
Advanced Functional and Logic Programming
Lecture 5: Introduction to Functional Programming.

The Racket language

Mircea Marin
mircea.marin@e-uvt.ro

October 25, 2018

M. Marin ALFP

mailto:mircea.marin@e-uvt.ro

Introduction to FP
Characteristic features

Describe every computation as a request to evaluate an
expression, and use the resulting value for something.

Main notions: function, value, expression.

program: collection of function definitions in the
mathematical sense

The value of a function call depends only on the values of the
function arguments.

expression = (typically) a combination of nested function calls.

computation = evaluation of an expression ⇒ a value.

value = element of a datatype (string, integer, list, etc.) that
can be

named
stored in a composite data (e.g., element of a list or vector)
passed as argument to a function call
returned as result of a function call

M. Marin ALFP

Characteristic features of FP

Variables are just names given to values

There is no assignment ⇒ we can not change the value of a
variable

⇒ we can not define repetitive computations by iteration.
⇒ we define repetitive computations by recursion

Functions are values ⇒ we can have

functions that take function arguments
functions that return functions as results
lists of functions, etc.

M. Marin ALFP

Example 1: Computation of n! by recursion

We can not define fact by iteration

fact(int n)

i=1; fact:=1;

if(i<n)

i:=i+1;

fact:=fact*i;

endif

return fact

because there is no assignment in functional programming.
But we can define fact by recursion (pseudocode)

fact(int n)

if (n==1)

1

else

n*fact(n-1)

M. Marin ALFP

Example 2: A function with a function argument

map(f , L) takes as inputs a function f : A→ B and a list

L = (a1, a2, . . . , an) of elements from A

and returns the list

(f (a1), f (a2), . . . , f (an)) of elements from B

Assume that

empty(L) recognises if L is empty list

first(L) returns the first element of a list

rest(L) returns the list produced by removing the first element of L

prepend(e,L) adds element e in front of list L

map(f,L)

if (empty(L)) L

else prepend(f(first(L)),map(f,rest(L)))

M. Marin ALFP

Why learn functional programming?

It has a very simple model of computation:

Programs consist (mainly) of function definitions
Computation=evaluation of (nested) function calls

We can define higher-order functions (functions that take
functions as arguments and/or return functions as results)

⇒ we can write highly modular and reusable code
[Hughes:1989]

According to [Thompson:1999]:

“Functional languages provide a framework in which the
crucial ideas of modern programming are presented in the
clearest possible way. This accounts for their widespread use in
teaching computing science and also for their influence on the
design of other languages.”

M. Marin ALFP

Functional programming
What will we learn?

How to use DrRacket to write and run functional programs

I DrRacket is an integrated development environment (IDE) for
Racket, the current dialect of Scheme

I DrRacket is freely available to be installed on Windows, Linux,
MacOS, etc.

https://racket-lang.org

When started, DrRacket shows a window with two panels:

1 the definitions area, where you can start typing your own
programs, save them for later use and run them.

2 the interactions area, where you can interact directly with the
interpreter of Racket.

M. Marin ALFP

Functional programming languages
Early history

The first high-level programming language was Fortran
(1957). Fortran is an imperative programming language.

The second high-level programming language was Lisp (1958).

Designed by people interested in AI (”the science and
engineering of making intelligent machines”);
Lisp became the favoured language for AI research
Lisp is acronym for ”List Processing”: Lists are used to
represent both source code and composite data.

Initial Lisp had no standard specification ⇒ many dialects of
Lisp appeared ⇒ people were confused, and wanted a
standardised and reliable version of Lisp
⇒ Common Lisp (ANSI 1994 standard): extensive libraries, ideal

for writing commercial software
⇒ Scheme (IEEE 1990 standard): wonderful for educational

purposes.
The most recent dialect of Scheme is Racket.

M. Marin ALFP

Lisp and its dialects
Characteristic features

They are strict programming languages

I A language is strict if the evaluation of function calls proceeds
as follows: First, we compute the values of the arguments, and
next we call the function with the computed values.

Example

4 + ((2− 2) ∗ (4− 3)) is the infix notation for the nested function
call +(4, ∗(0,−(4, 3))). The strict evaluation of this expression is:

+(4, ∗(−(2, 2),−(4, 3)))→ +(4, ∗(0,−(4, 3)))→ +(4, ∗(0, 1))

→ +(4, 0)→ 4

All expressions are written in a peculiar syntax, called the
parenthesised prefix notation (see next slide)

M. Marin ALFP

The parenthesised prefix notation

Every function call f (e1, e2, . . . , en) is written as

(f pe1 pe2 . . . pen)

where pe1, pe2, . . . , pen are the parenthesised prefix notations
of e1, e2, . . . , en

Every other composite programming construct is of the form

(form-id ...)

where form-id is the identifier of the programming construct.

