
Lecture 4
Recursion in PROLOG. Recursive relations. Applications

Mircea Marin
mircea.marin@e-uvt.ro

October 2018

Mircea Marin Logic Programming

Recursion
A notion is recursive if it is defined in terms of itself.

In general, a recursive definition is specified by one ore more
rules, called cases:

0 or more base cases, in which the predicate from the head
of the rule does not occur in the body of the rule.
1 or more recursive cases, in which the predicate from the
head of the rule occurs in the body of the rule.

Several definitions are recursive in PROLOG. For instance:

term::= constant | variabile
| f(term1,...,termn)

where f is a function symbol with arity n.

Base cases: A term is a constant or a variable. These cases can be
restated as follows:

1 t is a term if t is a constant.
2 t is a term if t is a variable.

Recursive case: t is a term if t is of the form f (t1, . . . , tn) with function
symbol f of arity n, and t1, . . . , tn are terms.

Mircea Marin Logic Programming

Recursion in PROLOG
Lists

List = recursive data structure used frequently in symbolic
computations.
In PROLOG, lists are defined as follows:
Base case: [] is a list.
Recursive case: .(h, t) is a list if h is a term and t is a list.

Remarks

1 Every nonempty list l is of the form .(h, t) where h is the head (or
first element) of l , and t is the tail of l .

2 For lists, PROLOG allows to use the abbreviated notation
[t1, . . . , tn] instead of .(t1, .(..., .(tn, [])...)). The terms t1, . . . , tn are
called the elements of the list, and can be of any kind: constants,
variables, or structures. For example:
[list ,with,4,elements,′ :′, [a, A, book(ion,autor(rebreanu)), _]]

3 In PROLOG, a string "a1, . . . ,an" is in fact the list of ASCII codes
of the characters a1, . . . ,an.

Mircea Marin Logic Programming

List manipulation
Head and tail

Special notation for splitting a nonempty list L in head and tail:
[X | Y] = L

B the variable X gets bound to the head of list L
B the variable Y gets bound to the tail of list L.

REMARK.
[X |Y] coincides with the term .(X ,Y).
[X | Y] is not a list!

Example

List Head Tail
[a,b, c,d] a [b, c,d]
[a] a []
[] (nothing) (nothing)
[[bad, dog],bites] [bad dog] [bites]
[X + Y , x + y] [X + Y] [x + y]
"abc" 97 [98,99]

Mircea Marin Logic Programming

List manipulation
Head and tail

Special notation for splitting a nonempty list L in head and tail:
[X | Y] = L

B the variable X gets bound to the head of list L
B the variable Y gets bound to the tail of list L.

REMARK.
[X |Y] coincides with the term .(X ,Y).
[X | Y] is not a list!

Example

List Head Tail
[a,b, c,d] a [b, c,d]
[a] a []
[] (nothing) (nothing)
[[bad, dog],bites] [bad dog] [bites]
[X + Y , x + y] [X + Y] [x + y]
"abc" 97 [98,99]

Mircea Marin Logic Programming

Recursive definitions of predicates

Example 1: Defining a predicate which is a list recognizer
% is_list(L) means that L is a list

% Base case
is_list([]).

% Recursive case
is_list([_|T]) :- is_list(T).

Example 2: Defining element membership to a list
% member(X,L) means that X belongs to L

% Base case: X is the lead of L
member(X,[X|_]).

% Recursive case: X belongs to the tail of L
member(X,[Y|T]) :- member(X,T).

Mircea Marin Logic Programming

Recursive definitions of predicates

Example 1: Defining a predicate which is a list recognizer
% is_list(L) means that L is a list

% Base case
is_list([]).

% Recursive case
is_list([_|T]) :- is_list(T).

Example 2: Defining element membership to a list
% member(X,L) means that X belongs to L

% Base case: X is the lead of L
member(X,[X|_]).

% Recursive case: X belongs to the tail of L
member(X,[Y|T]) :- member(X,T).

Mircea Marin Logic Programming

Example: tt member

REMARKS

PROLOG verifies 2 conditions, in the following order:
1 member(X,[X|_]). (base case)
2 member(X,[_|T]) :- member(X,T). (recursive case)

In the recursive case, the list that gets tested for
occurrence of X in it becomes shorter.
The list can not be shortened forever ⇒ computation
terminates.
PROLOG stops computing in two situations:

1 it encounters a list which satisfies the base case
⇒ it stops with success (true).

