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Values and types

Expressions, values, and types

Haskell is a functional programming language

= computation = evaluation of expressions to yield values
(the results of computations)

@ The syntactic expressions for types are called type
expressions.
@ Every value has a type. A type is a set of values with

common properties. Typical examples of type expressions
and corresponding values are:

("]

Bool (booleans): True, False

Char (characters): "a’, "b’, ...

Integer (integers): 0, -4767, 2018, ...

[Integer] (list of integers): [1, [1,2, 31, ...
(Integer, Char) (pairs of an integer and a character):
("a”,196), ("+’,-1024), ...

Integer —-> Integer (functions from integers to
integers): \x —> x+1



Values and types

Values are “first-class”

This means that they can be

» passed as arguments to functions

» returned as results of function calls

» placed in data structures (e.g., list of functions)

Types are not first class: they are used to describe values. The
association of a value with its type is called typing.

@ Examples of typing declarations in Haskell:

5

Ial

inc
[(1,2,3]
("b",4)

Integer

Char

Integer —-> Integer
[Integer]

(Char, Integer)

The intended reading of “: :” is “has type.”



Values and types

Functions are values

Most often, functions are defined by a series of equations.

Example (A simple numeric function)

inc :: Integer —-> Integer
inc n = n+l

The definition of function inc consists of two declarations:

@ First line: declaration of the type signature of inc

© Second line: an equation that defines the behavior of inc.

To indicate the evaluation of an expression ey to another expression
or value e, we write e; = e,. For example:

inc (inc 3) = 5



Values and types

Haskell is statically typed

Haskell has a type system which, at compile time, detects if all
expressions in the program ere well-typed.

Benefits of having a statically typed system:

e Many programming errors are detected at compile time
o |t aids the used to reason about programs:

@ The user-supplied type signatures are a useful
documentation about the behavior of programs; the type
systems checks that they are correct

o It assists the compiler to generate more efficient code (e.g.,
no run-time type tags or tests are required)

Remarks:

» Not all errors are detected by the type system. For example, the expression 1/0
is well-typed but its evaluation yields an error at run-time.

» Haskell's type system allows us to avoid writing type signatures, because it can
infer the correct types for us. However, writing type signatures is a very effective
form of documentation.



Values and types
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Polymorphic types

Polymorphic types

A polymorphic type is a universally quantified type; it describes a
family of types.

EXAMPLE 1: the type expression [a] is an abbreviation for the universally quantified
type (Va) [a] consisting of, for every type a, the type of lists of a:

» Lists of integers (e.g., [1,2, 31), lists of lists of characters (e.g.,
[["a"],["b","c’],[1]), etc., are members of this family of types.

» The expression [’ a’, 1] is not a member of this family of types: there is no
single type that contains both 7 a’ and 1.

EXAMPLE 2: the type expression a —> a consists of, for every type a, the type of
functions from a to a. For example, the type inferred for the function id defined by the
equation

id x = x

is described by the type expression a —> a



Values and types
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Polymorphic types

Lists in Haskell

Lists are the most commonly used data structure in functional
programming

@ [] is the empty list.
x:xs is the list with head x and tail xs.

the operator “:” is right associative

is a convenient abbreviation for the list

X{ i Xo ... Xp:[]



Values and types
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Pattern

Defi
Example: computing the length of a function

matching

nitions by pattern matching

length :: [a] —-> Integer
length [] =0
length (x:xs) = l+length xs

@ length is a function defined by two equations.

@ The left hand sides of the equations contain patterns such as
[] and x:xs.
x and xs are called pattern variables.

@ When length is applied, these patterns are matched against
the input argument of 1ength:

o [] only matches the empty list

@ x:xs matches any list with at least one element, binding x
to the first element and xs to the rest of the list. Equations
are tried top down, and for the first equation with successful
maitch, the right side is evaluated and returned as result.