Characteristics of the parenthesised prefix notation

Every open parenthesis has a corresponding close perenthesis

Instead of comma, we type whitespace (one or more blanks,
newlines, tabs, etc.)

M. Marin ALFP

The parenthesised prefix notation
Examples

((2+7)/3-1)*(7-4) is written as

(* (- (/ (+ 2 7) 3) 1) (- 7 4))

The parenthesised prefix notation of

if (n=1) 1 else n*fact(n-1)

is

(if (= n 1) 1 (* n (fact (- n 1))))

Remark

The parenthesised prefix notation of

if cond expr1 else expr2

is (if cond-pe expr1-pe expr2-pe)
where cond-pe, expr1-pe, expr2-pe are the parenthesised prefix
notations of cond, expr1, expr2.

M. Marin ALFP

Racket
Values and built-in datatypes

Values are the simplest expressions: they evaluate to themself

A value is either atomic or composite.

Every value belongs to a datatype.
Datatypes with atomic values:

integer: 1 -703 12345678999999

floating-point: 1.23 3.14e+87

string: "abc"

symbol: ’abc

(symbol values are preceded by the quote character’)
boolean: #t (for truth) #f (for falsehood)
. . .

Some datatypes have composite values: pairs, lists, vectors,
hash tables, etc.

A composite value is a collection of other values.
Composite values and datatypes will be described in Lecture 2.

M. Marin ALFP

Interacting with DrRacket
The Read-Eval-Print loop (REPL)

In the interactions area, at the input prompt >

Type in an expression e in parenthesised prefix notation, and
press Enter

e will be read, evaluated, and the resulted value will be
printed on the next line in the interactions area.

M. Marin ALFP

Interacting with DrRacket
The Read-Eval-Print loop (REPL): Example

Example

the nesting of parentheses clarifies the order in which the
function applications should be performed

the semicolon ; starts a comment (highlighted with brown)
that extends to the end of the line

comments are ignored by the interpreter

M. Marin ALFP

Expressions and definitions

The interpreter of Racket recognises two kinds of input forms:

Expressions: An expression expr is read, evaluated, and its value is
printed in the interactions area.

Definitions: A definition is of the form

(define var expr)

Definitions are interpreted as follows:

expr is evaluated, and its value is assigned to
variable var .
Afterwards, var can be used to refer to the value
of expr .

Example (Compute
√

x2 + y2 for x = 2 and y = 3)

> (define x 2)

> (define y 3)

> (sqrt (+ (* x x) (* y y)))

3.605551275463989

M. Marin ALFP

Function definitions

The meaning of an expression

(lambda (x1 . . . xn) body)

is “the function which, for the values of arguments x1, . . . , xn,
computes the value of body .”

The evaluation of this expression creates a function, which is
a value that can be assigned to a variable.

Example (the factorial function)

> (define fact

(lambda (n)

(if (or (= n 0) (= n 1))

1

(* n (fact (- n 1))))))

> (fact 5) ; compute 5!

120

M. Marin ALFP

Composite datatypes

Every composite datatype has:

recognizers = boolean functions that recognize values of that
type.

constructors = functions that build a composite value from
component values

selectors = functions that extract component values from a
composite vulue

utility functions = useful functions that operate on//with
composite values

A specific internal representation that affects the efficiency of
the operations on them

M. Marin ALFP

Pairs

The simplest container of two values
constructor: (cons v1 v2)

internal representation: a cons-cell that stores pointers to the
internal representations of v1 and v2

v1 v2

(cons? p): returns #t if the value of p is a pair, and #f

otherwise.
selectors

(car p): returns the first component of pair p
(cdr p): returns the second component of pair p

Diagrammatically, these operations behave as follows:

v1

v2
(cons v1 v2)

#t

v1

v2

cons car

cdrpair?

M. Marin ALFP

Operations on pairs
Examples

> (define p (cons 1 "a")) > (define q (cons ’a ’b))

> p > q

’(1 . "a") ’(a . b)

> (pair? p) > (car q)

#t ’a

> (car p)

1

> (cdr p)

"a"

Remark

We can nest pairs to any depth to store many values in a single
structure:

> (cons (cons (1 ’a) "abc"))

’((1 . a) . "abc")

> (cons (cons ’a 1) (cons ’b (cons #t "c")))

’((a . 1) b #t . "c")

M. Marin ALFP

The printed form of pairs

Racket applies repeatedly two rules to reduce the number of
quote characters(’) and parentheses in the printed forms:

rule 1: (cons v1 v2) is replaced by

’(w1 . w2)

where w1,w2 are the printed forms of v1, v2 from
which we remove the preceding quote, if any.
There is space before and after the dot
character in the printed form.

rule 2: Whenever there is a dot character before a
parenthesised expression, remove the dot character
and the open/close parentheses.

