Lecture 11: Functional programming

Haskell

December 20, 2017

What is Haskell?

An advanced language for lazy functional programming
@ named after logician Haskell Curry
@ standardized in 1990 (Haskell 1), 1998, 2010

@ freely available from https://www.haskell.org
= download the Glasgow Haskell Compiler (GHC) which
has two main components

e a batch compiler
e GHCi: an interactive interpreter

+ a large number of libraries

ALFP

Haskell

Main features (1)

@ Purely functional: functions in Haskell are like
mathematical functions: output depends only on input
e there are no statements or instructions
e there are only expressions which can not mutate variables
@ Statically typed: Every expression has a type which is
determined at compile time
o all Haskell values have a type
e types composed together by function application must
match up, otherwise the compiler/interpreter will complain
@ There is a built-in type inference system which can
compute the types omitted by the programmer =- you don’t
have to write out every type.

@ Lazy: functions evaluate their arguments only as much as
it is needed = control constructs like i f/else can be
defined as lazy functions

ALFP

Haskell

Main features (2)

@ Concurrent: GHC has
e a built-in high-performance parallel garbage-collector
@ A library with useful primitives and abstractions for
concurrency
@ A wide range of open-source packages from a very active
community.

ALFP

Working with Haskell
How to interact with Haskell?

@ Direct interaction with GHCi in the browser, at website
https://www.haskell.org

@ Install it on your own computer (recommended):

» download and run the installer for your platform (Windows
or Linux or OS X) ; it is recommended to get the installer for
the Haskell Platform .
» start the Haskell interpeter with the command ghci:
> ghci
GHCi, version 8.2.2: http://www.haskell.org/ghc/ :? for help
Prelude>
NOTES:

@ GHCi loads the prelude and standard libraries, after which
the prompt is shown. Some useful commands:
:set +t turns on GHCi to show the type of each variable bound by
a statement
: load sourcefile loads the code written in file sourcefile
:quit exits GHCi
: ? lists the commands available

ALFP

Interacting with the Haskell interpreter

There are 2 ways to interact with the interpreter:

@ Load the content of a Haskell source file srcfile with command

:1oad srcfile orjust :1 srcfile

» srcfile can contain type declarations, and definitions of: type
classes (class), types (data, instance), functions, etc.
» In a source file, expressions can be written on many lines

@ Type an expression on a single line after the input prompt, and
press ENTER
= the interpreter will print the value (and type) of the result.

o If we want to write a single expression on more than one
line, we must write it between the delimiters : { and : }

ALFP

Types in H

Examples

All Haskell expressions have a type. A type is a set of values with common properties.
Int is the type of integer values, and Float is the type of floating-point numbers.

Prelude>:set +t

Prelude> 1 Prelude> ['a’,’'b’,’'c’]

l n abc "

it :: Num p => p it :: [Char]

Prelude> ’a’ Prelude> "abc"

ra’ "abc"

it :: Char it :: [Char]

Prelude> True Prelude> 1+2.4

True 3.4

it :: Bool it :: Fractional a => a
Prelude> (True,’c’)
(True,’c’)
it :: (Bool, Char)

Expressions which can rot be typed are rejected:

Prelude> [True 1] Prelude> True+2

error: o .. <

Function definitions

Some simple examples

Prelude> :set +t
Prelude> 1+2

3

it :: Num a => a

Prelude> f::Int->Int->Int; £ x y = 2xx+3xy
f :: Int -> Int -> Int

Prelude> £ 3 4

18

it :: Num a => a

Prelude> g x y = sgrt (xxxtyxy)
g :: Floating a => a -> a -> a
Prelude> g 3 4

5.0

it :: Floating a => a

Prelude> u = \x y—> x+y

u :: Num a => a -> a —> a
Prelude> u 1 2

3

it :: Num a => a

Prelude> (\x y-> x+y) 1 2

3

it :: Num a => a

Sample session
Explanations

2]

\x y->x+y is an anonymous function, that is, a function without a name.
Anonymous functions are also called lambda-abstractions. The backslash \ is
Haskell’s way of expressing the Greek letter A

In Haskell, we can define polymorphic functions: they can operate on values
from a family of types. For example, if we define the function

Prelude> ii = \x y->x

ii :: p > g ->p

the interpreter infers that i1 is a function that takes as inputs arguments x of
arbitrary type p and y of arbitrary type g, and returns a result of type p. This fact
is indicated by the expression ii :: p -> g -> p.

e Polymorphic types can be qualified. A qualified type is a type constrained to be

a member of one or more type classes.
> Atype class (or just class) is a description of a colection of types.
» Types are instances of a type class.