2 it reaches the empty list
⇒ it stops with failure (false).

Mircea Marin Logic Programming

Recursion
Termination problems

Termination = the property of a program to stop after a
finite number of steps
Some programs don’t stop

parent(X,Y) :- child(Y,X).
child(Y,X) :- parent(X,Y).

Reason: the definitions of predicates parent and child
are circular (mutually recursive).
⇒ avoid circular definitions of this kind!

The following program is left-recursive and never stops:

human(X):-human(Y), parent(X,Y).
human(adam).

⇒ left recursion should be used with care!

Mircea Marin Logic Programming

Recursion
Termination problems

Rules and facts are applied in the order they are written in the
program.

Intuitive rule of thumb: facts should be written before rules.

Sometimes, a particular ordering of rules and facts works well only for
a particular kind of queries.

Example

is_list([_|B]):-is_list(B).
is_list([]).

is a good program to answer the queries

?-is_list([1,2,3]).
?-is_list([]).
?-is_list(f(1,2))

but is not good if we want to answer the query is_list(X).
What happens if we change the order of clauses in the program?
?-is_list(X).

Mircea Marin Logic Programming

Recursion
Specifying the direction of building solutions

Many predicates defined in PROLOG make distinction between
Input parameters (+): they must have concrete values when we

call the predicate.
Output parameters (-): their values are computed as answers

to the query.
Arbitrary parameters (?): can be both input and output.

Mircea Marin Logic Programming

Recursion
Example

% nr_elem(+List,-N) computes the number N of elements in list
% List. List is input param. and N is output param.
nr_elem([],0). %1
nr_elem([_|T],N):-nr_elem(T,N1), N is N1+1. %2

nr_elem([a,b],N).

nr_elem([b],N1), N is N1+1.

nr_elem([],N2), N1 is N2+1.

�

(2)

(2)

(1)
N2=0

N1=1

N=2

Observaţii:

The value of N is computed on the branch which backtracks from recursion:

It is desirable to compute the result along the branch through recursive calls, to
avoid the creation of temporary variables on the stack.

Mircea Marin Logic Programming

Recursion
Example

% nr_elem(+List,-N) computes the number N of elements in list
% List. List is input param. and N is output param.
nr_elem([],0). %1
nr_elem([_|T],N):-nr_elem(T,N1), N is N1+1. %2

nr_elem([a,b],N).

nr_elem([b],N1), N is N1+1.

nr_elem([],N2), N1 is N2+1.

�

(2)

(2)

(1)
N2=0

N1=1

N=2

Observaţii:

The value of N is computed on the branch which backtracks from recursion:

It is desirable to compute the result along the branch through recursive calls, to
avoid the creation of temporary variables on the stack.

Mircea Marin Logic Programming

Recursion
Example

% nr_elem(+List,-N) computes the number N of elements in list
% List. List is input param. and N is output param.
nr_elem([],0). %1
nr_elem([_|T],N):-nr_elem(T,N1), N is N1+1. %2

nr_elem([a,b],N).

nr_elem([b],N1), N is N1+1.

nr_elem([],N2), N1 is N2+1.

�

(2)

(2)

(1)
N2=0

N1=1

N=2

Observaţii:

The value of N is computed on the branch which backtracks from recursion:

It is desirable to compute the result along the branch through recursive calls, to
avoid the creation of temporary variables on the stack.

Mircea Marin Logic Programming

Recursion
Example

% nr_elem(+List,-N) computes the number N of elements in list
% List. List is input param. and N is output param.
nr_elem([],0). %1
nr_elem([_|T],N):-nr_elem(T,N1), N is N1+1. %2

nr_elem([a,b],N).

nr_elem([b],N1), N is N1+1.

nr_elem([],N2), N1 is N2+1.

�

(2)

(2)

(1)
N2=0

N1=1

N=2

Observaţii:

The value of N is computed on the branch which backtracks from recursion:

It is desirable to compute the result along the branch through recursive calls, to
avoid the creation of temporary variables on the stack.

