
Lecture 3: Logic Programming.
Controlling the search for answers.

Cut and fail

Mircea Marin
mircea.marin@e-uvt.ro

October 11 2018

Mircea Marin ALFP

The cut operator (!)

! is the cut operator of PROLOG. It is a predefined predicate with
no arguments, which is evaluated immediately to true.

The cut operator has th following side effects:
1 When ! is selected, it eliminates all backtracking points for

the atoms that were introduced in the query at the same
time with !.

2 If the rule that introduced ! succeeds, all the other rules
and clauses for the same predicate will be ignored. In this
case, the remaining rules will not be used to search for
other answers to the query; they will be simply ignored.

In general, the usage of the cut operator has the following
benefits:

B It can make programs run faster.
B running programs will occupy less memory because there

are fewer backtracking points to be stored in memory.

Mircea Marin ALFP

The cut operator (!)

Example: member defined with the cut operator
member(X,[X|_]):-!. %1
member(X,[_|T]):-member(X,T). %2
?-member(a,[b,a,d,a,c])

?-member(a,[b,a,d,a,c]).

?-member(a,[a,d,a,c]).

member(X1,[_|T1]):-member(X1,T1).
X2=b,T1=[a,d,a,c]

?-!.

member(X2,[X2|_]):-!.
X2=a

member(X2,[X2|_]):-!.
X2=a

�

Mircea Marin ALFP

The cut operator (!)

Example: member defined with the cut operator
member(X,[X|_]):-!. %1
member(X,[_|T]):-member(X,T). %2
?-member(a,[b,a,d,a,c])

?-member(a,[b,a,d,a,c]).

?-member(a,[a,d,a,c]).

member(X1,[_|T1]):-member(X1,T1).
X2=b,T1=[a,d,a,c]

?-!.

member(X2,[X2|_]):-!.
X2=a

member(X2,[X2|_]):-!.
X2=a

�

Mircea Marin ALFP

The cut operator (!)

Example: member defined with the cut operator
member(X,[X|_]):-!. %1
member(X,[_|T]):-member(X,T). %2
?-member(a,[b,a,d,a,c])

?-member(a,[b,a,d,a,c]).

?-member(a,[a,d,a,c]).

member(X1,[_|T1]):-member(X1,T1).
X2=b,T1=[a,d,a,c]

?-!.

member(X2,[X2|_]):-!.
X2=a

member(X2,[X2|_]):-!.
X2=a

�

Mircea Marin ALFP

The cut operator (!)

Example: member defined with the cut operator
member(X,[X|_]):-!. %1
member(X,[_|T]):-member(X,T). %2
?-member(a,[b,a,d,a,c])

?-member(a,[b,a,d,a,c]).

?-member(a,[a,d,a,c]).

member(X1,[_|T1]):-member(X1,T1).
X2=b,T1=[a,d,a,c]

?-!.

member(X2,[X2|_]):-!.
X2=a

member(X2,[X2|_]):-!.
X2=a

�

Mircea Marin ALFP

The cut operator (!)
Case study

Suppose an atom H is defined with two rules and a fact, as
follows:

(C1) H:-D1,D2,...,Dm,!,Dm+1,...,Dn.
(C2) H:-A1,...,Ap.
(C3) H.
If H:-D1,D2,...,Dm are satisfied, we will not try to find
other ways to satisfy them because of !.
If H:-D1,D2,...,Dn are satisfied, (C2) and (C3) will not
be used for trying to satisfy H.
Other attempts to satisfy H will be made only by trying to
satisfy Dm+1,...,Dn in other ways.

REMARK. Trying to satisfy an atom means trying to find another
answer for it.

Mircea Marin ALFP

The cut operator (!)
Applicattion: defining a function by cases

How can we describe the function

f : R→ R, f (x) =

 0 if x < 3,
2 if 3 ≤ x < 6,
4 if 6 ≤ x .

1 A solution without the cut operator:
f(X,0):-X<3. %1
f(X,2):-3=<X,X<6. %2
f(X,4):-6=<X. %3

2 A solution with the cut operator (much more efficient)
f(X,0):-X<3,!. %1
f(X,2):-X<6,!. %2
f(X,4). %3

Mircea Marin ALFP

The cut operator (!)
Applicattion: defining a function by cases

How can we describe the function

f : R→ R, f (x) =

 0 if x < 3,
2 if 3 ≤ x < 6,
4 if 6 ≤ x .