Values and types
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Pattern matching

Polymorphic functions

@ length is a polymorphic function: It can be applied to lists of
elements of any type, e.g., [Integer], [Char], or [ [Bool]].

length [1,2,3] = 3
length[’a’,’'b’,’c’] = 3
length [[True,False], [False], [False,False]] = 3

@ Some other useful polymorphic functions:

head :: [a] -> a
head (x:xs) X

tail : [a] —> [a]
tail (x:xs) = xS

Unlike 1ength, these functions are not defined for all possible
values of their argument:

A runtime error occurs when when they are applied to []



Values and types
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Pattern matching

Principal types
The Hindley-Milner type system

Given two polymorphic types Ty and T, we say that T; is more general than T if the
set of values of type T is larger than the set of values of type T». In general, T; is
more general than Ty if T, can be obtained from T by a suitable substitution of type
variables:

[a] is more general than [Char]. Type [Char] is obtained from [a] by the
substitution {a — Char}

@ 2 > bismoregeneralthat [a] -> a. Type [a] -> a is obtained from
a —> b by the substitution {a — [a],b — a}

Haskell, ML, Miranda, and many other functional programming languages have a type
system based on the Hindley-Milner type system, which has 2 important properties:

0 Every well-typed expression has a unique most general type, called its principal
type
e The principal type of a well-typed expression can be computed automatically.
EXAMPLES:
@ The principal type of headis [a] -> a
@ The principal type of tailis [a] —-> [a]



Values and types
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User-defined types

User-defined types
Users can define their own types using data declarations. Every
data declaration defines simultaneously two things:
@ atype constructor, and
@ one or more data constructors for the new type.
Examples (some are predefined):
@ Enumerated types: they have finitely many nullary constructors

data Bool = True | False
data Color = Red | Green | Blue | Indigo | Violet

@ A polymorphic type
data Point a = Pt a a

@ Some recursive types

data List a
data BTree a

Null | Cons a (List a)
Leaf a | Node a (BTree a) (BTree a)



Values and types
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User-defined types

More about user-defined types

@ The application of a type constructor yields a type; the application of a data
constructor yields a value

@ Itis mandatory to start with uppercase letter the names of the type constructors
(Bool, Color, List, BTree) and the names of the data constructors (True,
False, Red, Green, Blue, Indigo, Violet, Null, Cons, Leaf, Node)

@ The type system assigns corresponding types to data constructors, e.g.:
Cons :: a -> List a -> List a

@ Type constructors and data constructors are in separate namespaces. This
implies that the same name can be used for both a type constructor and a data
constructor. For example, we can define

data Point a = Point a a
Here, Point is both the name of a type constructor, and the name of a data
constructor.

@ For better readability, some predefined type constructors and data constructors
have special syntax:

w,n

@ The function type constructor “~>" and the data constructor “:” are like
right-associative infix operators
@ The type constructors and data constructors for tuples have mixfix syntax
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User-defined types

Recursive functions on recursive types
Example

Define the function fringe that takes as input a tree of type
BTree a and returns the list of all elements of the tree, as seen by
an inorder traversal of the tree. Remember the definition of
polymorphic type BTree:

data BTree a = Leaf a | Node a (BTree a) (BTree a)

The definition of fringe is by recursion on the structure of BTree:

fringe :: BTree a -> [a]
fringe (Leaf x) = [x]
fringe (Node x left right) = fringe left ++ [x] ++ fringe right

where “++” is the infix operator that concatenates two lists.

REMARK: By default, operators (like ‘++) haw lower binding occurrence than function
calls. Therefore:

fringe left ++ [x] ++ fringe right
is parsed as

(fringe left) ++ [x] ++ (fringe right)
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User-defined types

Type synonyms

A type synonym is a new name for an existing type. Type synonyms
are defined using type declarations. For example:

type String = [Char]
type Person = (Name,Address)
type Name = String

type Address = None | Addr String

Person is synonym with (String, Address), therefore
Person—>Name is equivalentto (String, Address)->String

@ Type names improve readability of programs by being more
mnemonic.

