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Recursion
A notion is recursive if it is defined in terms of itself.

In general, a recursive definition is specified by one ore more
rules, called cases:

0 or more base cases, in which the predicate from the head
of the rule does not occur in the body of the rule.
1 or more recursive cases, in which the predicate from the
head of the rule occurs in the body of the rule.

Several definitions are recursive in PROLOG. For instance:

term::= constant | variabile
| f(term1,...,termn)

where f is a function symbol with arity n.

Base cases: A term is a constant or a variable. These cases can be
restated as follows:

1 t is a term if t is a constant.
2 t is a term if t is a variable.

Recursive case: t is a term if t is of the form f (t1, . . . , tn) with function
symbol f of arity n, and t1, . . . , tn are terms.
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Recursion in PROLOG
Lists

List = recursive data structure used frequently in symbolic
computations.
In PROLOG, lists are defined as follows:
Base case: [ ] is a list.
Recursive case: .(h, t) is a list if h is a term and t is a list.

Remarks

1 Every nonempty list l is of the form .(h, t) where h is the head (or
first element) of l , and t is the tail of l .

2 For lists, PROLOG allows to use the abbreviated notation
[t1, . . . , tn] instead of .(t1, .(..., .(tn, [])...)). The terms t1, . . . , tn are
called the elements of the list, and can be of any kind: constants,
variables, or structures. For example:
[list ,with,4,elements,′ :′, [a, A, book(ion,autor(rebreanu)), _]]

3 In PROLOG, a string "a1, . . . ,an" is in fact the list of ASCII codes
of the characters a1, . . . ,an.
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List manipulation
Head and tail

Special notation for splitting a nonempty list L in head and tail:
[X | Y ] = L

B the variable X gets bound to the head of list L
B the variable Y gets bound to the tail of list L.

REMARK.
[X |Y ] coincides with the term .(X ,Y ).
[X | Y ] is not a list!

Example

List Head Tail
[a,b, c,d ] a [b, c,d ]
[a] a []
[] (nothing) (nothing)
[[bad, dog],bites] [bad dog] [bites]
[X + Y , x + y ] [X + Y ] [x + y ]
"abc" 97 [98,99]
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Recursive definitions of predicates

Example 1: Defining a predicate which is a list recognizer
% is_list(L) means that L is a list

% Base case
is_list([]).

% Recursive case
is_list([_|T]) :- is_list(T).

Example 2: Defining element membership to a list
% member(X,L) means that X belongs to L

% Base case: X is the lead of L
member(X,[X|_]).

% Recursive case: X belongs to the tail of L
member(X,[Y|T]) :- member(X,T).
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Example: tt member

REMARKS

PROLOG verifies 2 conditions, in the following order:
1 member(X,[X|_]). (base case)
2 member(X,[_|T]) :- member(X,T). (recursive case)

In the recursive case, the list that gets tested for
occurrence of X in it becomes shorter.
The list can not be shortened forever ⇒ computation
terminates.
PROLOG stops computing in two situations:

1 it encounters a list which satisfies the base case
⇒ it stops with success (true).

2 it reaches the empty list
⇒ it stops with failure (false).
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Recursion
Termination problems

Termination = the property of a program to stop after a
finite number of steps
Some programs don’t stop

parent(X,Y) :- child(Y,X).
child(Y,X) :- parent(X,Y).

Reason: the definitions of predicates parent and child
are circular (mutually recursive).
⇒ avoid circular definitions of this kind!

The following program is left-recursive and never stops:

human(X):-human(Y), parent(X,Y).
human(adam).

⇒ left recursion should be used with care!
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Recursion
Termination problems

Rules and facts are applied in the order they are written in the
program.

Intuitive rule of thumb: facts should be written before rules.

Sometimes, a particular ordering of rules and facts works well only for
a particular kind of queries.

Example

is_list([_|B]):-is_list(B).
is_list([]).

is a good program to answer the queries

?-is_list([1,2,3]).
?-is_list([]).
?-is_list(f(1,2))

but is not good if we want to answer the query is_list(X).
What happens if we change the order of clauses in the program?
?-is_list(X).
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Recursion
Specifying the direction of building solutions

Many predicates defined in PROLOG make distinction between
Input parameters (+): they must have concrete values when we

call the predicate.
Output parameters (-): their values are computed as answers

to the query.
Arbitrary parameters (?): can be both input and output.
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Recursion
Example

% nr_elem(+List,-N) computes the number N of elements in list
% List. List is input param. and N is output param.
nr_elem([],0). %1
nr_elem([_|T],N):-nr_elem(T,N1), N is N1+1. %2

nr_elem([a,b],N).

nr_elem([b],N1), N is N1+1.

nr_elem([],N2), N1 is N2+1.

