but did not perform deliverBox

since then);

B the action pickBox can be made only if the robot does not carry yet a
box, and it is placed in a room containing a box. After the robot picks
the box, that box is no more in that room;

B the action deliverBox can be made only if the robot carries a box, and
is located in the origin;

B the action done can be made only if the robot delivered the required
number of boxes, it is in the origin, and does not carry any box.

If there are boxes in the origin, the robot must perform pickBox and deliverBox

in order to deliver each of them.

Example

Assume the following configuration of rooms with boxes B, and the initial posi-
tion of the robot R depicted below:

R

B

B

A correct sequence of actions performed by the robot could be:

move(east)

move(north)

move(west)

move(west)

pickBox (here ContainsBox is true)
moveWithBox(east)

moveWithBox(south)

deliverBox

move(north)

move(west)

3



move(south)

pickBox (here ContainsBox is true)
moveWithBox(east)

deliverBox

done

Programming guidelines

Download the archive robot.zip which contains two text files:

• t3.pl: This is the file where you should add tour own code. You should
implement the predicates

initMyData/2 and perform/4

but you can also define and use as many auxiliary predicates as you want.

• t3t.pl: This file contains a Prolog program to test the correctness of your
implementation.

Every definition of the predicate t3test/4 contains a test, caracterised
by an identifier, the number of boxes to be delivered, the positions of the
boxes as list of pairs of coordinates, and a limit imposed on the length of
the solution.

– for testing a certain test, use the predicate t3test/1, with the iden-
tifier of the test.

– for testing all the tests, with a final report, use t3testallinone/0.

Initially, consult the file t3t.pl in Prolog, which will load the file t3.pl.

When you are done, send the file t3.pl with your implementation to me:

mircea.marin@e-uvt.ro

Do not forget to mention your name when you submit your labwork.

4