Mircea Marin Logic Programming

Computing the number of elements in a list
A versiion with accumulator

The version nr_elem1(Lista,N), to compute the number N of elements in list L
along the branch through recursive calls, is based on the auxiliary relation
nr_elemAux(Lista,A,N) where:

A is an extra argument of nr_elem(Lista,N), called accumulator.
A accumulates the number of elements in the list, while performing recursive
calls.

nr_elem1(Lista,N):-nr_elemAux(Lista,0,N). %1
nr_elemAux([],N,N). %2
nr_elemAux([_|T],M,N):-P is M+1,nr_elemAux(T,P,N). %3

nr_elem1([a,b],N).

nr_elemAux([a,b],0,N).

(1) nr_elem1(Lista0,N0):-nr_elemAux(Lista0,0,N0).
Lista0=[a,b], N0=N.

nr_elemAux([b],1,N).

(3) nr_elemAux([_|T1],M1,N1):-P1 is M1+1,nr_elemAux(T1,P1,N1).
T1=[b], M1=0,P1=1.

nr_elemAux([],2,N).

(3) nr_elemAux([_|T2],M2,N2):-P2 is M2+1,nr_elemAux(T2,P2,N2).
T2=[], M2=1,P2=2.

�

(2) nr_elemAux([],N3,N3).
N3=2, N=2

Mircea Marin Logic Programming

Computing the number of elements in a list
A versiion with accumulator

The version nr_elem1(Lista,N), to compute the number N of elements in list L
along the branch through recursive calls, is based on the auxiliary relation
nr_elemAux(Lista,A,N) where:

A is an extra argument of nr_elem(Lista,N), called accumulator.
A accumulates the number of elements in the list, while performing recursive
calls.

nr_elem1(Lista,N):-nr_elemAux(Lista,0,N). %1
nr_elemAux([],N,N). %2
nr_elemAux([_|T],M,N):-P is M+1,nr_elemAux(T,P,N). %3

nr_elem1([a,b],N).

nr_elemAux([a,b],0,N).

(1) nr_elem1(Lista0,N0):-nr_elemAux(Lista0,0,N0).
Lista0=[a,b], N0=N.

nr_elemAux([b],1,N).

(3) nr_elemAux([_|T1],M1,N1):-P1 is M1+1,nr_elemAux(T1,P1,N1).
T1=[b], M1=0,P1=1.

nr_elemAux([],2,N).

(3) nr_elemAux([_|T2],M2,N2):-P2 is M2+1,nr_elemAux(T2,P2,N2).
T2=[], M2=1,P2=2.

�

(2) nr_elemAux([],N3,N3).
N3=2, N=2

Mircea Marin Logic Programming

Computing the number of elements in a list
A versiion with accumulator

The version nr_elem1(Lista,N), to compute the number N of elements in list L
along the branch through recursive calls, is based on the auxiliary relation
nr_elemAux(Lista,A,N) where:

A is an extra argument of nr_elem(Lista,N), called accumulator.
A accumulates the number of elements in the list, while performing recursive
calls.

nr_elem1(Lista,N):-nr_elemAux(Lista,0,N). %1
nr_elemAux([],N,N). %2
nr_elemAux([_|T],M,N):-P is M+1,nr_elemAux(T,P,N). %3

nr_elem1([a,b],N).

nr_elemAux([a,b],0,N).

(1) nr_elem1(Lista0,N0):-nr_elemAux(Lista0,0,N0).
Lista0=[a,b], N0=N.

nr_elemAux([b],1,N).

(3) nr_elemAux([_|T1],M1,N1):-P1 is M1+1,nr_elemAux(T1,P1,N1).
T1=[b], M1=0,P1=1.

nr_elemAux([],2,N).

(3) nr_elemAux([_|T2],M2,N2):-P2 is M2+1,nr_elemAux(T2,P2,N2).
T2=[], M2=1,P2=2.