(see next slide)

ALFP

Type classes and types
Examples

The class Eq for types with equality (it is predefined in Haskell):

class Eq a where

(==) (/=) :: a —> a —> Bool
x /=y = not (x == y)
x ==y = not (x /=vy)

Type Integer is an instance of class Eq (it is predefined in Haskell):

instance EqQ Integer where
x == y = floatEq x y

The type inference system can infer qualified types:

" n " "

Prelude> ff x y = if x == y then else

ff :: Eg a => a —> a — > [Char]

yes no

This means, £ £ has qualified type V(a € Eq).a — a — [Char].
REMARKS:

@ Ingeneral, [4] is the type of lists of type a. In particular, [Char] is the type of lists
of characters. Strings are encoded as lists of characters.

ALFP

Type aliases and data types
Examples

In Haskell we can define recursive datatypes:
@ For convenience, we can use type to define aliases for given types:

type Radius = Float
type Side = Float
type Vertex = (Float,Float)
@ We can use data to define our own datatypes. E.g., we can define the data type
Shape for geometric figures:

data Shape

= Rectangle Side Side

| Ellipse Radius Radius
| RtTriangle Side Side
| Polygon [Vertex]
deriving Show

REMARKS:
e the datatype shape has four type constructors:
Rectangle, Ellipse, RtTriangle, and Polygon

@ deriving Show indicates that type shape is an instance
of type class show

@ class show is a predefined class of types for which we can
print the values.

ALFP

Data types

Examples of Shape values

Prelude> sl = Rectangle 3 4

it :: Shape
Prelude> s2 = Polygon [(0,0), (2,0), (0,3)]
it :: Shape

Prelude> [sl,s2]
[Rectangle 3.0 4.0,Polygon [(0.0,0.0),(2.0,0.0),(0.0,3.0)11
it :: [Shape]

The intended meaning of geometric shapes:

x

Rectangle x y Ellipse rl r2 RtTriangle x y Polygon [Py ...Pp]

More about type classes and data types
Inheritance

Example: The class Ord of ordered types inherits all the operations
from the class Eq of types with equality:

class Eq a => Ord a where
(), (=), (>),(>=) :: a —-> a —> Bool
max, min it a—> a-—> a

Haskell permits multiple inheritance. E.g., the class of numeric types

class (Eg a, Show a) => Num a where
(), (=), (*) :: a —>a —-> a
negate tra —> a
abs,signum :: a -> a
fromInteger :: Integer -> a

ALFP

Haskell classes for numeric types

Ord
All except (->)
10, 10Error

Enum
(), Bool, Char, Ordering,
Int, Integer, Float,
Double

Integral
Int, Integer

Monad
10, [, Maybe

MonadPlus
10, [1, Maybe

Num
Int, Integer,
Float, Double

Real
Int, Integer,
Float, Double

RealFrac
Float, Double

RealFloat
Float, Double

Functor
10, (], Maybe

Int, Char, Bool, ()
Ordering, tuples

Bounded

Fractional
Float, Double

Floating
Float, Double

Recursive data types

Example: a recursive data type for binary trees

data Tree a = Leaf a | Branch (Tree a) (Tree a)

@ If we want to compare trees for equality, we assume a is an instance of class Eq,
and make Tree a an instance of Eq:

instance Eg a => Eq (Tree a) where
Leaf x == Leaf y =X ==y
Branch 11 rl == Branch 12 r2 = 11 == 12 && rl == r2
== = False

@ If we want to order trees in some increasing order, we should also assume that a
is an instance of class 0rd, and make Tree a an instance of class Ord:

instance Ord a => Ord (Tree a) where

Leaf _ < Branch _ _ = True

Leaf x < Leaf y = x <y

Branch _ _ < Leaf _ = False

Branch 11 rl < Branch 12 r2 = 11<12 || (1l1==12 && rl<r2)
tl <= t2 = tl==t2 || tl<t2

Recursive datatypes
Lists

Are predefined in Haskell:

[1 is the empty list
x :y is the list with head x and tail vy
we can write [x1,x2,...,xn] insteadof x1:x2:...:xn:[]

data List a = [] | a:(List a)

ALFP

Recursive datatypes

Lists

Are predefined in Haskell:
[1 is the empty list
x :y is the list with head x and tail vy
we can write [x1,x2,...,xn] insteadof x1:x2:...:xn:[]

data List a = [] | a:(List a)

Functions on data types can be defined by case distinction. E.g.

