Advanced Functional and Logic Programming

Programming principles

Mircea Marin
mircea.marin@e-uvt.ro

November 8, 2018

mailto:mircea.marin@e-uvt.ro

Recursion

Remember that ...

Recursion is a programming technique to solve problems by
breaking them in one of more problems that are similar but simpler
than the initial problem.
@ We can define and work with
» recursive functions, like the Fibonacci function
(define (fib n)
(GAf (=n0) 1 (*xn (fib (- n 1)))))
» recursive datatypes, like lists of symbols:
(nlist) ::= null
| (comns (symbol) (nlist))
@ In functional programming, all repetitive computations are
performed by recursion
» We can not perform usual iterative computations, because we
can not change the values of variables.
» Recursively defined functions are efficient when they are tail
recursive

M. Marin ALFP 7

Recursion

Structural recursion

Can be used to define functions which take one or more arguments
that belong to a composite type (type):

(type) ::= case; | ... | case,

where each case case; is (constr; (typei 1) ... (typejk))

@ A recognizer of values v € (type):
(define (type? v) (or testy

testp))

where test; is of the form
(and (constr;? v) (typei1? (seli1 v)) ... (typei? (selix v)))
@ A function with an argument v € (type) has the form
(define (f ... v ...)
(cond [(constr;? v) (computation involving (seh1 v) ... (sel x v))]
i:&;onstr,,? v) (computation involving (sel,1 v) ... (sel, . v))1))

M. Marin ALFP 7

Recursion

Example 1: structural recursion on lists of numbers

(lon) ::= null | (cons (number) (lon))

M. Marin ALFP 7

Recursion

Example 1: structural recursion on lists of numbers

(lon) ::= null | (cons (number) (lon))

© Recognizer (lon? v):

(define (lon? v)
(or (null? v)
(and (number? (car v)) (lon? (cdr v)))))

M. Marin ALFP 7

Recursion

Example 1: structural recursion on lists of numbers

(lon) ::= null | (cons (number) (lon))

© Recognizer (lon? v):
(define (lon? v)
(or (null? v)
(and (number? (car v)) (lon? (cdr v)))))
@ Define (app2 1st1l 1st2) which appends the lists of
numbers 1s1,1st2:
(define (app2 1lstl 1st2)
(cond [(null? 1stl) 1st2]
[(cons? 1stl) (cons (car 1lstl)
(app2 (cdr 1st1l) 1st2))1))

M. Marin ALFP 7

Recursion

Example 2: structural recursion on binary trees of numbers

(nTree) ::= null | (list (number) (nTree) (nTree))
(4) has the encoding
9 @ (list 4 (1list 2 5—1]1:11]_5]3 1 null null)
¢ & Giow s Gt gt o

© Recognizer (nTree? v):

(define (nTree? v)
(or (null? v)
(and (1ist? v) (= (length v) 3)
(number? (car v)) (nTree? (cadr v)) (nTree? (caddr v)))))

@ Define (sumNodes t) which computes the sum of numbers in all
nodes of t € (nTree):

(define (sumNodes t)

(cond [(null? t) 0]
[(1ist? t) (+ (car t) (sumNodes (cadr t)) (sumNodes (caddr t)))])

M. Marin ALFP 7

Recursion

Structural recursion on numbers
Choose the best structural description of N

@ There are many ways to define the type (nat) of natural
numbers by structural recursion. For example:

(nat) ::= 0 | (+ 1 (nat))
or

(nat) ::= 0 | (even) | (odd)
(even) ::= (x 2 (nat))

(odd) ::= (+ 1 (even))

or ...

o Different choices affect the efficiency of the recursive function
(see next slide).

M. Marin ALFP 7

Recursion

Recursive functions with numeric arguments

Example: computation of x" for n € N

1 if n=20,
x-x"1 if n>0.
(define (expt-vl x n)
(if (=n 0) 1 (* x (expt-vl x (- n 1))))
1 if n=0,
@ Version 2: x" = { (x?)"/2 if nis even,
x * (x2)("=1/2 if nis odd.
(define (expt-v2 x n)
(cond [(=n 0) 1]
[(even? n) (expt-v2 (x x x) (/ n 2))]
[(odd? n) (* x (expt-v2 (* x x) (/ (- n 1) 2)))1))

@ Version 1: x" = {

M. Marin ALFP 7

Solving a more general problem

Sometimes, the best way to solve a problem is to solve a more general
problem and use it to solve the original problem as a special case.