�

(2) nr_elemAux([],N3,N3).
N3=2, N=2

Mircea Marin Logic Programming

Computing the number of elements in a list
A versiion with accumulator

The version nr_elem1(Lista,N), to compute the number N of elements in list L
along the branch through recursive calls, is based on the auxiliary relation
nr_elemAux(Lista,A,N) where:

A is an extra argument of nr_elem(Lista,N), called accumulator.
A accumulates the number of elements in the list, while performing recursive
calls.

nr_elem1(Lista,N):-nr_elemAux(Lista,0,N). %1
nr_elemAux([],N,N). %2
nr_elemAux([_|T],M,N):-P is M+1,nr_elemAux(T,P,N). %3

nr_elem1([a,b],N).

nr_elemAux([a,b],0,N).

(1) nr_elem1(Lista0,N0):-nr_elemAux(Lista0,0,N0).
Lista0=[a,b], N0=N.

nr_elemAux([b],1,N).

(3) nr_elemAux([_|T1],M1,N1):-P1 is M1+1,nr_elemAux(T1,P1,N1).
T1=[b], M1=0,P1=1.

nr_elemAux([],2,N).

(3) nr_elemAux([_|T2],M2,N2):-P2 is M2+1,nr_elemAux(T2,P2,N2).
T2=[], M2=1,P2=2.

�

(2) nr_elemAux([],N3,N3).
N3=2, N=2

Mircea Marin Logic Programming

Computing the number of elements in a list
A versiion with accumulator

The version nr_elem1(Lista,N), to compute the number N of elements in list L
along the branch through recursive calls, is based on the auxiliary relation
nr_elemAux(Lista,A,N) where:

A is an extra argument of nr_elem(Lista,N), called accumulator.
A accumulates the number of elements in the list, while performing recursive
calls.

nr_elem1(Lista,N):-nr_elemAux(Lista,0,N). %1
nr_elemAux([],N,N). %2
nr_elemAux([_|T],M,N):-P is M+1,nr_elemAux(T,P,N). %3

nr_elem1([a,b],N).

nr_elemAux([a,b],0,N).

(1) nr_elem1(Lista0,N0):-nr_elemAux(Lista0,0,N0).
Lista0=[a,b], N0=N.

nr_elemAux([b],1,N).

(3) nr_elemAux([_|T1],M1,N1):-P1 is M1+1,nr_elemAux(T1,P1,N1).
T1=[b], M1=0,P1=1.

nr_elemAux([],2,N).

(3) nr_elemAux([_|T2],M2,N2):-P2 is M2+1,nr_elemAux(T2,P2,N2).
T2=[], M2=1,P2=2.

�

(2) nr_elemAux([],N3,N3).
N3=2, N=2

Mircea Marin Logic Programming

Acumulators
Application: Reverse a list

Define the relation rev_list(L,R) which holds if R is the
reverse of list L.

Idea: Use an accumulator which acts like a stack where we
push recursively all elements of L, starting with the head of
L.
Initially, the accumulator is empty [].
rev_list(L,R):-rev_listAux(L,[],R).

% base case
rev_listAux([],R,R).

% recursive case
rev_listAux([H|T],A,R):-rev_listAux(T,[H|A],R).

Mircea Marin Logic Programming

Acumulators
Application: Reverse a list

Define the relation rev_list(L,R) which holds if R is the
reverse of list L.

Idea: Use an accumulator which acts like a stack where we
push recursively all elements of L, starting with the head of
L.

Initially, the accumulator is empty [].
rev_list(L,R):-rev_listAux(L,[],R).

% base case
rev_listAux([],R,R).

% recursive case
rev_listAux([H|T],A,R):-rev_listAux(T,[H|A],R).

Mircea Marin Logic Programming

Acumulators
Application: Reverse a list

Define the relation rev_list(L,R) which holds if R is the
reverse of list L.

Idea: Use an accumulator which acts like a stack where we
push recursively all elements of L, starting with the head of
L.
Initially, the accumulator is empty [].

rev_list(L,R):-rev_listAux(L,[],R).

% base case
rev_listAux([],R,R).

% recursive case
rev_listAux([H|T],A,R):-rev_listAux(T,[H|A],R).

Mircea Marin Logic Programming

Acumulators
Application: Reverse a list

Define the relation rev_list(L,R) which holds if R is the
reverse of list L.