1 A solution without the cut operator:
f(X,0):-X<3. %1
f(X,2):-3=<X,X<6. %2
f(X,4):-6=<X. %3

2 A solution with the cut operator (much more efficient)
f(X,0):-X<3,!. %1
f(X,2):-X<6,!. %2
f(X,4). %3

Mircea Marin ALFP

The cut operator (!)
Applicattion: defining a function by cases

How can we describe the function

f : R→ R, f (x) =

 0 if x < 3,
2 if 3 ≤ x < 6,
4 if 6 ≤ x .

1 A solution without the cut operator:
f(X,0):-X<3. %1
f(X,2):-3=<X,X<6. %2
f(X,4):-6=<X. %3

2 A solution with the cut operator (much more efficient)
f(X,0):-X<3,!. %1
f(X,2):-X<6,!. %2
f(X,4). %3

Mircea Marin ALFP

Common uses of the cut operator

1 To confirm the choice of a rule: in this case, the usage of !
indicates that the applicable rule was found and we don’t
want to try other rules for that predicate.

2 The combination cut-fail: is used to enforce the program to
fail without trying to apply other rules.

3 To finish “generate and test” process: it forces the program
to stop looking for other answers.

These kinds of uses will be illustrated on the following slides.

Mircea Marin ALFP

Common uses of the cut operator
1. To confirm the choice of a rule

Example: Adding up all numbers from 1 to N.
sum_to(1,1). %1
sum_to(N,Res):-N1 is N-1, %2

sum_to(N1,Res1),
Res is Res1+N.

This definition has a flaw:

Whe we ask to system to find another answer (by pressing ;),
an error will occur (an infinite loop: can you guess why?)

?-sum_to(5,X).
X=15;
ERROR: Out of local stack

B PROLOG must be informed to stop trying to apply rule 2 if it can
use fact 1.

Mircea Marin ALFP

Common uses of the cut operator
1. To confirm the choice of a rule

Example: Adding up all numbers from 1 to N.
sum_to(1,1). %1
sum_to(N,Res):-N1 is N-1, %2

sum_to(N1,Res1),
Res is Res1+N.

This definition has a flaw:

Whe we ask to system to find another answer (by pressing ;),
an error will occur (an infinite loop: can you guess why?)

?-sum_to(5,X).
X=15;
ERROR: Out of local stack

B PROLOG must be informed to stop trying to apply rule 2 if it can
use fact 1.

Mircea Marin ALFP

Common uses of the cut operator
1. To confirm the choice of a rule

Example: Adding up all numbers from 1 to N — the version with !.
csum_to(1,1):-!. %1
csum_to(N,Res):-N1 is N-1, %2

csum_to(N1,Res1),
Res is Res1+N.

As soon as the first rule of this program is applied, PROLOG will stop
trying to apply the second rule.

?- csum_to(5,X).
X=15.

but

?- csum_to(-3,X).
ERROR: Out of local stack.

Mircea Marin ALFP

Common uses of the cut operator
1. To confirm the choice of a rule

Example: Adding up all numbers from 1 to N — the version with !.
csum_to(1,1):-!. %1
csum_to(N,Res):-N1 is N-1, %2

csum_to(N1,Res1),
Res is Res1+N.

As soon as the first rule of this program is applied, PROLOG will stop
trying to apply the second rule.

?- csum_to(5,X).
X=15.

but

?- csum_to(-3,X).
ERROR: Out of local stack.

Mircea Marin ALFP

Common uses of the cut operator
1. To confirm the choice of a rule

Example: Adding up all numbers from 1 to N — the version with !.
csum_to(1,1):-!. %1
csum_to(N,Res):-N1 is N-1, %2

csum_to(N1,Res1),
Res is Res1+N.

As soon as the first rule of this program is applied, PROLOG will stop
trying to apply the second rule.

?- csum_to(5,X).
X=15.

but

?- csum_to(-3,X).
ERROR: Out of local stack.

