
Advanced Logic and Functional Programming
Lecture 1: Programming paradigms. Declarative

programming. From first-order logic to Logic Programming.

Mircea Marin

Mircea Marin ALFP

Programming paradigms

Programming paradigm (software engineering) = style or way of
programming hat prescribes a number of programming
constructs and how to use them in order to model and solve
efficiently a wide range of problems.
Major programming paradigms:

1 Imperative (or procedural) programming
2 Object-oriented programming (OOP)
3 Functional programming (FP)
4 Logic programming (LP)

Mircea Marin ALFP

Programming paradigms
1. Imperative (or procedural) programming

Computation = sequence of commands that act on an implicit
program state, until we reach a state containing the desired
result.

Way of thinking similar to everyday routines (e.g., food
recipes)
Typical examples of commands: blocks, conditionals,
loops, assignment
Main programming construct is procedure:

abstracts the actions of one or more commands, and can
be called as a single command.

Representative programming languages: Fortran, C
Oldest programming paradigm: hardware-oriented way of
thinking–instruct the computer what to do

Other programming paradigms encourage a more
human-oriented way of thinking

Mircea Marin ALFP

Programming paradigms
The difference between procedure and mathematical function

Mathematical function
Computes a result from the values of its arguments
Does not affect the implicit or global state of a
program/system etc.

⇒ different calls of a mathematical function with same input
args. always behave the same (are indistinguishable)

Procedure
Group of commands that can be executed at once.
Can have visible side effects, e.g.: delete a file, change the
value of a global variable, etc.

⇒ different calls of a procedure with same input args. can
behave different.

Mircea Marin ALFP

Programming paradigms
3. Logic programming (LP)

Computation=answering questions by search according to a
fixed, predictable strategy.

Way of thinking useful for solving problems related to the
extraction of knowledge from basic facts and relations.
Programming = encoding of knowledge as basic facts and
rules, and collecting them in a program
LP is a declarative programming paradigm

The user most know only how to encode what he knows
The method to find the answers to problems (how?) is
predefined: there is a search strategy, built into the
interpreter or compiler of the language

Representative language: Prolog

Mircea Marin ALFP

Programming paradigms
4. Functional programming (FP)

Computation=compute by evaluating expressions
Evaluation = stepwise reduction of the function calls in the
expression, until all function calls have been reduced.
For example:
(1+2)*3-4⇒3*3-4⇒9-4⇒5.
Programming = defining mathematical functions.
Functions are values: They can be passed as arguments
to function calls, stored in composite values, and returned
as results of computations.
Representative languages: Lisp, Haskell; Common Lisp,
Racket.
Functional programming (sub)styles:

Strict: Function calls are evaluated by first evaluating all
their function arguments
Lazy: Function calls evaluate arguments only if they are
really needed

Mircea Marin ALFP

Programming paradigms
4. Functional programming: strict and lazy evaluations

Strict evaluation:
0*(3+(8-2)/3)⇒0*(3+6/3)⇒0*(3+2)⇒0*5⇒0
Lazy evaluation: we know that 0 multiplied by anything is 0,
thus
0*(3+(8-2)/3)⇒0

The earliest functional programming languages were strict.
(E.g., Lisp and its dialects)
Lazy evaluations are harder to analyse.

Haskell is a lazy programming language.

Mircea Marin ALFP

Comparison of the programming paradigms
Illustrative example: find the maximum of a list of numbers

Imperative Programming:

minList(L,n)
r ← L[0]
i ← 1
while i < n do

r ← min(r ,L[i])
end while
return r

min(a,b)
if a < b then

m ← a
else

m ← b
endif
i ← i + 1
return m

Logic Programming:

min(X,Y,X) :- X =< Y.
min(X,Y,Y) :- Y < X.
minList([M],M).
minList([X,Y|T],M) :- minList([Y|T],N), min(X,N,M).

Mircea Marin ALFP

Comparison of the programming paradigms
Illustrative example: find the maximum of a list of numbers (contd.)

Functional programming:

minList(L,n)
if (n == 1)

return L[0]
else

return min(L[n − 1],minList(L,n − 1))

In FP, we use recursion to define repetitive computations.
I Note that minList is a recursive function.