Idea: Use an accumulator which acts like a stack where we
push recursively all elements of L, starting with the head of
L.
Initially, the accumulator is empty [].
rev_list(L,R):-rev_listAux(L,[],R).

% base case
rev_listAux([],R,R).

% recursive case
rev_listAux([H|T],A,R):-rev_listAux(T,[H|A],R).

Mircea Marin Logic Programming

Reversing a list: version with an accumulator

Illustrated exemple
?-rev_list([a,b,c],R).

R=[c,b,a]

rev_list([a,b,c],R).

rev_listAux([a,b,c],[],R).

rev_list(L1,R1):-rev_listAux(L1,[],R1).
L1=[a,b,c], R1=R

rev_listAux([b,c],[a],R).

rev_listAux([H2|T2],A2,R2):-
rev_listAux(T2,[H2|A2],R2).

H2=[a],T2=[b,c], A2=[],R2=R

rev_listAux([c],[b,a],R).

rev_listAux([H3|T3],A3,R3):-
rev_listAux(T3,[H3|A3],R3).

H3=[b],T3=[c], A3=[a],R3=R

rev_listAux([],[c,b,a],R).

rev_listAux([H4|T4],A4,R4):-
rev_listAux(T4,[H4|A4],R4).

H4=[c],T4=[], A4=[b,a],R4=R

�

rev_listAux([],R5,R5).
R5=[c,b,a], R=[c,b,a]

Mircea Marin Logic Programming

Reversing a list: version with an accumulator

Illustrated exemple
?-rev_list([a,b,c],R).

R=[c,b,a]

rev_list([a,b,c],R).

rev_listAux([a,b,c],[],R).

rev_list(L1,R1):-rev_listAux(L1,[],R1).
L1=[a,b,c], R1=R

rev_listAux([b,c],[a],R).

rev_listAux([H2|T2],A2,R2):-
rev_listAux(T2,[H2|A2],R2).

H2=[a],T2=[b,c], A2=[],R2=R

rev_listAux([c],[b,a],R).

rev_listAux([H3|T3],A3,R3):-
rev_listAux(T3,[H3|A3],R3).

H3=[b],T3=[c], A3=[a],R3=R

rev_listAux([],[c,b,a],R).

rev_listAux([H4|T4],A4,R4):-
rev_listAux(T4,[H4|A4],R4).

H4=[c],T4=[], A4=[b,a],R4=R

�

rev_listAux([],R5,R5).
R5=[c,b,a], R=[c,b,a]

Mircea Marin Logic Programming

Reversing a list: version with an accumulator

Illustrated exemple
?-rev_list([a,b,c],R).

R=[c,b,a]

rev_list([a,b,c],R).

rev_listAux([a,b,c],[],R).

rev_list(L1,R1):-rev_listAux(L1,[],R1).
L1=[a,b,c], R1=R

rev_listAux([b,c],[a],R).

rev_listAux([H2|T2],A2,R2):-
rev_listAux(T2,[H2|A2],R2).

H2=[a],T2=[b,c], A2=[],R2=R

rev_listAux([c],[b,a],R).

rev_listAux([H3|T3],A3,R3):-
rev_listAux(T3,[H3|A3],R3).

H3=[b],T3=[c], A3=[a],R3=R

rev_listAux([],[c,b,a],R).

rev_listAux([H4|T4],A4,R4):-
rev_listAux(T4,[H4|A4],R4).

H4=[c],T4=[], A4=[b,a],R4=R

�

rev_listAux([],R5,R5).
R5=[c,b,a], R=[c,b,a]

Mircea Marin Logic Programming

Reversing a list: version with an accumulator

Illustrated exemple
?-rev_list([a,b,c],R).

R=[c,b,a]

rev_list([a,b,c],R).

rev_listAux([a,b,c],[],R).

rev_list(L1,R1):-rev_listAux(L1,[],R1).
L1=[a,b,c], R1=R

rev_listAux([b,c],[a],R).

rev_listAux([H2|T2],A2,R2):-
rev_listAux(T2,[H2|A2],R2).

H2=[a],T2=[b,c], A2=[],R2=R

rev_listAux([c],[b,a],R).

rev_listAux([H3|T3],A3,R3):-
rev_listAux(T3,[H3|A3],R3).