Mircea Marin ALFP

Common uses of the cut operator
1. To confirm the choice of a rule

How can we avoid the nonterminating loop which occurred
before?

By adding the condition N =< 1 to the base case.
ssum_to(N,1):-N =< 1,!.
ssum_to(N,Res):-N1 is N-1,

ssum_to(N1,Res1),
Res is Res1+N.

Mircea Marin ALFP

Common uses of the cut operator
1. To confirm the choice of a rule

How can we avoid the nonterminating loop which occurred
before?

By adding the condition N =< 1 to the base case.

ssum_to(N,1):-N =< 1,!.
ssum_to(N,Res):-N1 is N-1,

ssum_to(N1,Res1),
Res is Res1+N.

Mircea Marin ALFP

Common uses of the cut operator
1. To confirm the choice of a rule

How can we avoid the nonterminating loop which occurred
before?

By adding the condition N =< 1 to the base case.
ssum_to(N,1):-N =< 1,!.
ssum_to(N,Res):-N1 is N-1,

ssum_to(N1,Res1),
Res is Res1+N.

Mircea Marin ALFP

Alternatives to the usage of cut operator
The relationship between ! and not

When ’!’ is intended to be used to confirm the choice if a
rule, we can use the operator not/1 instead.
not(Fact) is satisfied when Fact fails.
The usage of not is considered a good programming
practice, but

programs written with not may be less efficient, although
they may be easier to understand.

Mircea Marin ALFP

Alternatives to the usage of cut operator
The sum of numbers up to N: the version with not instead of !

nsum_to(1,1).
nsum_to(N,Res):-

not(N=<1),
N1 is N-1,
nsum_to(N1,Res1),
Res is Res1+N.

The usage of not may double the computational effort:
A:-B,C.
A:-not(B),D.

In this exemple, checking the satisfiability of B may happen
twice (if B does not hold).

Mircea Marin ALFP

Alternatives to the usage of cut operator
The sum of numbers up to N: the version with not instead of !

nsum_to(1,1).
nsum_to(N,Res):-

not(N=<1),
N1 is N-1,
nsum_to(N1,Res1),
Res is Res1+N.

The usage of not may double the computational effort:
A:-B,C.
A:-not(B),D.

In this exemple, checking the satisfiability of B may happen
twice (if B does not hold).

Mircea Marin ALFP

Alternatives to the usage of cut operator
The sum of numbers up to N: the version with not instead of !

nsum_to(1,1).
nsum_to(N,Res):-

not(N=<1),
N1 is N-1,
nsum_to(N1,Res1),
Res is Res1+N.

The usage of not may double the computational effort:
A:-B,C.
A:-not(B),D.

In this exemple, checking the satisfiability of B may happen
twice (if B does not hold).

Mircea Marin ALFP

The fail predicate. The cut-fail combination

fail/0 is a predefined predicate.

When it is evaluated in a query, fail fails and triggers
backtracking.

If fail occurs immediately after !, there is no backtracking.

Example
The statement „Someone is bad if it is not good” can be defined as follows:

% facts which characterize good people.
good(bill).
good(vlad).
good(mike).
% the rule which defines bad people.
bad(X):-good(X),!,fail.
bad(X).

If fail is used to detect failure (like in this example), it is usually
preceded by ! because it eliminates backtracking of the atoms which
occur before !.

Mircea Marin ALFP

The fail predicate. The cut-fail combination

fail/0 is a predefined predicate.

When it is evaluated in a query, fail fails and triggers
backtracking.

If fail occurs immediately after !, there is no backtracking.

Example
The statement „Someone is bad if it is not good” can be defined as follows:

% facts which characterize good people.
good(bill).
good(vlad).
good(mike).
% the rule which defines bad people.
bad(X):-good(X),!,fail.
bad(X).

If fail is used to detect failure (like in this example), it is usually
preceded by ! because it eliminates backtracking of the atoms which
occur before !.