@ We can even give names to polymorphic types, e.g.:

type AssoclList a b = [(a,b)]




Values and types
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List comprehensions and arithmetic sequences

List comprehensions

Syntax to to create lists inspired from mathematical notation. For example:

[f x | x<-xs]
creates the list of all £ x where x is drawn from list xs. The subexpression
x<-xs is a generator; we can create lists with many generators, e.g., we can
compute the cartesian product of two lists xs and ys:
[(x,y) | x<-xs, y<-ys]
The elems. are selected as if the generators were nested from left to right, e.g.:
[(x,y) [x<=[1,2],y<=[3,4]] = [(1,3),(1,4),(2,3),(2,4)]
Besides generators, guards are also permitted. A guard is a boolean expression
that places constraints on the elements generated. For example:
[(x,y) Ix<=[1,2,3],y<-[1,2,3],x<y] = [(1,2),(1,3),(2,3)]
Another example: a concise definition of quicksort:
quicksort [] = 0
quicksort (x:xs) = quicksort [yly<-xs,y<x]

++ [x]

++ quicksort [yly<-xs,y>=x]
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List comprehensions and arithmetic sequences

Arithmetic sequences. Strings

Haskell has special syntax for arithmetic sequences. For example:

[1..10] = [1,2,3,4,5,6,7,8,9,10]
[1,3..9] = [1,3,4,5,6,7,8,9]
(1,3..1 = I[1,3,4,5,6,7,...]1 —-apotentially infinite list

String is a type synonym for [Char], therefore we can manipulate
strings like lists. For example:

"Hello " ++ "World!" = "Hello World!"



Functions and operators
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Functions

Higher-order functions
Currying

The following definitions of £ are equivalent:
fxy = (x,y) or £ =\x y=—>(x,y) or f = \x->\y—>(x,V)

Thus, £ x vy is an abbreviation for (f x) vy and we can pass the
input arguments to £ one-by-one. The type system calculates the
principal type of £, which is a->b—> (a, b)

In particular, the value of £ "a" Trueisthatof (f "a") True:

f "a" :> \y7>("a",y)

Note that £ "a" evaluates to a function whose principal type is
b->([Char],b). Therefore, (f "a") True is a well-typed
expression with principal type ([Char], Bool), and its value is

(f "a") True = (\y-—>("a",y)) True = ("a" True)



Functions and operators
[ le]

Operators

Infix operators

An infix operator op is like a binary function, but we write x op v instead of op x vy
Infix operators must consist entirely of non-alphanumeric “symbols”, like +- or +. +.

@ They are defined by equations, just like ordinary functions.

(+-) :: Integer—->Integer—->Integer
X +t— y = 24x-3%y

5 +- 3 = 1

There are several useful predefined infix operators. For example:
@ Left-associative:
@ the arithmetic operators (+), (=), (), (/)
@ Right associative:

@ list concatenation (++)
@ function composition (.)



Functions and operators
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Operators

Infix operators
Sections

Sections are partial applications of an infix operator. For example, the
infix operator + has three sections (the parentheses are mandatory):

(x+) = \y —>x+y

(+vy) = \x —> x+y

(+) = \x y —> x+y

Thus (x+) v = x (+y) = (+) x y = x+y

@ The syntax (op) coerces an infix operator op into a binary
function.

@ Also, the syntax ‘fct * coerces a binary function f£ct into an
infix operator:

fct x v = x ‘ct' y




Functions and operators
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Laziness

Laziness

In Haskell, a definition x = expr is lazy: it defines x as expr.
@ Only when some parts of x are needed, will expr be evaluated,
and only until the needed parts become available.

In contrast, x = expr in a strict language is an assignment
interpreted as follows: “compute the value of expr and store it in x.”