H3=[b],T3=[c], A3=[a],R3=R

rev_listAux([],[c,b,a],R).

rev_listAux([H4|T4],A4,R4):-
rev_listAux(T4,[H4|A4],R4).

H4=[c],T4=[], A4=[b,a],R4=R

�

rev_listAux([],R5,R5).
R5=[c,b,a], R=[c,b,a]

Mircea Marin Logic Programming

Reversing a list: version with an accumulator

Illustrated exemple
?-rev_list([a,b,c],R).

R=[c,b,a]

rev_list([a,b,c],R).

rev_listAux([a,b,c],[],R).

rev_list(L1,R1):-rev_listAux(L1,[],R1).
L1=[a,b,c], R1=R

rev_listAux([b,c],[a],R).

rev_listAux([H2|T2],A2,R2):-
rev_listAux(T2,[H2|A2],R2).

H2=[a],T2=[b,c], A2=[],R2=R

rev_listAux([c],[b,a],R).

rev_listAux([H3|T3],A3,R3):-
rev_listAux(T3,[H3|A3],R3).

H3=[b],T3=[c], A3=[a],R3=R

rev_listAux([],[c,b,a],R).

rev_listAux([H4|T4],A4,R4):-
rev_listAux(T4,[H4|A4],R4).

H4=[c],T4=[], A4=[b,a],R4=R

�

rev_listAux([],R5,R5).
R5=[c,b,a], R=[c,b,a]

Mircea Marin Logic Programming

Reversing a list: version with an accumulator

Illustrated exemple
?-rev_list([a,b,c],R).

R=[c,b,a]

rev_list([a,b,c],R).

rev_listAux([a,b,c],[],R).

rev_list(L1,R1):-rev_listAux(L1,[],R1).
L1=[a,b,c], R1=R

rev_listAux([b,c],[a],R).

rev_listAux([H2|T2],A2,R2):-
rev_listAux(T2,[H2|A2],R2).

H2=[a],T2=[b,c], A2=[],R2=R

rev_listAux([c],[b,a],R).

rev_listAux([H3|T3],A3,R3):-
rev_listAux(T3,[H3|A3],R3).

H3=[b],T3=[c], A3=[a],R3=R

rev_listAux([],[c,b,a],R).

rev_listAux([H4|T4],A4,R4):-
rev_listAux(T4,[H4|A4],R4).

H4=[c],T4=[], A4=[b,a],R4=R

�

rev_listAux([],R5,R5).
R5=[c,b,a], R=[c,b,a]

Mircea Marin Logic Programming

Reversing a list: version with an accumulator

Illustrated exemple
?-rev_list([a,b,c],R).
R=[c,b,a]

rev_list([a,b,c],R).

rev_listAux([a,b,c],[],R).

rev_list(L1,R1):-rev_listAux(L1,[],R1).
L1=[a,b,c], R1=R

rev_listAux([b,c],[a],R).

rev_listAux([H2|T2],A2,R2):-
rev_listAux(T2,[H2|A2],R2).

H2=[a],T2=[b,c], A2=[],R2=R

rev_listAux([c],[b,a],R).

rev_listAux([H3|T3],A3,R3):-
rev_listAux(T3,[H3|A3],R3).

H3=[b],T3=[c], A3=[a],R3=R

rev_listAux([],[c,b,a],R).

rev_listAux([H4|T4],A4,R4):-
rev_listAux(T4,[H4|A4],R4).

H4=[c],T4=[], A4=[b,a],R4=R

�

rev_listAux([],R5,R5).
R5=[c,b,a], R=[c,b,a]

Mircea Marin Logic Programming

Recursion
Application: the treasurers’ problem

Hypotheses:
1 No member of the club has debts to the treasurer of the club.
2 If a member of the club did not pay the tax then he has debts to the treasurer of

the club,
3 The treasurer of the club is a member of the club.

Conclusion: Thr treasurer of the club payed the tax.

Solve the problem in PROLOG, using facts and rules to write a corresponding program,
and a query.

% Hypothesis 1
no_debts(X):-club_member(X).
% Hypothesis 2
payed_tax(X):-no_debts(X).
% Hypothesis 3
club_member(treasurer).

?-payed_tax(treasurer).

