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What is Haskell?

An advanced language for lazy functional programming
named after logician Haskell Curry
standardized in 1990 (Haskell 1), 1998, 2010
freely available from https://www.haskell.org
⇒ download the Glasgow Haskell Compiler (GHC) which
has two main components

a batch compiler
GHCi: an interactive interpreter

+ a large number of libraries
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Haskell
Main features (1)

Purely functional: functions in Haskell are like
mathematical functions: output depends only on input

there are no statements or instructions
there are only expressions which can not mutate variables

Statically typed: Every expression has a type which is
determined at compile time

all Haskell values have a type
types composed together by function application must
match up, otherwise the compiler/interpreter will complain

There is a built-in type inference system which can
compute the types omitted by the programmer⇒ you don’t
have to write out every type.
Lazy: functions evaluate their arguments only as much as
it is needed⇒ control constructs like if/else can be
defined as lazy functions
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Haskell
Main features (2)

Concurrent: GHC has
a built-in high-performance parallel garbage-collector
A library with useful primitives and abstractions for
concurrency

A wide range of open-source packages from a very active
community.
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Working with Haskell
How to interact with Haskell?

Direct interaction with GHCi in the browser, at website
https://www.haskell.org

Install it on your own computer (recommended):

I download and run the installer for your platform (Windows
or Linux or OS X) ; it is recommended to get the installer for
the Haskell Platform

I start the Haskell interpeter with the command ghci:
> ghci
GHCi, version 8.2.2: http://www.haskell.org/ghc/ :? for help
Prelude>

NOTES:
GHCi loads the prelude and standard libraries, after which
the prompt is shown. Some useful commands:
:set +t turns on GHCi to show the type of each variable bound by
a statement
:load sourcefile loads the code written in file sourcefile
:quit exits GHCi
:? lists the commands available

ALFP



Interacting with the Haskell interpreter

There are 2 ways to interact with the interpreter:

1 Load the content of a Haskell source file srcfile with command

:load srcfile or just :l srcfile

I srcfile can contain type declarations, and definitions of: type
classes (class), types (data, instance), functions, etc.

I In a source file, expressions can be written on many lines

2 Type an expression on a single line after the input prompt, and
press ENTER
⇒ the interpreter will print the value (and type) of the result.

If we want to write a single expression on more than one
line, we must write it between the delimiters :{ and :}
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Types in Haskell
Examples

All Haskell expressions have a type. A type is a set of values with common properties.
Int is the type of integer values, and Float is the type of floating-point numbers.

Prelude>:set +t

Prelude> 1 Prelude> [’a’,’b’,’c’]
1 "abc"
it :: Num p => p it :: [Char]
Prelude> ’a’ Prelude> "abc"
’a’ "abc"
it :: Char it :: [Char]
Prelude> True Prelude> 1+2.4
True 3.4
it :: Bool it :: Fractional a => a

Prelude> (True,’c’)
(True,’c’)
it :: (Bool, Char)

Expressions which can rot be typed are rejected:

Prelude> [True 1] Prelude> True+2
error: ... error: ...
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Function definitions
Some simple examples

Prelude> :set +t
Prelude> 1+2
3
it :: Num a => a
Prelude> f::Int->Int->Int; f x y = 2*x+3*y
f :: Int -> Int -> Int
Prelude> f 3 4
18
it :: Num a => a
Prelude> g x y = sqrt (x*x+y*y)
g :: Floating a => a -> a -> a
Prelude> g 3 4
5.0
it :: Floating a => a
Prelude> u = \x y-> x+y
u :: Num a => a -> a -> a
Prelude> u 1 2
3
it :: Num a => a
Prelude> (\x y-> x+y) 1 2
3
it :: Num a => a
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Sample session
Explanations

1 \x y->x+y is an anonymous function, that is, a function without a name.
Anonymous functions are also called lambda-abstractions. The backslash \ is
Haskell’s way of expressing the Greek letter λ

2 In Haskell, we can define polymorphic functions: they can operate on values
from a family of types. For example, if we define the function

Prelude> ii = \x y->x
ii :: p -> q -> p

the interpreter infers that ii is a function that takes as inputs arguments x of
arbitrary type p and y of arbitrary type q, and returns a result of type p. This fact
is indicated by the expression ii :: p -> q -> p.

3 Polymorphic types can be qualified. A qualified type is a type constrained to be
a member of one or more type classes.

I A type class (or just class) is a description of a colection of types.
I Types are instances of a type class.

(see next slide)
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Type classes and types
Examples

The class Eq for types with equality (it is predefined in Haskell):

class Eq a where
(==) (/=) :: a − > a − > Bool
x /= y = not (x == y)
x == y = not (x /= y)

Type Integer is an instance of class Eq (it is predefined in Haskell):

instance Eq Integer where
x == y = floatEq x y

The type inference system can infer qualified types:

Prelude> ff x y = if x == y then "yes" else "no"
ff :: Eq a => a − > a − > [Char ]

This means, ff has qualified type ∀(a ∈ Eq).a→ a→ [Char ].
REMARKS:

In general, [a] is the type of lists of type a. In particular, [Char ] is the type of lists
of characters. Strings are encoded as lists of characters.
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Type aliases and data types
Examples

In Haskell we can define recursive datatypes:

For convenience, we can use type to define aliases for given types:

type Radius = Float
type Side = Float
type Vertex = (Float,Float)

We can use data to define our own datatypes. E.g., we can define the data type
Shape for geometric figures:

data Shape = Rectangle Side Side
| Ellipse Radius Radius
| RtTriangle Side Side
| Polygon [Vertex]

deriving Show

REMARKS:

the datatype Shape has four type constructors:
Rectangle, Ellipse, RtTriangle, and Polygon
deriving Show indicates that type Shape is an instance
of type class Show

class Show is a predefined class of types for which we can
print the values.

