
Lecture 11: Functional programming
Haskell

December 20, 2017

ALFP

What is Haskell?

An advanced language for lazy functional programming
named after logician Haskell Curry
standardized in 1990 (Haskell 1), 1998, 2010
freely available from https://www.haskell.org
⇒ download the Glasgow Haskell Compiler (GHC) which
has two main components

a batch compiler
GHCi: an interactive interpreter

+ a large number of libraries

ALFP

Haskell
Main features (1)

Purely functional: functions in Haskell are like
mathematical functions: output depends only on input

there are no statements or instructions
there are only expressions which can not mutate variables

Statically typed: Every expression has a type which is
determined at compile time

all Haskell values have a type
types composed together by function application must
match up, otherwise the compiler/interpreter will complain

There is a built-in type inference system which can
compute the types omitted by the programmer⇒ you don’t
have to write out every type.
Lazy: functions evaluate their arguments only as much as
it is needed⇒ control constructs like if/else can be
defined as lazy functions

ALFP

Haskell
Main features (2)

Concurrent: GHC has
a built-in high-performance parallel garbage-collector
A library with useful primitives and abstractions for
concurrency

A wide range of open-source packages from a very active
community.

ALFP

Working with Haskell
How to interact with Haskell?

Direct interaction with GHCi in the browser, at website
https://www.haskell.org

Install it on your own computer (recommended):

I download and run the installer for your platform (Windows
or Linux or OS X) ; it is recommended to get the installer for
the Haskell Platform

I start the Haskell interpeter with the command ghci:
> ghci
GHCi, version 8.2.2: http://www.haskell.org/ghc/ :? for help
Prelude>

NOTES:
GHCi loads the prelude and standard libraries, after which
the prompt is shown. Some useful commands:
:set +t turns on GHCi to show the type of each variable bound by
a statement
:load sourcefile loads the code written in file sourcefile
:quit exits GHCi
:? lists the commands available

ALFP

Interacting with the Haskell interpreter

There are 2 ways to interact with the interpreter:

1 Load the content of a Haskell source file srcfile with command

:load srcfile or just :l srcfile

I srcfile can contain type declarations, and definitions of: type
classes (class), types (data, instance), functions, etc.

I In a source file, expressions can be written on many lines

2 Type an expression on a single line after the input prompt, and
press ENTER
⇒ the interpreter will print the value (and type) of the result.

If we want to write a single expression on more than one
line, we must write it between the delimiters :{ and :}

ALFP

Types in Haskell
Examples

All Haskell expressions have a type. A type is a set of values with common properties.
Int is the type of integer values, and Float is the type of floating-point numbers.

Prelude>:set +t

Prelude> 1 Prelude> [’a’,’b’,’c’]
1 "abc"
it :: Num p => p it :: [Char]
Prelude> ’a’ Prelude> "abc"
’a’ "abc"
it :: Char it :: [Char]
Prelude> True Prelude> 1+2.4
True 3.4
it :: Bool it :: Fractional a => a

Prelude> (True,’c’)
(True,’c’)
it :: (Bool, Char)

Expressions which can rot be typed are rejected:

Prelude> [True 1] Prelude> True+2
error: ... error: ...

ALFP

Function definitions
Some simple examples

Prelude> :set +t
Prelude> 1+2
3
it :: Num a => a
Prelude> f::Int->Int->Int; f x y = 2*x+3*y
f :: Int -> Int -> Int
Prelude> f 3 4
18
it :: Num a => a
Prelude> g x y = sqrt (x*x+y*y)
g :: Floating a => a -> a -> a
Prelude> g 3 4
5.0
it :: Floating a => a
Prelude> u = \x y-> x+y
u :: Num a => a -> a -> a
Prelude> u 1 2
3
it :: Num a => a
Prelude> (\x y-> x+y) 1 2
3
it :: Num a => a

ALFP

Sample session
Explanations

1 \x y->x+y is an anonymous function, that is, a function without a name.
Anonymous functions are also called lambda-abstractions. The backslash \ is
Haskell’s way of expressing the Greek letter λ

2 In Haskell, we can define polymorphic functions: they can operate on values
from a family of types. For example, if we define the function

Prelude> ii = \x y->x
ii :: p -> q -> p

the interpreter infers that ii is a function that takes as inputs arguments x of
arbitrary type p and y of arbitrary type q, and returns a result of type p. This fact
is indicated by the expression ii :: p -> q -> p.

3 Polymorphic types can be qualified. A qualified type is a type constrained to be
a member of one or more type classes.

I A type class (or just class) is a description of a colection of types.
I Types are instances of a type class.