Mircea Marin ALFP

Declarative programming paradigms

FP and LP are declarative programming paradigms:
The programmer must only focus on programming what he
knows:
I In LP: encode knowledge by facts and rules
I In FP: encode reusable patterns of computation by function

definitions
The computational strategy to find answers/results is
predefined, e.g.
I SLDNF resolution (Prolog)
I Strict evaluation (Lisp, Racket)
I Lazy evaluation (Haskell)

This lecture is concerned with declarative programming
styles: FP and LP, and deepening our knowledge about
them.

Languages of concern: Prolog (for Logic Programming),
Racket (for strict Functional Programing), and Haskell (for
lazy functional programming)

Mircea Marin ALFP

Declarative programming paradigms

FP and LP are declarative programming paradigms:
The programmer must only focus on programming what he
knows:
I In LP: encode knowledge by facts and rules
I In FP: encode reusable patterns of computation by function

definitions
The computational strategy to find answers/results is
predefined, e.g.
I SLDNF resolution (Prolog)
I Strict evaluation (Lisp, Racket)
I Lazy evaluation (Haskell)

This lecture is concerned with declarative programming
styles: FP and LP, and deepening our knowledge about
them.

Languages of concern: Prolog (for Logic Programming),
Racket (for strict Functional Programing), and Haskell (for
lazy functional programming)

Mircea Marin ALFP

From First-order Logic to Logic Programming
What is First-order Logic (FOL)?

The most successful formal system, used to describe
meaningful sentences in a precise and unambiguous way.
Used in mathematics, philosophy, linguistics, and computer
science.
It has a simple and easy-to-understand syntax and
semantics.
⇒ can be used to specify knowledge in a precise and

unambigous way.
⇒ language for automated reasoning:

Knowledge is encoded by first-order formulas
Computation = deriving new knowledge by applying rules of
deduction.

Mircea Marin ALFP

First-order logic
Syntactic representation of knowledge: terms and formulas

In First-Order Logic (FOL), knowledge consists of properties and
relations which hold between objects of interest:
I objects are represented by terms

I properties and relations btw. them are represented by formulas

A term t is either
1 a constant which represents an atomic object.

Examples: numbers: 1 (an integer), 13.5 (a floating-point); strings: "Hello";

symbols: flower, red, john; . . .
2 a variable, for an unknown object.

In logic programming, variables start with uppercase letter
3 f (t1, . . . , tn) where f is a function symbol (or constructor) and

t1, . . . , tn are terms. It represents the construction of a composite
object with f from the objects represented by terms t1, . . . , tn.
Examples: car(skoda,red,engine(gas),2014), list(1,2,3),

+(sin(X),/(Y,2))

Note: Often, we write terms using other notations, e.g.: X+Y/2 instead of

+(X,/(Y,2)); [1,2] instead of list(1,2), etc.

Constants can be of various types:
Numbers: 1 (an integer), 13.5 (a floating-point)
Strings: "Hello"
Symbols: flower, red, john
. . .

Function symbols: they are used to build terms that
represent objects of interest (see next slide).
Variables: they refer to unknown objects
Predicate symbols: they are used to indicate properties of
objects, or relations between objects (see next slide)

good(john), to say “John is good”
father(john,x), to say “John is the father of an x”
1 > 2 to say the lie “1 is greater than 2”

Mircea Marin ALFP

First-order logic (FOL)
Syntactic representation of sentences. Atomic and composite formulas

Sentences are represented by atomic or composite formulas.
An atomic formula (or atom) is of the form p(t1, . . . ,pn)
where p is a predicate symbol and t1, . . . , tn are terms.

it indicates that relation p holds between objects
represented by terms t1, . . . , tn.
when n = 1, p(t1) indicates that t1 has property p.