Observation: this program is not recursive.

Mircea Marin Logic Programming

Recursion
Application: the treasurers’ problem

Hypotheses:
1 No member of the club has debts to the treasurer of the club.
2 If a member of the club did not pay the tax then he has debts to the treasurer of

the club,
3 The treasurer of the club is a member of the club.

Conclusion: Thr treasurer of the club payed the tax.

Solve the problem in PROLOG, using facts and rules to write a corresponding program,
and a query.

% Hypothesis 1
no_debts(X):-club_member(X).
% Hypothesis 2
payed_tax(X):-no_debts(X).
% Hypothesis 3
club_member(treasurer).

?-payed_tax(treasurer).

Observation: this program is not recursive.

Mircea Marin Logic Programming

Recursion
Application: Neighbors

Formalize the following knowledge in PROLOG:
1 Steven and Peter are neighbors.
2 Steven is married with doctor who works at Emergency Hospital.
3 Peter is married with an actress who works at National Theater.
4 Steven is music lover and Peter is hunter.
5 All music lovers are sentimental.
6 All hunters are liars.
7 Actresses like sentimental men.
8 Married people have the same neighbors.
9 Being married and being neighbors are symmetric relations.

Next, use PROLOG to find the answer to the question: does Peter’s wife like Steven?

Mircea Marin Logic Programming

Recursion
Application: Neighbors

neighbor1(steven,peter). %1
married1(steven,stevens_Wife). %2
doctor(stevens_Wife). %2
works(stevens_Wife,emergency_hospital). %2
married1(peter,peters_Wife). %3
actress(peters_Wife). %3
works(peters_Wife,national_theater). %3
music_lover(steven). %4
hunter(peter). %4
sentimental(X):-music_lover(X). %5
liar(X):-hunter(X). %6
likes(X,Y):-actress(X),sentimental(Y). %7
neighbor(X,Y):-married(X,Z),neighbor(Z,Y). %8
neighbor(X,Y):-neighbor1(X,Y). %9
neighbor(X,Y):-neighbor1(Y,X). %9
married(X,Y):-married1(X,Y). %9
married(X,Y):-married1(Y,X). %9
conclusion:-married(peter,W),likes(W,steven).

?-conclusion.

Observation: this program is recursive.

Mircea Marin Logic Programming

Remarks about symmetric relations

A binary relation is symmetric if

r(term1,term2) holds if and only if r(term2,term1) holds.

The binary relations neighbor and married from the previous example are
symmetric.

Q: How can we specify a symmetric relation?

Version 1 - Example
r(a,b). r(a,c).
r(X,Y):-r(Y,X).

Remark : We must write the fact for r before the rule. Problem:

?-r(b,c).

⇒ the answer to this query will never be found (infinite recursion).
How can we avoid this situation?

Version 2: by defining an auxiliary asymmetric relation r1. Example:
r1(a,b). r1(a,c).
r(X,Y):-r1(X,Y).
r(X,Y):-r1(Y,X).

This version was used to define the symmetric relations neighbor and
married.

Mircea Marin Logic Programming

Remarks about symmetric relations

A binary relation is symmetric if

r(term1,term2) holds if and only if r(term2,term1) holds.

The binary relations neighbor and married from the previous example are
symmetric.

Q: How can we specify a symmetric relation?

Version 1 - Example
r(a,b). r(a,c).
r(X,Y):-r(Y,X).

Remark : We must write the fact for r before the rule. Problem:

?-r(b,c).

⇒ the answer to this query will never be found (infinite recursion).
How can we avoid this situation?

Version 2: by defining an auxiliary asymmetric relation r1. Example:
r1(a,b). r1(a,c).
r(X,Y):-r1(X,Y).
r(X,Y):-r1(Y,X).

This version was used to define the symmetric relations neighbor and
married.

Mircea Marin Logic Programming

Remarks about symmetric relations

A binary relation is symmetric if

r(term1,term2) holds if and only if r(term2,term1) holds.

The binary relations neighbor and married from the previous example are
symmetric.

Q: How can we specify a symmetric relation?

Version 1 - Example
r(a,b). r(a,c).
r(X,Y):-r(Y,X).