�

(2)

(2)

(1)
N2=0

N1=1

N=2

Observaţii:

The value of N is computed on the branch which backtracks from recursion:

It is desirable to compute the result along the branch through recursive calls, to
avoid the creation of temporary variables on the stack.
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Computing the number of elements in a list
A versiion with accumulator

The version nr_elem1(Lista,N), to compute the number N of elements in list L
along the branch through recursive calls, is based on the auxiliary relation
nr_elemAux(Lista,A,N) where:

A is an extra argument of nr_elem(Lista,N), called accumulator.
A accumulates the number of elements in the list, while performing recursive
calls.

nr_elem1(Lista,N):-nr_elemAux(Lista,0,N). %1
nr_elemAux([],N,N). %2
nr_elemAux([_|T],M,N):-P is M+1,nr_elemAux(T,P,N). %3

nr_elem1([a,b],N).

nr_elemAux([a,b],0,N).

(1) nr_elem1(Lista0,N0):-nr_elemAux(Lista0,0,N0).
Lista0=[a,b], N0=N.

nr_elemAux([b],1,N).

(3) nr_elemAux([_|T1],M1,N1):-P1 is M1+1,nr_elemAux(T1,P1,N1).
T1=[b], M1=0,P1=1.

nr_elemAux([],2,N).

(3) nr_elemAux([_|T2],M2,N2):-P2 is M2+1,nr_elemAux(T2,P2,N2).
T2=[], M2=1,P2=2.

�

(2) nr_elemAux([],N3,N3).
N3=2, N=2
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Acumulators
Application: Reverse a list

Define the relation rev_list(L,R) which holds if R is the
reverse of list L.

Idea: Use an accumulator which acts like a stack where we
push recursively all elements of L, starting with the head of
L.
Initially, the accumulator is empty [].
rev_list(L,R):-rev_listAux(L,[],R).

% base case
rev_listAux([],R,R).

% recursive case
rev_listAux([H|T],A,R):-rev_listAux(T,[H|A],R).
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Reversing a list: version with an accumulator

Illustrated exemple
?-rev_list([a,b,c],R).

R=[c,b,a]

rev_list([a,b,c],R).

rev_listAux([a,b,c],[],R).

rev_list(L1,R1):-rev_listAux(L1,[],R1).
L1=[a,b,c], R1=R

rev_listAux([b,c],[a],R).

rev_listAux([H2|T2],A2,R2):-
rev_listAux(T2,[H2|A2],R2).

H2=[a],T2=[b,c], A2=[],R2=R

rev_listAux([c],[b,a],R).

rev_listAux([H3|T3],A3,R3):-
rev_listAux(T3,[H3|A3],R3).

H3=[b],T3=[c], A3=[a],R3=R

rev_listAux([],[c,b,a],R).

rev_listAux([H4|T4],A4,R4):-
rev_listAux(T4,[H4|A4],R4).

H4=[c],T4=[], A4=[b,a],R4=R

�

rev_listAux([],R5,R5).
R5=[c,b,a], R=[c,b,a]
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?-rev_list([a,b,c],R).
R=[c,b,a]

rev_list([a,b,c],R).

rev_listAux([a,b,c],[],R).

rev_list(L1,R1):-rev_listAux(L1,[],R1).
L1=[a,b,c], R1=R

rev_listAux([b,c],[a],R).

rev_listAux([H2|T2],A2,R2):-
rev_listAux(T2,[H2|A2],R2).

H2=[a],T2=[b,c], A2=[],R2=R

rev_listAux([c],[b,a],R).

rev_listAux([H3|T3],A3,R3):-
rev_listAux(T3,[H3|A3],R3).

H3=[b],T3=[c], A3=[a],R3=R

rev_listAux([],[c,b,a],R).

rev_listAux([H4|T4],A4,R4):-
rev_listAux(T4,[H4|A4],R4).

H4=[c],T4=[], A4=[b,a],R4=R

�

rev_listAux([],R5,R5).
R5=[c,b,a], R=[c,b,a]
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Recursion
Application: the treasurers’ problem

Hypotheses:
1 No member of the club has debts to the treasurer of the club.
2 If a member of the club did not pay the tax then he has debts to the treasurer of

the club,
3 The treasurer of the club is a member of the club.

Conclusion: Thr treasurer of the club payed the tax.

Solve the problem in PROLOG, using facts and rules to write a corresponding program,
and a query.

% Hypothesis 1
no_debts(X):-club_member(X).
% Hypothesis 2
payed_tax(X):-no_debts(X).
% Hypothesis 3
club_member(treasurer).