Mircea Marin ALFP

The cut-fail combination
The call predicate. Other applications

not could be implemented with the cut-fail combination as follows:
not(P):-call(P),!,fail.
not(_).

call/1 is a predefined predicate: it takes as argument an atom and has the
effect to try to satisfy the predicate given as argument.

call(P) succeeds if predicate P succeeds, and fails otherwise.
not/1 and call/1 are called predicates of order II în PROLOG because
they take other predicates as arguments.

We can implement if_then_else in PROLOG:
if_then_else(Cond,Act1,Act2):-call(Cond),!,call(Act1).
if_then_else(Cond,Act1,Act2):-not(call(Cond)),!,call(Act2).

How can we encode the statement “Mike likes every sport except boxing." in
PROLOG?
likes(mike,X):-sport(X),box(X),!,fail.
likes(mike,X):-sport(X).

We can define a slightly more efficient version if we define the auxiliary predicate
not_box/1:
likes(mike,X):-sport(X),not_box(X).
not_box(X):-box(X),!,fail.
not_box(_).

Mircea Marin ALFP

The cut-fail combination
The call predicate. Other applications

not could be implemented with the cut-fail combination as follows:
not(P):-call(P),!,fail.
not(_).

call/1 is a predefined predicate: it takes as argument an atom and has the
effect to try to satisfy the predicate given as argument.

call(P) succeeds if predicate P succeeds, and fails otherwise.
not/1 and call/1 are called predicates of order II în PROLOG because
they take other predicates as arguments.

We can implement if_then_else in PROLOG:
if_then_else(Cond,Act1,Act2):-call(Cond),!,call(Act1).
if_then_else(Cond,Act1,Act2):-not(call(Cond)),!,call(Act2).

How can we encode the statement “Mike likes every sport except boxing." in
PROLOG?
likes(mike,X):-sport(X),box(X),!,fail.
likes(mike,X):-sport(X).

We can define a slightly more efficient version if we define the auxiliary predicate
not_box/1:
likes(mike,X):-sport(X),not_box(X).
not_box(X):-box(X),!,fail.
not_box(_).

Mircea Marin ALFP

The cut-fail combination
The call predicate. Other applications

not could be implemented with the cut-fail combination as follows:
not(P):-call(P),!,fail.
not(_).

call/1 is a predefined predicate: it takes as argument an atom and has the
effect to try to satisfy the predicate given as argument.

call(P) succeeds if predicate P succeeds, and fails otherwise.
not/1 and call/1 are called predicates of order II în PROLOG because
they take other predicates as arguments.

We can implement if_then_else in PROLOG:
if_then_else(Cond,Act1,Act2):-call(Cond),!,call(Act1).
if_then_else(Cond,Act1,Act2):-not(call(Cond)),!,call(Act2).

How can we encode the statement “Mike likes every sport except boxing." in
PROLOG?
likes(mike,X):-sport(X),box(X),!,fail.
likes(mike,X):-sport(X).

We can define a slightly more efficient version if we define the auxiliary predicate
not_box/1:
likes(mike,X):-sport(X),not_box(X).
not_box(X):-box(X),!,fail.
not_box(_).

Mircea Marin ALFP

The cut-fail combination
The call predicate. Other applications

not could be implemented with the cut-fail combination as follows:
not(P):-call(P),!,fail.
not(_).

call/1 is a predefined predicate: it takes as argument an atom and has the
effect to try to satisfy the predicate given as argument.

call(P) succeeds if predicate P succeeds, and fails otherwise.
not/1 and call/1 are called predicates of order II în PROLOG because
they take other predicates as arguments.

We can implement if_then_else in PROLOG:
if_then_else(Cond,Act1,Act2):-call(Cond),!,call(Act1).
if_then_else(Cond,Act1,Act2):-not(call(Cond)),!,call(Act2).

How can we encode the statement “Mike likes every sport except boxing." in
PROLOG?
likes(mike,X):-sport(X),box(X),!,fail.
likes(mike,X):-sport(X).

We can define a slightly more efficient version if we define the auxiliary predicate
not_box/1:
likes(mike,X):-sport(X),not_box(X).
not_box(X):-box(X),!,fail.
not_box(_).

Mircea Marin ALFP

Other applications of the fail operator

fail can be used on purpose to produce complete backtracking on
the atoms that occur before fail.