(see next slide)

ALFP

Type classes and types
Examples

The class Eq for types with equality (it is predefined in Haskell):

class Eq a where
(==) (/=) :: a − > a − > Bool
x /= y = not (x == y)
x == y = not (x /= y)

Type Integer is an instance of class Eq (it is predefined in Haskell):

instance Eq Integer where
x == y = floatEq x y

The type inference system can infer qualified types:

Prelude> ff x y = if x == y then "yes" else "no"
ff :: Eq a => a − > a − > [Char]

This means, ff has qualified type ∀(a ∈ Eq).a→ a→ [Char].
REMARKS:

In general, [a] is the type of lists of type a. In particular, [Char] is the type of lists
of characters. Strings are encoded as lists of characters.

ALFP

Type aliases and data types
Examples

In Haskell we can define recursive datatypes:

For convenience, we can use type to define aliases for given types:

type Radius = Float
type Side = Float
type Vertex = (Float,Float)

We can use data to define our own datatypes. E.g., we can define the data type
Shape for geometric figures:

data Shape = Rectangle Side Side
| Ellipse Radius Radius
| RtTriangle Side Side
| Polygon [Vertex]

deriving Show

REMARKS:

the datatype Shape has four type constructors:
Rectangle, Ellipse, RtTriangle, and Polygon
deriving Show indicates that type Shape is an instance
of type class Show

class Show is a predefined class of types for which we can
print the values.

ALFP

Data types
Examples of Shape values

Prelude> s1 = Rectangle 3 4
it :: Shape
Prelude> s2 = Polygon [(0,0),(2,0),(0,3)]
it :: Shape
Prelude> [s1,s2]
[Rectangle 3.0 4.0,Polygon [(0.0,0.0),(2.0,0.0),(0.0,3.0)]]
it :: [Shape]

The intended meaning of geometric shapes:

x

y

Rectangle x y

r1
r2

Ellipse r1 r2

x

y

RtTriangle x y Polygon [P1 ...Pn]

P1

P2 P3

P4

Pn

ALFP

More about type classes and data types
Inheritance

Example: The class Ord of ordered types inherits all the operations
from the class Eq of types with equality:

class Eq a => Ord a where
(<),(<=),(>),(>=) :: a − > a − > Bool
max, min :: a − > a − > a

Haskell permits multiple inheritance. E.g., the class of numeric types

class (Eq a, Show a) => Num a where
(+),(-),(*) :: a -> a -> a
negate :: a -> a
abs,signum :: a -> a
fromInteger :: Integer -> a

ALFP

Haskell classes for numeric types

ALFP

Recursive data types
Example: a recursive data type for binary trees

data Tree a = Leaf a | Branch (Tree a) (Tree a)

If we want to compare trees for equality, we assume a is an instance of class Eq,
and make Tree a an instance of Eq:

instance Eq a => Eq (Tree a) where
Leaf x == Leaf y = x == y
Branch l1 r1 == Branch l2 r2 = l1 == l2 && r1 == r2
_ == _ = False

If we want to order trees in some increasing order, we should also assume that a
is an instance of class Ord, and make Tree a an instance of class Ord:

instance Ord a => Ord (Tree a) where
Leaf _ < Branch _ _ = True
Leaf x < Leaf y = x < y
Branch _ _ < Leaf _ = False
Branch l1 r1 < Branch l2 r2 = l1<l2 || (l1==l2 && r1<r2)
t1 <= t2 = t1==t2 || t1<t2

...

ALFP

Recursive datatypes
Lists

Are predefined in Haskell:
[] is the empty list
x:y is the list with head x and tail y
we can write [x1,x2,...,xn] instead of x1:x2:...:xn:[]

data List a = [] | a:(List a)

Functions on data types can be defined by case distinction. E.g.

Prelude> listLength [] = 0 ; listLength (_:xs) = 1+length xs
listLength :: [a] -> Int
Prelude> listLength [1,2,3]
3
it :: Int
Prelude> :{
Prelude| listSum [] = 0
Prelude| listSum (x:xs) = x + listSum xs
Prelude| :}
listSum :: Num p => [p] -> p
Prelude> listSum [1,2,3]
6
it :: Num p => p

ALFP

Recursive datatypes
Lists

Are predefined in Haskell:
[] is the empty list
x:y is the list with head x and tail y
we can write [x1,x2,...,xn] instead of x1:x2:...:xn:[]

data List a = [] | a:(List a)

Functions on data types can be defined by case distinction. E.g.