?-payed_tax(treasurer).

Observation: this program is not recursive.
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Recursion
Application: Neighbors

Formalize the following knowledge in PROLOG:
1 Steven and Peter are neighbors.
2 Steven is married with doctor who works at Emergency Hospital.
3 Peter is married with an actress who works at National Theater.
4 Steven is music lover and Peter is hunter.
5 All music lovers are sentimental.
6 All hunters are liars.
7 Actresses like sentimental men.
8 Married people have the same neighbors.
9 Being married and being neighbors are symmetric relations.

Next, use PROLOG to find the answer to the question: does Peter’s wife like Steven?
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Recursion
Application: Neighbors

neighbor1(steven,peter). %1
married1(steven,stevens_Wife). %2
doctor(stevens_Wife). %2
works(stevens_Wife,emergency_hospital). %2
married1(peter,peters_Wife). %3
actress(peters_Wife). %3
works(peters_Wife,national_theater). %3
music_lover(steven). %4
hunter(peter). %4
sentimental(X):-music_lover(X). %5
liar(X):-hunter(X). %6
likes(X,Y):-actress(X),sentimental(Y). %7
neighbor(X,Y):-married(X,Z),neighbor(Z,Y). %8
neighbor(X,Y):-neighbor1(X,Y). %9
neighbor(X,Y):-neighbor1(Y,X). %9
married(X,Y):-married1(X,Y). %9
married(X,Y):-married1(Y,X). %9
conclusion:-married(peter,W),likes(W,steven).

?-conclusion.

Observation: this program is recursive.
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Remarks about symmetric relations

A binary relation is symmetric if

r(term1,term2) holds if and only if r(term2,term1) holds.

The binary relations neighbor and married from the previous example are
symmetric.

Q: How can we specify a symmetric relation?

Version 1 - Example
r(a,b). r(a,c).
r(X,Y):-r(Y,X).

Remark : We must write the fact for r before the rule. Problem:

?-r(b,c).

⇒ the answer to this query will never be found (infinite recursion).
How can we avoid this situation?

Version 2: by defining an auxiliary asymmetric relation r1. Example:
r1(a,b). r1(a,c).
r(X,Y):-r1(X,Y).
r(X,Y):-r1(Y,X).

This version was used to define the symmetric relations neighbor and
married.
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How to represent sets in PROLOG?

We could represent sets by a list where every element occurs only
once.

Define recursively the property is_set(L) which holds if L is a
list where every element occurs only once. Example:

?-is_set([a,b,d,c]).
true
?-is_set([a,b,a]).
false

Define the relation set(L,M) which takes as input parameter
the list L at as M as output parameter, and binds M to the set of
elements that occur in L.

?-set([a,b,a,c],M).
M=[a,b,c]
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How to represent sets in PROLOG?

1 is_set(L)
B Base case: [] is set.
B Recursive case: [H|T] is set if H does not occur in T and T

is set.
2 set(L,M)

B Base case: If L=[] then M=[].
B Recursive case: If L=[H|T] then M=[H|R] where R is the

list produced in 2 steps:
1 First, we find the list R1 produced by removing all

occurrences of H from T.
To find R1, we will define the relation delete(H,T,R1)
which holds if R1 is the list obtained from T by removing all
occurrences of H.

2 R is computed recursively, as answer to the query
set(R1,R).
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Representing sets in PROLOG

is_set([]).
is_set([H|T]):-not(member(H,T)),

is_set(T).

set([],[]).
set([H|T],[H|R]):-delete(H,T,R1),set(R1,R).

delete(H,[],[]).
delete(H,[H|T],R):-delete(H,T,R).
delete(H,[H1|T],[H1|R]):-H\=H1,

delete(H,T,R).
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Operations on sets

Define recursively the following relations on sets:
equal_sets(A,B) if A and B represent the same set.
reunion(A,B,C) which holds if C represents the set
produced by the reunion of sets A and B.
intersection(A,B,C) which holds if C represents the
set produced by the intersection of sets A and B.
difference(A,B,C) which holds if C represents the set
produced by th difference of sets A and B.
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Recursive relations
Quiz

Consider the relation next(X,Y,L) defined as follows:

next(X,Y,[X,Y|_]).
next(X,Y,[Z|T]):-X\=Z,next(X,Y,T).

1 What is the meaning of the relation next(X,Y,Z)?

2 What is the meaning of the relation z_u(X,Y) defined by the
rule

z_u(X,Y):-next(X,Y,[monday,tuesday,
wednesday,thursday,
friday,saturday,sunday,monday]).

3 What is the meaning of the relation z_p(X,Y) defined by the
rule

z_p(X,Y):-z_u(Y,X).
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