A composite formula is built with logical connectives and
quantifiers: If A and B are formulas and X is a variable, then the
following expressions are also formulas:

formula intended reading
¬A not A
A ∧ B A and B
A ∨ B A or B
A→ B A implies B
A↔ B A if and only if B
∀X .A for all X , A
∃X .A there is an X such that A
true always holds
false never holds

Mircea Marin ALFP

First-orer Logic
formulas

Abbreviations: If A,A1, . . . ,An are formulas, then

n∧
i=1

Ai =

true if n = 0
A1 if n = 1(

n−1∧
i=1

Ai

)
∧ An if n>1.

n∨
i=1

Ai =

false if n = 0
A1 if n = 1(

n−1∨
i=1

Ai

)
∨ An if n>1.

If X1, . . . ,Xn are the free variables in A then
∃̃.A abbreviates ∃X1. · · · .∃Xn.A
∀̃.A abbreviates ∀X1. · · · .∀Xn.A

REMARKS: An empty conjunction is true, and an empty
disjunction is false.

Mircea Marin ALFP

From natural language to first-order logic

Most meaningful sentences from a natural language (English,
Romanian, etc.) can be translated onto formulas from FOL,
with the same meaning.

“Every bird has wings.”
This is the same as saying: “For all X , if X is a bird then X
has wings.”

∀x .(bird(x)→ hasWings(x))

“The sky is blue and the sun is shining.”

blue(sky) ∧ shining(sun)

“Nobody is immortal”
This is the same as saying “For all X , X is not immortal.”

∀x .¬immortal(x)

“Somebody uses the computer.”

∃X .uses(X , computer).

Mircea Marin ALFP

Logic as programming language
Illustrated example

Use logic programming (LP) to answer the following question:

Who are the ancestors of John?

if we know that
Jack is the father of John. Jane is the mother of John. Bob
is the father of Jack. Linda is the mother of Jack. Bill is the
father of Jane. Ana is the mother of John.

John

Jack Jane

Bob Linda Bill Ana

We can use SWI Prolog to program what we know, and to find
answers to questions about what we know. (See next slide)

Mircea Marin ALFP

Logic as programming language
Writing knowledge as facts

Program=collection of facts and rules that describe what we know.
I A fact is an elementary sentence (an atom).

father(john,jack). % Jack is the father of John
father(jane,bill). % Bill is the father of Jane
father(jack,bob). % Bob is the father of Jack
mother(john,jane). % Jane is the mother of John
mother(jack,linda). % Linda is the mother of Jack
mother(jane,ana). % Ana is the mother of Jane

REMARKS:
1 To write correct programs, we must respect the syntax of

Prolog: (1) predicate names and symbolic constants must
start with lowercase letters; (2) facts and rules must end
with a dot character ’.’; etc.

2 There are 6 facts which define the predicates father and
mother

3 We can use rules to define other useful predicates (see
next slide)

Mircea Marin ALFP

Logic as programming language
Writing knowledge as facts

Program=collection of facts and rules that describe what we know.
I A fact is an elementary sentence (an atom).

father(john,jack). % Jack is the father of John
father(jane,bill). % Bill is the father of Jane
father(jack,bob). % Bob is the father of Jack
mother(john,jane). % Jane is the mother of John
mother(jack,linda). % Linda is the mother of Jack
mother(jane,ana). % Ana is the mother of Jane

REMARKS:
1 To write correct programs, we must respect the syntax of

Prolog: (1) predicate names and symbolic constants must
start with lowercase letters; (2) facts and rules must end
with a dot character ’.’; etc.

2 There are 6 facts which define the predicates father and
mother

3 We can use rules to define other useful predicates (see
next slide)

Mircea Marin ALFP

Logic as programming language
Defining new knowledge with rules

A rule is a statement of the form “A if B1 and . . . and Bn.”
In Prolog, we write it as A :- B1, . . . ,Bn.

A is the head, and B1, . . . ,Bn is the body of the rule.
We can use rules to define the well-known predicates
parent and ancestor:
% Case 1: (Y is a parent of Y) if (Y is the father of X)
parent(X,Y) :- father(X,Y).
% Case 2: (Y is a parent of X) if (Y is the mother of X).
parent(X,Y) :- mother(X,Y).
% Case 1: (Y is an ancestor of X) if (Y is a parent of X)
ancestor(X,Y) :- parent(X,Y).
% Case 2: (Y is an ancestor of X) if it is an ancestor of
% one of its parents (let’s call it Z)
ancestor(X,Y) :- parent(X,Z),ancestor(Z,Y).