Prelude> listLength [] = 0 ; listLength (_:xs) = 1+length xs
listLength :: [a] -> Int
Prelude> listLength [1,2,3]
3
it :: Int
Prelude> :{
Prelude| listSum [] = 0
Prelude| listSum (x:xs) = x + listSum xs
Prelude| :}
listSum :: Num p => [p] -> p
Prelude> listSum [1,2,3]
6
it :: Num p => p

ALFP

Function definitions
More examples

A function definition with a guard:

factorial :: Integer -> Integer
factorial 0 = 1
factorial n | n > 0 = n * factorial (n-1)

All functions are lazy by default:

Prelude> nats n = n:nats (n+1)
nats :: Num t => t -> [t]
Prelude> take 7 (nats 0)
[0,1,2,3,4,5,6]
it :: Num a => [a]

REMARKS:

nats is a lazy functions: the evaluation of nats 0 with start displaying
indefinitely the list of natural numbers, starting from 0

take k lst is a predefined function: it returns the first k elements of list lst:

The evaluation of 7 (nats 0) will demand the evaluation of (nats 0)

to 0:1:2:3:4:5:6:(nats 7)

ALFP

Function definitions
More examples

A function definition with a guard:

factorial :: Integer -> Integer
factorial 0 = 1
factorial n | n > 0 = n * factorial (n-1)

All functions are lazy by default:

Prelude> nats n = n:nats (n+1)
nats :: Num t => t -> [t]
Prelude> take 7 (nats 0)
[0,1,2,3,4,5,6]
it :: Num a => [a]

REMARKS:

nats is a lazy functions: the evaluation of nats 0 with start displaying
indefinitely the list of natural numbers, starting from 0

take k lst is a predefined function: it returns the first k elements of list lst:

The evaluation of 7 (nats 0) will demand the evaluation of (nats 0)

to 0:1:2:3:4:5:6:(nats 7)

ALFP

Function definitions
More examples

A function definition with a guard:

factorial :: Integer -> Integer
factorial 0 = 1
factorial n | n > 0 = n * factorial (n-1)

All functions are lazy by default:

Prelude> nats n = n:nats (n+1)
nats :: Num t => t -> [t]
Prelude> take 7 (nats 0)
[0,1,2,3,4,5,6]
it :: Num a => [a]

REMARKS:

nats is a lazy functions: the evaluation of nats 0 with start displaying
indefinitely the list of natural numbers, starting from 0

take k lst is a predefined function: it returns the first k elements of list lst:

The evaluation of 7 (nats 0) will demand the evaluation of (nats 0)

to 0:1:2:3:4:5:6:(nats 7)

ALFP

Lazy functions
A lazy version of Newton’s method to compute

√
x

Main ideas

Create an infinite list sqrtGuesses of approximations of
√

x ,
starting with first approximation 1.

Traverse sqrtGuesses until we find the first approximation
which is accurate enough and return it.

sqrt x = head (dropWhile (not . goodEnough) sqrtGuesses)
where

goodEnough guess = (abs (x - guess*guess))/x < 0.00001
improve guess = (guess + x/guess)/2.0
sqrtGuesses = 1:(map improve sqrtGuesses)

REMARKS

I dropWhile (not . goodEnough) sqrtGuesses drops the approximations
from the front of the list that are not close enough.

I (not . goodEnough) is a function composition. It applies goodEnough to
the approximation and then applies the boolean function not to the result. So
(not . goodEnough) is a function that returns true if goodEnough returns
false.

ALFP

Currying

Currying is a method curry which transforms a function

curry f=\x1 . . . xn -> expr

which expects n arguments x1, . . . , xn into a composition of n
functions f1, f2, . . . , fN which take 1 argument:

f = f1 . f2 . · · · . fn

fi = \xi -> curry \xi+1 . . . xn ->expr
for all 1 ≤ i ≤ n

In Haskell, all functions are curried.

ALFP

Currying
Example

map :: (a->b) -> [a] -> [b] is a predefined higher-order function:

map f lst

takes as input a function f:a->b and a list lst of elements of type a, and
returns the list produced by applying f to each element of lst

Prelude>
Prelude> doubleList = map (\x -> 2*x)
doubleList :: Num b => [b] -> [b]

\x -> 2*x is an anonymous function of type Num a => a->a
⇒ map (\x -> 2*x) has type Num a => [a]->[a].

This function expects a list of elements of numeric type a, and returns the
list obtained by applying the anonymous function \x -> 2*x to each
element of the input list:
Prelude> doubleList [1,2,3]
[2,4,6]
it :: Num b => [b]

ALFP