Example

Suppose von is a vector of numbers. Define (vector-sum von) which
returns the sum of elements of von, using the functions

@ (vector-length von): returns the length (number of elements) of
von

@ (vector-ref von i): returns the i-th element of von; the
elements of von are indexed starting from 0.

Solving a more general problem

Sometimes, the best way to solve a problem is to solve a more general
problem and use it to solve the original problem as a special case.

Example

Suppose von is a vector of numbers. Define (vector-sum von) which
returns the sum of elements of von, using the functions

@ (vector-length von): returns the length (number of elements) of
von

@ (vector-ref von i): returns the i-th element of von; the
elements of von are indexed starting from 0.

Instead of defining (vector-sum von), we can define the more general
function (partial-vector-sum von n) which computes the sum of
elements with indexes from 0 to n in von.

Recursion

Solving a more general problem

Sometimes, the best way to solve a problem is to solve a more general
problem and use it to solve the original problem as a special case.

Example

Suppose von is a vector of numbers. Define (vector-sum von) which
returns the sum of elements of von, using the functions

@ (vector-length von): returns the length (number of elements) of
von

@ (vector-ref von i): returns the i-th element of von; the
elements of von are indexed starting from 0.

Instead of defining (vector-sum von), we can define the more general
function (partial-vector-sum von n) which computes the sum of
elements with indexes from 0 to n in von.

@ Note that (vector-sum von) coincides with
(partial-vector-sum von (vector-length von))

Recursion

Solving a more general problem

Example: compute the sum of elements of a vector of numbers

(define (vector-sum von)
(define (partial-vector-sum von n)
(if (=n 0)
0 ; nothing to add
(+ (partial-vector-sum von (- n 1))
(vector-ref von (- n 1)))))
(partial-vector-sum von (vector-length von)))

@ partial-vector-sum is an auxiliary function used only in the implementation of

vector-sum

= we can make the definition of partial-vector-sum local to
the body of vector-sum

@ von refers to the same vector of numbers in all function calls

= The formal argument von can be removed from the definition
of partial-vector-sum

M. Marin ALFP 7

Recursion

Solving a more general problem

Example: compute the sum of elements of a vector of numbers

(define (vector-sum von)

(define (partial-vector-sum n)
(if (= n 0)
0 ; nothing to add
(+ (partial-vector-sum (- n 1))
(vector-ref von (- n 1)))))
(partial-vector-sum (vector-length von)))

NoTE: This simplified implementation is more efficient.

M. Marin ALFP 7

Recursion

Linear recursive functions

A function f : N — N is linear recursive if
@ We know the first k values of f:

f(0)="f,f(l)="~Ff,...,f(k—1)=1fr1
@ We know ay,...,ak such that, for all n > k:

f(ny)=a1-f(n—1)+ax-f(n—2)+...4ax-f(n—k)

M. Marin ALFP 7

Recursion

Linear recursive functions

A function f : N — N is linear recursive if
@ We know the first k values of f:

f(0)="f,f(l)="~Ff,...,f(k—1)=1fr1
@ We know ay,...,ak such that, for all n > k:
f(ny)=a1-f(n—1)+ax-f(n—2)+...4ax-f(n—k)

All linear recursive functions have a tail recursive definition.
(see next slide)

M. Marin ALFP 7

Recursion

Linear recursive functions

A tail recursive definiton

Assume f : N — N is linear recursive:
° f(0)="1o,f(1)="f,....flk—=1)=fi1
@ f(ny=a;-f(n—=1)+ay-f(n—2)+...+ar-f(n—k) forall n > k

M. Marin ALFP 7

Recursion

Linear recursive functions

A tail recursive definiton

Assume f : N — N is linear recursive:
o £(0)=fo,f(1)=fi,...,f(k—1) = fi_q
@ f(ny=a;-f(n—=1)+ay-f(n—2)+...+ar-f(n—k) forall n > k
Then
f(n) = facc(n, fo, f,...,fx_1)
where f-acc(n, Ao, A1, ..., Ak—1) is

@ A,if0<n<k, (the base cases)
o facc(Ay, ..., Ak_1,31 - Ak—1+ a2 Ak—a + ... + ak - Ao), otherwise.
PROOF:
f-acc(n, fo, fi, R fr—o, fe_1) =
f-acc(n, (0), (1), ..., f(k—2),f(k—1)) =

f-acc(n — 1, f(1), f(2), ..., f(k —1),f(k)) =

facc(k —1,F(n—k+1),f(n—k+2),...,f(n—1), f(n)) =

fini

Recursion

Primitive recursive functions

A definition by primitive recursion of h: N x A; X ... x Ax — B looks as
follows:

O h(0,x1,...,xk) = F(x1,...,%k)

Q h(n+1,x1,...,x):=g(n h(n xi,.
(recursive case)

(base case)

ey Xk)y X1,y ..., xk) forall n € N,

Every primitive recursive function h has a tail recursive definition.