@ bot = bot is a valid definition. Any attempt to evaluate bot yields a
nonterminating computation. Abstractly, it is assumed that

@ all nonterminating computations, and
@ evaluations of expressions that yield runtime errrors (e.g., 1/0)

compute an error value | which can have any type a.

@ Consider the function defined by
constl x =1
Then constl expr = 1 evenifexpr = L
expr is not evaluated because it’s value is not needed.




Functions and operators
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Laziness

Infinite data structures

Functions and data constructors are lazy: they do not evaluate their
arguments, unless their values are needed.

= Data constructors can be used to define and work with
conceptually infinite data structures:

ones = num : ones

numsFrom n = n : numsFrom (n+1)

squares = map (*2) (numsFrom O0)

fib =1 :1: [atb | (a,b)<-zip fib (tail fib)]
where

map :: (a —-> b) -> [a] —-> [Db]

map £ [] = [

map f (x:xs) = f x : map f xs

zip :: [a] => [b] -> [(a,b)]

zip []1 [] =[]

zip (x:xs) (y:ys) = (x,y) : zip Xs ys



Case expressions and pattern matching

Patterns

Patterns are expressions built only with data constructors and
variables, such that no variable occurs twice in a pattern.

@ They are used to describe the shape of data we want to process

@ The matching of a pattern against an expression may succeed
or fail:
» when matching succeeds, the pattern variables are bound
to the parts of the input which they match.

@ Patterns that never fail to match are called irrefutable. There are
three kinds of irrefutable patterns:

» variables: they match and get bound to any input
expression. The variables in a pattern are also called
formal parameters.

» the wild-card pattern _ : it matches any expression, but
yields no binding

» as-patterns (see next slide)

The other kinds of patterns are refutable.



Case expressions and pattern matching

More about patterns

Wild-cards simplify the equational specification of some functions.

For example:
head (x:_) = X
tail (_:xs) = xs

An as-pattern is a mechanism used to name a pattern for use in the
right-hand side of an equation, in order to avoid reconstructing a part
of the matched expression. For example:

f (x:xs) = X:X:XS

Note that x : xs appears in both in the left- and right-hand side. This
means that we waste time and memory space reconstructing the
input argument of £ in the right-hand side. We can avoid by using the
as-pattern x@ (x:xs) as follows:

f s@(x:xs) = x:8



Case expressions and pattern matching
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Semantics

Pattern matching
Semantics

Pattern matching is triggered by an attempt to apply a function
defined by one or more equations. It can succeed, fail, or diverge.

@ A successful match binds the formal parameters in the pattern.

@ Divergence occurs when the value needed by the pattern
contains |

Pattern matching is performed top-down and left-to-right:

» Failure of a pattern anywhere in one equation results in failure of
the whole equation, and the next equation is then tried.

» If all equations fail, the value of the function application is |, and
results in a run-time error.



Case expressions and pattern matching
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Semantics

Some illustrated examples

Consider the functions take and takel defined by the same
equations but in a different order:

take 0 _ =[]
take _ [] =
take n (x:xs) = x : take (n-1) xs

takel _ [] =[]
takel 0 _ =[]
takel n (x:xs) = x : takel (n-1) xs

Note that

take 0 bot
takel 0 bot

take bot 0
takel bot 0

R
i N
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Semantics

Guards

The top-level patterns of equational definitions may also have a
boolean guard that constrains the success of applying an equation.
For example, the following is an abstract version of the function that
returns a number’s sign:

sign x | x > 0 = 1
| x =0= 0
| x <0 = -1

This example shows a situation where a sequence of guards was
provided for the same pattern:

@ Like equations, they are tried top-down, and the first guard that
evaluates to True results in a successful match.
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Semantics

Case expressions

Functions defined by equations with different patterns provide a way to decide
what to compute based on the structural properties of a value.

Sometimes, we want to decide what to compute without defining a new function.