Prelude> listLength [] = 0 ; listLength (_:xs) = l+length xs
listLength :: [a] —-> Int

Prelude> listLength [1,2,3]

3

it :: Int

Prelude> :{

Prelude| listSum [] = 0

Prelude| listSum (x:xs) = x + listSum xs
Prelude| :}

listSum :: Num p => [p] -> p

Prelude> listSum [1,2, 3]

6

it :: Num p => p

ALFP

Function definitions

More examples

A function definition with a guard:

factorial :: Integer -> Integer
factorial 0 =1
factorial n | n > 0 = n * factorial (n-1)

ALFP

Function definitions

More examples

A function definition with a guard:

factorial :: Integer -> Integer
factorial O 1
factorial n | n > 0 = n * factorial (n-1)

All functions are lazy by default:

Prelude> nats n = n:nats (n+l)
nats :: Num t => t —-> [t]
Prelude> take 7 (nats 0)
[0,1,2,3,4,5,6]

it :: Num a => [a]

ALFP

Function definitions

More examples

A function definition with a guard:

factorial :: Integer -> Integer
factorial 0 =1
factorial n | n > 0 = n * factorial (n-1)

All functions are lazy by default:

Prelude> nats n = n:nats (n+l)
nats :: Num t => t —-> [t]
Prelude> take 7 (nats 0)
[0,1,2,3,4,5,6]

it :: Num a => [a]

REMARKS:

@ natsis alazy functions: the evaluation of nats 0 with start displaying
indefinitely the list of natural numbers, starting from 0

@ take k 1st is a predefined function: it returns the first k elements of list 1st:

The evaluation of 7 (nats 0) will demand the evaluation of (nats 0)
t00:1:2:3:4:5:6: (nats 7)

ALFP

Lazy functions

A lazy version of Newton’s method to compute v/x

Main ideas

@ Create an infinite list sqrtGuesses of approximations of v/x,
starting with first approximation 1.

@ Traverse sqrtGuesses until we find the first approximation
which is accurate enough and return it.

sgqrt x = head (dropWhile (not . goodEnough) sqgrtGuesses)

where
goodEnough guess = (abs (x - guess*guess))/x < 0.00001
improve guess = (guess + x/guess) /2.0
sgqrtGuesses = 1l: (map improve sqgrtGuesses)
REMARKS

» dropWhile (not . goodEnough) sqgrtGuesses drops the approximations
from the front of the list that are not close enough.

» (not . goodEnough) is a function composition. It applies goodEnough to

the approximation and then applies the boolean function not to the result. So
(not . goodEnough) is a function that returns true if goodEnough returns

false.

ALFP

Currying is a method curry which transforms a function
curry f=\Xy ... Xn —> expr

which expects n arguments xy, ..., X, into a composition of n
functions f;, f>, ..., fy which take 1 argument:

f = f . b . - . f
@ fi=\X; —> curry \Xji1 ... Xp —>expr
forall1 <i<n

In Haskell, all functions are curried.

ALFP

Currying

Example

@ map :: (a->b) —-> [a] —> [b] is a predefined higher-order function:
map f 1lst

takes as input a function f:a->b and a list 1st of elements of type a, and
returns the list produced by applying £ to each element of 1st
@ Prelude>
Prelude> doubleList = map (\x -> 2%x)
doubleList :: Num b => [b] -> [Db]

\x —> 2xx is an anonymous function of type Num a => a->a
= map (\x —-> 2+x) hastype Num a => [a]->[a].
This function expects a list of elements of numeric type a, and returns the
list obtained by applying the anonymous function \x -> 2xx to each
element of the input list:
Prelude> doublelList [1,2,3]
[2,4,6]
it :: Num b => [Db]

ALFP