(define (h n x;

. Xk)
(define (h-acc i prev)
(if (= i n)
prev
(h-acc (+ 1 1) (g i prev x; ... xx))))
(h-acc 0 (f x¢ ... %xx)))

M. Marin ALFP 7

User-defined structures

Quasiquoted expressions
Applicative programn Bottom-up tr formations

Top-down transformations

apply and map

(list) ::= null | (cons (value) (list))

@ If f is a function and 1st a list of values v4,...,v, then

(apply f 1st)

returns the value of the function call (f vy ... vy)
@ If £ is a function which expects n arguments, and
11 = (llst Vi1 Vio ... V1k)
ln = (liSt Vnpt Vi ... vnk)
then (map £ 1; ... 1,) = (list vy vy ... vy)
where vy = (f Vi1 Vo1 ... an)
Vo = (f Vig Voo ... Vn2)
Vi = (f Vik Vog ... Vnk)

User-defined structures

Quasiquoted e i
Applicative prog n Bottom-up

Top-down trans

apply and map

Examples

> (apply + (1 2 3 4)) ; compute 1+2+3+4

10

> (apply append ’((1 2) (a b) O (3 4)))
’(12ab34)

> (map (lambda (x) (* x x)) ’(1 2 3))

’(149)

> (map cons ’(a b c) (12 3))

((a . 1) (. 2) (c . 3))

> (map reverse ’((a b c) (#t #£f) ((1 2) (3 4)))
>((c b a) (#f #t) ((3 4) (1 2)))

ReMArK: (reverse 1lst) returns the list of elements of 1st in
reverse order: It can be defined by tail recursion:

(define (reverse 1lst)
(define (reverse-acc 1lst acc) ; reverse-acc is tail recursive
(if (null? 1st)
acc
(reverse-acc (cdr 1lst) (cons (car 1st) acc))))
(reverse-acc 1lst ’()))

M. Marin ALFP 7

Applicative programming with lists] m-up tra ations
Top-down transformations

filter,foldl,foldr

O If p is a boolean function, and 1st is a list, then
(filter p 1lst)
returns 1st without the elements v for which (p v) is #f.

@ If £: A xB — Bis a binary function, b € B, and 1st is a list
of values ay,...,ay € B, then

(foldl f b 1st)

returns the value of (f(ap,...(f(a1,b))...).
If 1st is > (), the returned value is b.

© If £: A X B — Bis a binary function, b € B, and 1st is a list
of values ay,...,a, € B, then
(foldr £ b 1st)
returns the value of (f£(ai,...(£f(an,b))...).
If 1st is > (), the returned value is b.

M. Marin ALFP 7

User-defined structures

Quasiquoted e i
Applicative prog n Bottom-up

Top-down trans

filter,foldl,foldr

Examples

> (filter symbol? ’(a 1 (1 . 2) bc "bc" #t (O))

’(a bc)

> (filter (lambda (x) (and (1list? x)
(= (length x) 2)
(number? (car x))
(number? (cadr x))))

(1. 2) (4 3) #(1 2) #t abc (3 2) (1 2 3)))

’((4 3) (3 2)

> (foldl (lambda (b a) (list b a)) ’a ’(bl b2 b3))

? (b3 (b2 (bl a)))

> (foldr (lambda (b a) (list b a)) ’a ’(bl b2 b3))

(b1 (b2 (b3 a)))

> (foldl comns ’() ’(a b c))

’(c b a)

> (foldr cons ’() ’(a b c))

’(a b c)

M. Marin ALFP 7

User-defined structures

Quasiquoted expressions
Applicative programming with lists Bottom-up trz ations

Top-down transformations

Properties of filter,foldl,foldr

filter,foldl and foldr are predefined functions.
We can define them recursively:

(define (filter p lst)
(cond [(null? 1st) null]
[(p (car 1st)) (cons (car 1lst) (filter p (cdr 1lst)))]
[#t (filter p (cdr 1st))]))
(define (foldl f b 1lst)
(cond [(null? 1st) b]
[#t (foldl f (£ (car 1st) b) (cdr 1st))1))
(define (foldr f b 1lst)
(cond [(null? 1st) b]
[#t (f (car 1lst) (foldr f b (cdr 1st))1)))

© foldl is tail recursive — efficient implementation
@ foldr is not tail recursive, but note that:

» (foldr f b 1lst)=(foldl f b (reverse 1lst))
= a better definition of foldr, which is tail-recursive:

(define (foldr f b 1lst) (foldl f b (reverse 1lst))

M. Marin ALFP 7

User-defined structures

Quasiquoted expressions
Applicative programn Bottom-up tr formations

Top-down transformations

Remarks

Several real-world applications operate on large collections of data that
can be implemented as lists, and the operations on such collections are
compositions of a small number of generic operations.

@ This observation led to the idea of applicative programming with
lists, where all operations of practical interest are defined as
combinations of a small number of generic operations, such as

map
apply
filter
foldl
foldr
reverse

@ Applicative programming with lists inspired the MapReduce

programming model used by Google to process and generate large
data sets.

M. Marin ALFP 7

User-defined structures

Quasiquoted expressions
Applicative programn Bottom-up tr formations

Top-down transformations

[llustrated example

A database of employees

Database: list of records of the form (list name salary job)

> (define employees

>(("John White" 10000 "manager") ("Sam Smith" 4500 "cook")
("Alice Cooper" 3600 "secretary") ("Ray Ban" 6320 "driver")
("Mike Cole" 2600 "waiter") ("Ana Fox" 3800 "secretary")
("John Black" 2450 "driver") ("Jack White" 3500 "cook")))

M. Marin ALFP 7

User-defined structures

Quasiquoted e i
Applicative prog n Bottom-up

Top-down trans

[llustrated example

A database of employees

Database: list of records of the form (list name salary job)
> (define employees
>(("John White" 10000 "manager") ("Sam Smith" 4500 "cook")
("Alice Cooper" 3600 "secretary") ("Ray Ban" 6320 "driver")
("Mike Cole" 2600 "waiter") ("Ana Fox" 3800 "secretary")
("John Black" 2450 "driver") ("Jack White" 3500 "cook")))
O1) Get the records of people with salary greater that 4000:
> (filter (lambda (emp) (> (cadr emp) 4000)) employees)
>(("John White" 10000 "manager")
("Sam Smith" 4500 "cook")
("Ray Ban" 6320 "driver"))

M. Marin ALFP 7

User-defined structures

Quasiquoted e i
Applicative prog n Bottom-up

Top-down trans

[llustrated example

A database of employees

Database: list of records of the form (list name salary job)
> (define employees
>(("John White" 10000 "manager") ("Sam Smith" 4500 "cook")
("Alice Cooper" 3600 "secretary") ("Ray Ban" 6320 "driver")
("Mike Cole" 2600 "waiter") ("Ana Fox" 3800 "secretary")
("John Black" 2450 "driver") ("Jack White" 3500 "cook")))
O1) Get the records of people with salary greater that 4000:
> (filter (lambda (emp) (> (cadr emp) 4000)) employees)
>(("John White" 10000 "manager")
("Sam Smith" 4500 "cook")
("Ray Ban" 6320 "driver"))
0,) Get a digest with the names of all people employed in the
company
> (map car employees)
’("John White" "Sam Smith" "Alice Cooper" "Ray Ban"
"Mike Cole" "Ana Fox" "John Black" "Jack White")

M. Marin ALFP 7

User-defined structures

Quasiquoted expressions
Applicative pr Bottom-up formations

Top-down transformations

[llustrated example

A database of employees

Database: list of records of the form (list name salary job)
> (define employees
>(("John White" 10000 "manager") ("Sam Smith" 4500 "cook")
("Alice Cooper" 3600 "secretary") ("Ray Ban" 6320 "driver")
("Mike Cole" 2600 "waiter") ("Ana Fox" 3800 "secretary")
("John Black" 2450 "driver") ("Jack White" 3500 "cook")))
O1) Get the records of people with salary greater that 4000:
> (filter (lambda (emp) (> (cadr emp) 4000)) employees)
>(("John White" 10000 "manager")
("Sam Smith" 4500 "cook")
("Ray Ban" 6320 "driver"))
0,) Get a digest with the names of all people employed in the
company
> (map car employees)
’("John White" "Sam Smith" "Alice Cooper" "Ray Ban"
"Mike Cole" "Ana Fox" "John Black" "Jack White")
O3) Total amount of money spent to pay the employees’ salaries:
> (foldl (lambda (emp b) (+ (cadr emp) b)) O employees)
36770