Haskell’s case expressions solve this problem: Instead of defining

£ P4 ... Pk = €
;I.Jm <+« Pnk = €n
and calling £ uq ... Uk tocompute aresult, we can compute the same result by evaluating
case (U4 ... Ug) of (P11 ... P1k) —> €&

(Pn1 <o Pnk) —> €n
For example, the function take :: Integer->[a]->[a] can also be defined by
take m ys = case (m,ys) of (0,_) > []

(=, [1) -> []

(n,x:xs) -> x : take (n-1) xs
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Lazy patterns

Lazy patterns

A lazy pattern is ~pat where pat is a normal pattern.

@ Matching v against ~pat always succeeds. It is like matching v against pat, but
with the following difference: the variables in pat are bound to parts of v that
would result if v successfully matches pat, and L otherwise.

lllustrated example: A simulation of a client-server interaction through
conceptually infinite lists of data (a.k.a. streams):

regs
init — client server
[client [———[server]

client is a process that behaves as follows:

Initially, it sends to the server the element init received from somewhere else.
Afterwards, whenever it receives a response resp from the server, it processes
it by computing next resp, and sends next resp to the server.

server is a process that behaves as follows:

Whenever it receives a request req from the client, it processes it by computing
process reqg, and sends process req back to the client.
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Lazy patterns

Lazy patterns
Example (continued): simulation of a client-server interaction

To be concrete, assume init, next, and process are defined by

init =0
next resp = resp
process req = regtl

= the server processes a stream of requests as follows:

server req : regs = (process req) : server regs

and the client handles an initial value and a stream of responses as follows:
client init (resp : resps) = init : client (next resp) resps

If we define the streams requests and responses by mutual recursion:

requests = client init responses

responses = server requests

where initis 0, then we expecttohave requests = 0:1:2:3:4:5:6:...
responses = 1:2:3:4:5:6:7:...

0:1:2:3:4:5:6:...
0 —{client ':A > server

1:2:3:4:5:6:7:...

Unfortunately, there is a serious problem with the definition of c1ient (see next slide)
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Lazy patterns

Lazy patterns
Example (continued): simulation of a client-server interaction

requests = client 0 responses

responses = server requests

where

client init (resp : resps) = init : client (next resp) resps

With this definition, the function call
client 0 responses

can not instantiate requests because the sub-pattern resp: resps fails to match
responses (which is uninstantiated)

We can fix this problem by making the subpattern resp: resps lazy. Th revised (and
working) definition of client is

client init ~(resp : resps) = init : client (next resp) resps
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Lazy patterns

Pattern bindings are lazy

Consider the following definition of the stream of Fibonacci numbers:
fib@(l:tfib) =1 : 1 : [atb | (a,b)<-zip fib tfib]

Such an equation is a pattern binding because it is a top-level
equation in which the entire left-hand side is a pattern.

Pattern bindings have an implicit ~ in front of them. This is the reason
why this definition of £ib works as expected.
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Lexical scoping and nested forms

let expressions

General syntax:

let local_declarations
in expr

where local_declarations are visible only in expr, and can be: type
signatures, function bindings, and pattern bindings. The local
declarations can be mutually recursive.

let y = axb —-— pattern binding
f x = (xt+y)/y —— function binding
in £f ¢ + £ d
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Lexical scoping and nested forms

where clauses

A where clause introduces bindings visible only in the guards and
right side of a guarded equation.




Type classes and overloading

Ad-hoc polymorphism

Ad-hoc polymorphism, or overloading, allows to use the same
literals (e.g., 1, 2, etc.), operators (e.g., + or ==) to represent
different things. For example:

@ The literals 1, 2 can represent both fixed and arbitrary
precision integers

@ + can be used for many purposes: to add integers, to add
floating-point numbers, etc.

@ == can be used to compare many kinds of elements:
numbers, strings, characters, etc.

In Haskell, add-hoc polymorphism is defined with type classes.



Type classes and overloading
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