
Labwork: Working with algebraic types

December 6, 2018

1. Consider the Tree a type for binary trees, defined by

data Tree a = Nil | Node a (Tree a) (Tree a)

deriving (Eq,Ord,Show,Read)

Define the following operations:

(a) collapse::Tree a ->[a] which returns the list of values in the
nodes of a tree, enumerated by an inorder traversal.

(b) size::Tree a->Int which returns the number of nodes in the
tree.

(c) mapTree::(a->b) -> Tree a -> Tree b such that the function
call (maptree f t) returns the binary tree obtained from t by
replacing the content v of every node with f v.

(d) sumTree::(Num a)=>Tree a -> a which computes the sum of
values stores in the interior nodes of a binary tree.
(Note that (sumTree Nil) should be 0)

2. Define an algebraic type Student to record the name (a [Char])
and grade (a Float) at Advanced Logic and Functional Programming
(ALFP) for every student. Afterwards, define the following operations:

(a) bestStudents::[Student]->[[Char]] which takes as input a
list of students, and returns the list of names of the student with
best grade.

(b) meanGrade::[Student]->Float which takes as input a nonempty
list of students and computes their average grade at ALFP.

3. Consider the algebraic type (Expr a) to represent arithmetic expres-
sions for numeric types:

1



data Expr a = Val a

| Var [Char]

| Sum (Expr a) (Expr a)

| Prod (Expr a) (Expr a)

| Minus (Expr a) (Expr a)

Define the operation

compute :: Num a => [([Char],a)] -> Expr a -> a

which takes as inputs

(a) a list of pairs that indicate the value of every variable, and

(b) an arithmetic expression expr

and computes the value of expr.

For example:

compute [("x",1),("y",7)]

(Sum (Prod (Var "x") (Val 5))

(Minus (Val 9) (Var "y")))

should compute the value of x · 5 + (9− y), which is 7.

2