M. Marin ALFP 7

Quasiquot
Applicative programn sts Bottom-up t
Top-down transformations

The struct special form

Users can define their own composite types with the special form struct:
(struct struct_id (field_id; ... field_id,))
creates the following functions for the newly declared type struct_id:

» the constructor struct_id that takes as many arguments as the
number of fields

» the recognizer struct_id?

» n selectors struct_id-field_id;, for each of the fields of the new
composite type

v eld_id, : v
. ' struct_id ﬁ e struct_id-field_id; .
Un field_id,, : v,

l struct_id?
#t

M. Marin ALFP 7

User-defined structures
Xpressions
Applicative programmin th lists Bottom-up t formations
Top-down transformations

Structures

Examples

> (struct emp (name salary job))
> ; create an instance of emp
(define el (emp "Ana Schwarz" 2300 "attorney"))
> (emp? el)
#t
> (list (emp-name el) (emp-salary el))
’("Ana Schwarz" 2300)

@ By default, the values of structures are opaque:
> el
#<emp>

@ We can define structures with transparent values if we use the #:transparent
keyword.

> (struct emp (name salary job) #:transparent)
> (define e2 (emp "Bruce Willis" 25000 "actor"))
> e2

(emp "Bruce Willis" 25000 "actor")

M. Marin ALFP 7

User-defined structures
Quasiquoted expressions
Applicative programmi ith lists Bottom-up transformations
Top-down transformations

A convenient abbreviation

Many datatypes (including pairs, lists, vectors) have quoted values
of the form ’datum

Usually, these forms are valid input forms.

> (1 2 (3 4)) ; shorter input than (1ist 1 2 (list 3 4))
’(1 2 (3 4)

> 2#(1 2 (3 4)) ; shorter input than (vector 1 2 (list 3 4))
#(1 2 (3 4))

>’(a . #(b c)) ; shorter input than (cons ’a (vector ’b ’c))
’(a . #(b c))

Bad news: quoted expressions can not be used to create
composite values from component values.

Good news: quasiquoted expressions can be used to create
composite values from component values (see next slide).

M. Marin ALFP 7

Applicative
Top-down transformations

Quasiquoted expresions

@ A quasiquoted expression is of the form

‘datum

4

It is like a quoted expression, but is starts with the character

@ Inside a quasiquoted expression, every subexpression of the form
, expr

is replaced by the value of expr

@ Inside a quasiquoted expression, every subexpression of the form

,Qexpr
where the value of expr is a list of values vi, ..., v,, is replaced by
the sequence of values vy ... v,

M. Marin ALFP 7

defined structures
iquoted expressions
Applicative programmin th lists Bottom-up t formations
Top-down transformations

Quasiquoted expressions

Examples

>
>
>
>

(define a ’(Toyota Prius))

(define b 2011)

(define c "red")

; a quasiquoted list

‘(car (model ,@a) (year ,b) (color ,c))

’(car (model Toyota Prius) (year 2011) (color '"red"))
> ‘#(,0a is ,c) ; a quasiquoted vector

’#(Toyota Prius is "red")

M. Marin ALFP 7

User-defined structures

Quasiquoted expressions
Applicative programmin ith lists Bottom-up transformations

Top-down transformations

Quasiquoted expressions

Examples

>
>
>
>

(define a ’(Toyota Prius))

(define b 2011)

(define c "red")

; a quasiquoted list

‘(car (model ,@a) (year ,b) (color ,c))

’(car (model Toyota Prius) (year 2011) (color '"red"))
> ‘#(,0a is ,c) ; a quasiquoted vector

’#(Toyota Prius is "red")

What is the following function doing when 1st is a list of integers?