REMARK: Lines starting with ’%’ are comments with
human-readable explanations

Mircea Marin ALFP

Logic as programming language
Remarks

We can use logical variables to write facts and rules about
generic objects:

they must start with an uppercase letter. E.g., X,Y,Z,...
every fact A is equivalent with the rule
A :- true .

After we write and load a program (using the consult
command), we can ask questions (or queries) about what
we know:
?- ancestor(john,Y). % which Y is an ancestor of John?
Y = jack ;
Y = jane ;
Y = bob ;
Y = linda ;
Y = bill ;
Y = ana ;
false.

Mircea Marin ALFP

Logic as programming language

Logic programming allows to encode knowledge with rules
of the form ∀X1 . . . ∀Xm.(B1 ∧ . . .Bn → A)
where A,B1, . . . ,Bn are atoms. This formula is equivalent
with the formula
¬B1 ∨ . . . ∨ ¬Bn ∨ A where all variables are implicitly
universally quantified.
In Prolog, we write A :- B1, . . . ,Bn.
When n = 0 (the body is empty), the rule becomes a fact;
we write A.
The facts and rules that describe our knowledge are stored
in a program.
The questions we can ask are called queries or goals. A
goal is a formula of the form ∃X1 . . . ∃Xm.A1 ∧ . . . ∧ An
where A1, . . . ,An are atoms.
In Prolog, we write ?- A1, . . . ,An.
where all variables are implicitly existentially quantified.

Mircea Marin ALFP

Logic as a programming language
Horn clauses

Prolog is a language for logic programming (LP) where both
programs and queries are represented by Horn clauses.

A literal is either an atom or the negation of an atom.
A Horn clause is a formula of one of the following forms,
where A1, . . . ,An,B are atoms:
Definite clause: ¬B1 ∨ . . . ∨ ¬Bn ∨ A, which is logically

equivalent with B1 ∧ . . . ∧ Bn → A, and with
the intended reading “Assume that, if B1 and
. . . and Bn hold, then A holds too.”

Fact: A, with intended reading “Assume A holds.”
Goal clause: A1 ∧ . . . ∧ An, with intended reading “Show

that ∃̃.(A1 ∧ . . . ∧ An) holds.”
REMARK: Goals are proven by contradiction: We prove that
¬∃̃.(A1 ∧ . . . ∧ An) does not hold⇔ ∀̃(¬A1 ∨ . . . ∨ ¬An) does not
hold.

Mircea Marin ALFP

Horn clauses
Examples

“Every man is mortal” can be encoded as the definite
clause

man(X)→ mortal(X)

“John is a man” can be encoded as the fact

man(john)

“John is not mortal” can be encoded as the goal
¬mortal(john).

Mircea Marin ALFP

From First-Order Logic to Logic Programming

Prolog = programming language developed in the 1970s by A.
Colmerauer and his coworkers in Marseille, France.

Program = set P of facts and definite clauses.
Not all knowledge can be encoded as set of definite
clauses and facts, but most of it can.

Computation: Given a goal clause G = A1 ∧ . . . ∧ An and a
program P, find
I all answers θ = [X1 → . . . , . . . ,Xm → . . .] for the variables

X1, . . . ,Xm in G, such that Gθ = A1θ ∧ . . . ∧ Anθ can be
deduced from the knowledge encoded in program P.

I If no answer exists, return false.

The computation rule of Prolog is SLD: Selective Linear
Definite clause resolution:

It proves that G′ = ¬A1 ∨ . . .¬An does not hold.
All variables of G′ are, by default, universally quantified.

Mircea Marin ALFP

From First-Order Logic to Logic Programming (LP)
Rules of deduction

A rule of deduction (or rule of inference) is of the form

H1 . . . Hn

C

with the intended reading “if the formulas H1, . . . ,Hn hold, then
the formula C holds too.”