Remark : We must write the fact for r before the rule. Problem:

?-r(b,c).

⇒ the answer to this query will never be found (infinite recursion).
How can we avoid this situation?

Version 2: by defining an auxiliary asymmetric relation r1. Example:
r1(a,b). r1(a,c).
r(X,Y):-r1(X,Y).
r(X,Y):-r1(Y,X).

This version was used to define the symmetric relations neighbor and
married.

Mircea Marin Logic Programming

Remarks about symmetric relations

A binary relation is symmetric if

r(term1,term2) holds if and only if r(term2,term1) holds.

The binary relations neighbor and married from the previous example are
symmetric.

Q: How can we specify a symmetric relation?

Version 1 - Example
r(a,b). r(a,c).
r(X,Y):-r(Y,X).

Remark : We must write the fact for r before the rule. Problem:

?-r(b,c).

⇒ the answer to this query will never be found (infinite recursion).
How can we avoid this situation?

Version 2: by defining an auxiliary asymmetric relation r1. Example:
r1(a,b). r1(a,c).
r(X,Y):-r1(X,Y).
r(X,Y):-r1(Y,X).

This version was used to define the symmetric relations neighbor and
married.

Mircea Marin Logic Programming

How to represent sets in PROLOG?

We could represent sets by a list where every element occurs only
once.

Define recursively the property is_set(L) which holds if L is a
list where every element occurs only once. Example:

?-is_set([a,b,d,c]).
true
?-is_set([a,b,a]).
false

Define the relation set(L,M) which takes as input parameter
the list L at as M as output parameter, and binds M to the set of
elements that occur in L.

?-set([a,b,a,c],M).
M=[a,b,c]

Mircea Marin Logic Programming

How to represent sets in PROLOG?

1 is_set(L)
B Base case: [] is set.
B Recursive case: [H|T] is set if H does not occur in T and T

is set.
2 set(L,M)

B Base case: If L=[] then M=[].
B Recursive case: If L=[H|T] then M=[H|R] where R is the

list produced in 2 steps:
1 First, we find the list R1 produced by removing all

occurrences of H from T.
To find R1, we will define the relation delete(H,T,R1)
which holds if R1 is the list obtained from T by removing all
occurrences of H.

2 R is computed recursively, as answer to the query
set(R1,R).

Mircea Marin Logic Programming

Representing sets in PROLOG

is_set([]).
is_set([H|T]):-not(member(H,T)),

is_set(T).

set([],[]).
set([H|T],[H|R]):-delete(H,T,R1),set(R1,R).

delete(H,[],[]).
delete(H,[H|T],R):-delete(H,T,R).
delete(H,[H1|T],[H1|R]):-H\=H1,

delete(H,T,R).

Mircea Marin Logic Programming

Representing sets in PROLOG

is_set([]).
is_set([H|T]):-not(member(H,T)),

is_set(T).

set([],[]).
set([H|T],[H|R]):-delete(H,T,R1),set(R1,R).

delete(H,[],[]).
delete(H,[H|T],R):-delete(H,T,R).
delete(H,[H1|T],[H1|R]):-H\=H1,

delete(H,T,R).

Mircea Marin Logic Programming

Operations on sets

Define recursively the following relations on sets:
equal_sets(A,B) if A and B represent the same set.
reunion(A,B,C) which holds if C represents the set
produced by the reunion of sets A and B.
intersection(A,B,C) which holds if C represents the
set produced by the intersection of sets A and B.
difference(A,B,C) which holds if C represents the set
produced by th difference of sets A and B.

Mircea Marin Logic Programming

Recursive relations
Quiz

Consider the relation next(X,Y,L) defined as follows:

next(X,Y,[X,Y|_]).
next(X,Y,[Z|T]):-X\=Z,next(X,Y,T).

1 What is the meaning of the relation next(X,Y,Z)?

2 What is the meaning of the relation z_u(X,Y) defined by the
rule

z_u(X,Y):-next(X,Y,[monday,tuesday,
wednesday,thursday,
friday,saturday,sunday,monday]).

3 What is the meaning of the relation z_p(X,Y) defined by the
rule

z_p(X,Y):-z_u(Y,X).

Mircea Marin Logic Programming