This processs could be of interest for its side effect; for example,
we can use it to print something at the console:

Example: Show all objects which are declared to be red in the
program:
red(apple).
red(cube).
red(tomato).
show(X):-red(X),writeln(X),fail.
show(_).

?-show(X).
apple
cube
tomato
true.

Mircea Marin ALFP

Other applications of the fail operator
3. Termination of a “generate and test” process

Integer division:
% A predicate which generates all
% natural numbers
nat(0).
nat(N):-nat(N1), N is N1+1.

divide(N1,N2,Result):-
nat(Result),
Product1 is Result * N2,
Product2 is (Result + 1)*N2,
Product1 =< N1, N1 < Product2, !.

?-divide(81,7,X).
X=11.

Mircea Marin ALFP

Problems with the cut operator

Consider the implementation with cut of list concatenation:

concattenate([],X,X):-!.
concattenate([A|B],C,[A|D]):-

concattenate(B,C,D).

?-concattenate([1,2,3],[a,b,c],X).
X = [1,2,3,a,b,c].
?-concattenate([1,2,3],X,[1,2,3,a,b,c]).
X=[a,b,c].
?-concattenate(X,Y,[1,2,3,a,b,c]).
X=[],
Y=[1,2,3,a,b,c].

For the first two queries, it behaves as expected.
For the a third query, PROLOG returns only one solution —
the one that matches the base case, where the cut operator
gets evaluated. The other solutions are cut out.

Mircea Marin ALFP

Problems with the cut operator

parents_number(adam, 0):-!.
parents_number(eva , 0): -!.
parents_number(X, 2).
?- parents_number(eva,X).
X=0.
?-parents_number(ion,X).
X=2.
?-parents_number(eva,2).
true.

The first 2 queries are satisfied, as expected.

The third query yields an unexpected answer. This happens
because a particular instantiation of the variables does not
match the special condition where the cut happened.

Mircea Marin ALFP

Problems with the cut operator

parents_number(adam, 0):-!.
parents_number(eva , 0): -!.
parents_number(X, 2).
?- parents_number(eva,X).
X=0.
?-parents_number(ion,X).
X=2.
?-parents_number(eva,2).
true.

The first 2 queries are satisfied, as expected.

The third query yields an unexpected answer. This happens
because a particular instantiation of the variables does not
match the special condition where the cut happened.

Mircea Marin ALFP

Problems with the cut operator

parents_number(adam, 0):-!.
parents_number(eva , 0): -!.
parents_number(X, 2).
?- parents_number(eva,X).
X=0.
?-parents_number(ion,X).
X=2.
?-parents_number(eva,2).
true.

The first 2 queries are satisfied, as expected.

The third query yields an unexpected answer. This happens
because a particular instantiation of the variables does not
match the special condition where the cut happened.

Mircea Marin ALFP

The cut operator
Problems and ways to fix them

The unexpected behavior of parents_number can be
fixed in at least 2 ways:

1 parents_number_1(adam, N):-!, N=0.
parents_number_1(eva, N):-!, N=0.
parents_number_1(X, 2).

2 parents_number_2(adam, 0):-!.
parents_number_2(eva, 0):-!.
parents_number_2(X, 2):-

X \= adam,
X \= eva.

Mircea Marin ALFP

The cut operator
Conclusions

Cut (!) is a very powerful operator. It should be used with
care.
Using it has major benefits, but it can also introduce very
subtle errors.
We distinguish two types of cuts:

Green cuts: they do not eliminate potential answers
red cuts: they eliminate potential answers.

Green cuts are harmless. Red cuts should be used with
care.

Mircea Marin ALFP

The cut operator
Examples of green and red cuts

B Green cuts: no answers are lost

min1(X,Y,X):-X=<Y,!.
min1(X,Y,Y):-X>Y.

B Red cuts: some answers are lost

member(X,[X|_]):-!.
member(X,[_|T]):-member(X,T).

?-member(X,[a,b]). % the answer X=b is not found
X=a.

or

min2(X,Y,X):-X=<Y,!.
min2(X,Y,Y).

?-min2(2,3,X). % the answer X=3 is not found
X=2.

Mircea Marin ALFP