H1, . . . ,Hn are the hypotheses of the rule
C is the conclusion

Examples (rules of inference)

Resolution rule (propositional logic):
A ∨ B ¬B ∨ C

A ∨ C

Special case: modus ponens
P P → Q

Q

Mircea Marin ALFP

From First-Order Logic to Logic Programming (LP)
SLD resolution

SLD resolution: generalization of the resolution rule from
propositional logic, which takes into account the variables in
formulas:

G′ = (¬B1 ∨ . . . ∨ ¬Bi ∨ . . . ∨ ¬Bn) C = (K1 ∧ . . . ∧ Km → B) ∈ P
G′′ = (B1 ∨ . . . ∨ Bi−1 ∨ K1 ∨ . . . ∨ Km ∨ Bi+1 ∨ . . . ∨ Bn)θ

where θ is a most general unifier between Bi and B.
Bi is the atom selected in G′, and C is the clause selected
from P.
Abbreviated notation: G′ →θ,C G′′.

REMARK:In Prolog, Bi is always the leftmost atom of G′. This
means that the subgoals of G are answered from left to right.

Mircea Marin ALFP

The computational model of Prolog

Looks for solutions of ?-A1, . . . ,An by generating an SLD-tree:
The root is ¬A1 ∨ . . . ∨ ¬An

Every node G has m ≥ 0 children G1, . . . ,Gm, enumerated
from left to right, where

G→θi ,Ci Gi and
In P, Ci appears before Ci+1, for all 1 ≤ i < m.

There are two kinds of leaf nodes:
1 Failure nodes: G = ¬B1 ∨ . . . ∨ ¬Bn for which there is no

clause C = (K1 ∧ . . . ∧ Km → B) whose head B unifies with
B1.

2 Success nodes: �, which is the empty disjunction of literals.
NOTE: � is the same as false

The computed answers of G are obtained from the
branches of the SLD-tree of G to success nodes:

If G→θ1 G1 →θ2 . . .→θn Gn = �
then θ = θ1θ2 . . . θn is a computed answer.

Mircea Marin ALFP

Example of SLD tree
P = { arc(a,b). %C1

arc(b,c). %C2
arc(a,d). %C3
path(X,Y)← arc(X,Y). %C4
path(X,Y)← arc(X,Z) ∧ path(Z,Y).} %C5

G = ?− path(a,X).
¬path(a,X)

¬arc(a,X) ¬arc(a,Z) ∨ ¬path(Z,X)

¬path(b,X) ¬path(d,X)

¬arc(d,X)

¬arc(d,Z) ∨ ¬path(Z,X)

C4
C5

¬arc(b,X) ..

�

C2, [X = c]

C4
C5

C1, [Z = b] C3, [Z = d]

� �

C1, [X = b] C3, [X = d]

C4 C5

REMARK: The solutions [X = b], [X = d], [X = c] are found by growing
the SLD-tree from left to right.

Mircea Marin ALFP

Example of SLD tree
P = { arc(a,b). %C1

arc(b,c). %C2
arc(a,d). %C3
path(X,Y)← arc(X,Y). %C4
path(X,Y)← arc(X,Z) ∧ path(Z,Y).} %C5

G = ?− path(a,X).
¬path(a,X)

¬arc(a,X) ¬arc(a,Z) ∨ ¬path(Z,X)

¬path(b,X) ¬path(d,X)

¬arc(d,X)

¬arc(d,Z) ∨ ¬path(Z,X)

C4
C5

¬arc(b,X) ..

�

C2, [X = c]

C4
C5

C1, [Z = b] C3, [Z = d]

� �

C1, [X = b] C3, [X = d]

C4 C5

REMARK: The solutions [X = b], [X = d], [X = c] are found by growing
the SLD-tree from left to right.

Mircea Marin ALFP

References

1 W.F. Clocksin and C.S. Mellish: Programming in Prolog.
5th Edition. Springer Berlin. 2003.

2 K.R. Apt and R.N. Bol: Logic programming and negation:
A survey. Journal of Logic Programming vol 19-20, pages
9-71. 1994.

Mircea Marin ALFP