ALFP



Data types
Examples of Shape values

Prelude> s1 = Rectangle 3 4
it :: Shape
Prelude> s2 = Polygon [(0,0),(2,0),(0,3)]
it :: Shape
Prelude> [s1,s2]
[Rectangle 3.0 4.0,Polygon [(0.0,0.0),(2.0,0.0),(0.0,3.0)]]
it :: [Shape]

The intended meaning of geometric shapes:

x

y

Rectangle x y

r1
r2

Ellipse r1 r2

x

y

RtTriangle x y Polygon [P1 ...Pn]

P1

P2 P3

P4

Pn
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More about type classes and data types
Inheritance

Example: The class Ord of ordered types inherits all the operations
from the class Eq of types with equality:

class Eq a => Ord a where
(<),(<=),(>),(>=) :: a − > a − > Bool
max, min :: a − > a − > a

Haskell permits multiple inheritance. E.g., the class of numeric types

class (Eq a, Show a) => Num a where
(+),(-),(*) :: a -> a -> a
negate :: a -> a
abs,signum :: a -> a
fromInteger :: Integer -> a
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Haskell classes for numeric types
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Recursive data types
Example: a recursive data type for binary trees

data Tree a = Leaf a | Branch (Tree a) (Tree a)

If we want to compare trees for equality, we assume a is an instance of class Eq,
and make Tree a an instance of Eq:

instance Eq a => Eq (Tree a) where
Leaf x == Leaf y = x == y
Branch l1 r1 == Branch l2 r2 = l1 == l2 && r1 == r2
_ == _ = False

If we want to order trees in some increasing order, we should also assume that a
is an instance of class Ord, and make Tree a an instance of class Ord:

instance Ord a => Ord (Tree a) where
Leaf _ < Branch _ _ = True
Leaf x < Leaf y = x < y
Branch _ _ < Leaf _ = False
Branch l1 r1 < Branch l2 r2 = l1<l2 || (l1==l2 && r1<r2)
t1 <= t2 = t1==t2 || t1<t2

...
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Recursive datatypes
Lists

Are predefined in Haskell:
[] is the empty list
x:y is the list with head x and tail y
we can write [x1,x2,...,xn] instead of x1:x2:...:xn:[]

data List a = [] | a:(List a)

Functions on data types can be defined by case distinction. E.g.

Prelude> listLength [] = 0 ; listLength (_:xs) = 1+length xs
listLength :: [a] -> Int
Prelude> listLength [1,2,3]
3
it :: Int
Prelude> :{
Prelude| listSum [] = 0
Prelude| listSum (x:xs) = x + listSum xs
Prelude| :}
listSum :: Num p => [p] -> p
Prelude> listSum [1,2,3]
6
it :: Num p => p
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Function definitions
More examples

A function definition with a guard:

factorial :: Integer -> Integer
factorial 0 = 1
factorial n | n > 0 = n * factorial (n-1)

All functions are lazy by default:

Prelude> nats n = n:nats (n+1)
nats :: Num t => t -> [t]
Prelude> take 7 (nats 0)
[0,1,2,3,4,5,6]
it :: Num a => [a]

REMARKS:

nats is a lazy functions: the evaluation of nats 0 with start displaying
indefinitely the list of natural numbers, starting from 0

take k lst is a predefined function: it returns the first k elements of list lst:

The evaluation of 7 (nats 0) will demand the evaluation of (nats 0)

to 0:1:2:3:4:5:6:(nats 7)
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Lazy functions
A lazy version of Newton’s method to compute

√
x

Main ideas

Create an infinite list sqrtGuesses of approximations of
√

x ,
starting with first approximation 1.

Traverse sqrtGuesses until we find the first approximation
which is accurate enough and return it.

sqrt x = head (dropWhile (not . goodEnough) sqrtGuesses)
where

goodEnough guess = (abs (x - guess*guess))/x < 0.00001
improve guess = (guess + x/guess)/2.0
sqrtGuesses = 1:(map improve sqrtGuesses)

REMARKS

I dropWhile (not . goodEnough) sqrtGuesses drops the approximations
from the front of the list that are not close enough.

I (not . goodEnough) is a function composition. It applies goodEnough to
the approximation and then applies the boolean function not to the result. So
(not . goodEnough) is a function that returns true if goodEnough returns
false.
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Currying

Currying is a method curry which transforms a function

curry f=\x1 . . . xn -> expr

which expects n arguments x1, . . . , xn into a composition of n
functions f1, f2, . . . , fN which take 1 argument:

f = f1 . f2 . · · · . fn

fi = \xi -> curry \xi+1 . . . xn ->expr
for all 1 ≤ i ≤ n

In Haskell, all functions are curried.
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Currying
Example

map :: (a->b) -> [a] -> [b] is a predefined higher-order function:

map f lst

takes as input a function f:a->b and a list lst of elements of type a, and
returns the list produced by applying f to each element of lst

Prelude>
Prelude> doubleList = map (\x -> 2*x)
doubleList :: Num b => [b] -> [b]

\x -> 2*x is an anonymous function of type Num a => a->a
⇒ map (\x -> 2*x) has type Num a => [a]->[a].

This function expects a list of elements of numeric type a, and returns the
list obtained by applying the anonymous function \x -> 2*x to each
element of the input list:
Prelude> doubleList [1,2,3]
[2,4,6]
it :: Num b => [b]
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