(define (del2 1st)
(if (null? 1st) ’ ()
(if (even? (car 1st))
“(,0(del2 (cdr 1st)))
“(,(car 1st) ,@(del2 (cdr 1st)))))

M. Marin ALFP 7

User-defined structures
siquoted e> sions
Applicative programmi Bottom-up tra tions
Top-down transformations

A general pattern of recursion

This is a frequent pattern to transform composite values:
(define (transform cv)

(cond [base-case; wvaluei]
[base-case,, value,,]
[recursive-casey
; compute (transform vi) ... (transform vy)
; for the component values vy, ..., v, of cv
; and combine them into a return value

]

[recursive-cases ...]

ce))

M. Marin ALFP 7

Applicative programm ith lists

Example
Compute the flattened form of a nestes list of symbols s1 € (S — list)

(S —list): :=(symbol) | (1ist (S —list) ... (S —list))
The flattened form of an S-list s1 is defined as follows:
> (list sl) if sl is a symbol.

> Otherwise, s1 = (list sl; ... sl,) and the flattened form is the
result of appending the flattened forms of sl4,...,sl, in this order.

> (flatten-list ’(((a) (b () c d)) e £ ((g)))))
’(@bcdef g

M. Marin ALFP 7

ons
Applicative programmir sts Bottom- 2 ormations

Top-down transformations

Example
Compute the flattened form of a nestes list of symbols s1 € (S — list)

(S —list): :=(symbol) | (1ist (S —list) ... (S —list))
The flattened form of an S-list s1 is defined as follows:

> (list sl) if sl is a symbol.

> Otherwise, s1 = (list sl; ... sl,) and the flattened form is the
result of appending the flattened forms of sl4,...,sl, in this order.

Example

> (flatten-list ’(((a) (b () c d)) e £ ((g)))))
’(@bcdef g

Implementation

(define (flatten-list sl)
(cond [(symbol? sl) (list sl)]
[#t (apply append (map flatten-list s1))]))

Applicative programming with lists] m-up tra
own tran

An illustrated example

Inward propagation of negation in propositional formulas

(prop) ::= (symbol) ; atomic formula
| (list ’not (prop)) ; negation
| (list ’and (prop) (prop)) ; conjunction
| (1ist ’or (prop) (prop)) ; disjunction
If cv = =(P V Q) then transf(cv) = transf(—P) A transf (- Q).
If cv = =(P A Q) then transf(cv) = transf (—P) V transf(—Q).

If cv = =(=P) then transf(cv) = transf(P).

If cvis PV Q then transf(cv) = transf(P) V transf(Q).

o>
>
>
> If cv is an atom, then transf(cv) = cv.
>
> If cvis P A Q then transf(cv) = transf(P) A transf(Q).
>

If cv is =P where P is not negation, then transf(cv) = —transf (Q).

M. Marin ALFP 7

User-defined structures

Quasiquoted e> i
Applicative programming with lists Bottom-up nsformations

Top-down transformations

Top down transformation of composite values

Example: inward propagation of negation in propositional formulas (contd.)

@ Useful recognizers for all kinds of propositional formulas:

(define (atom? f)
(symbol? £))

(define (not? f)

(and (1list? f) (= (length f) 2) (eq? (car f) ’not)))
(define (and? f)

(and (1list? f) (= (length f) 3) (eq? (car f) ’and)))
(define (or? f)

(and (1list? f) (= (length f) 3) (eq? (car f) ’or)))

M. Marin ALFP 7

Applicative programming with lists

Top down transformation of composite values

Example: inward propagation of negation in propositional formulas (contd.)

@ Definition of (propagate-not cv)

(define (propagate-not cv)
(cond [(atom? cv) cv]
[(and (not? cv) (or? (cadr cv)))
(let ([P (list-ref (cadr cv) 1)]
[Q (list-ref (cadr cv) 2)]1)
“(and , (propagate-not " (nmot ,P))
, (propagate-not ~(not ,Q))))]
[(and (not? cv) (and? (cadr cv)))
(let ([P (caddr cv)]
[Q (cadddr cv)])
“(or ,(propagate-not ~(not ,P))
, (propagate-not ~(not ,Q))))]
[(and (not? cv) (not? (cadr cv)))
(propagate-not (list-ref (cadr cv) 1))]
[#t ~(,(car cv) ,@(map propagate-not (cdr cv)))]1))

M. Marin ALFP 7

	Recursion
	Applicative programming with lists
	User-defined structures
	Quasiquoted expressions
	Bottom-up transformations
	Top-down transformations