M. Marin ALFP

Printed form of pairs
Example

> (cons (cons ’a 1) (cons ’b (cons #t (cons "c" ’d))))

’((a . 1) b #t "c" . d)

The printed form is obtained as follows:

Apply rule 1 ro reduce the number of quote characters ⇒ the
form ’((a . 1) . (b . (#t . ("c" . d))))

Apply repeatedly rule 2 to eliminate dots and open/close
parentheses:

’((a . 1) . (b . (#t . ("c" . d))))→’((a . 1) b . (#t . ("c" . d)))

’((a . 1) b . (#t . ("c" . d)))→’((a . 1) . (#t "c" . d))

’((a . 1) . (#t "c" . d))→’((a . 1) b #t "c" . d)

The final form is the printed form:

’((a . 1) b #t "c" . d)

M. Marin ALFP

Pairs
Printed forms

We can input directly the printed forms, which are usually much
shorter to write than combinations of nested cons-es:

Example

Instead of (cons (cons ’v11 ’v12) (cons ’v21 ’v22)) we can
type ’((v11 . v12) v21 . v22):

> (define p ’((v11 . v12) v21 . v22))

> p

’((v11 . v12) v21 . v22))

> (car p) > (cdr p)

’(v11 . v12) ’(v21 . v22)

> (car (car p)) > (cdr (car p))

’v11 ’v12

> (car (cdr p)) > (cdr (cdr p))

’v21 ’v22

M. Marin ALFP

Selectors for nested pairs

The selection of an element deep in a nested pair is cumbersome:

> (define p ’(a ((x . y) . c) d))

To select the second of the first of the first of the second
component of p, we must type

> (cdr (car (car (cdr p))))

’y

We can use the shorthand selector cdaadr:

> (cdaadr p)

’y

Other shorthand selectors: cx1 . . . xpr where x1, . . . , xp ∈ {a, d}
and 1 ≤ p ≤ 4 (max. 4 nestings)

M. Marin ALFP

Lists
Constructors and internal representation

A recursive datatype with two constructors:

null: the empty list

(cons v l): the list produced by placing the value v in front
of list l .

If n ≥ 1, the list of values v1, v2, . . . , vn is

(cons v1 (cons v2 ... (cons vn null)...))

with the internal representation

. . .

v1 v2 vn

Remark: The internal representation of a list with n values
v1, . . . , vn consists of n cons-cells linked by pointers.

M. Marin ALFP

Printed form of lists

> null

’() ; the printed form of the empty list

All non-empty lists are pairs, and their printed form is computed
like for pairs.

Example

> (cons ’a

(cons ’b

(cons ’c (cons (cons ’d null)

null))))

’(a b c (d))

This printed form is obtained by applying repeatedly rule 2 to the
form ’(a. (b . (c . ((d . ()) . ()))))

M. Marin ALFP

Lists
Other constructors and selectors

A simpler constructor for the list of values v1, v2, . . . , vn:

> (list v1 v2 . . . vn)

Selectors:

(car lst) selects the first element of the non-empty list lst

(cdr lst) selects the tail of the non-empty list lst

(list-ref lst k) selects the element at position k of lst
Note: The elements are indexed starting from position 0.

Example

> (list ’a #t "bc" ’d) > null

’(a #t "bc" ’d) ’()

> (list ’() ’a ’(b c)) > (list-ref ’(1 2 3) 0)

’(() a (b c)) 1

> (list-ref ’(1 (2) 3) 1)

’(2)

M. Marin ALFP

List recognizers

(list? lst) recognizes if lst is a list.

(null? lst) recognizes if lst is the empty list.

Example

> (define lst ’(a b c d))

> (list? lst)

#t

> (car lst)

’a

> (cdr lst)

’(b c d)

> (list-ref lst 0)

’a

> (list-ref lst 1)

’b

M. Marin ALFP

List operations
Diagrammatic representation of their behavior

null

#t #t

null? list?

(list)

v0
...
vn

(list v0 ... vn)

#f #t

vi
list (list-ref i)

list?null?

M. Marin ALFP

Utility functions on lists

(length lst) returns the length (=number of elements) of lst

> (length ’(1 2 (3 4))) > (length ’())

3 0

(append lst1 . . . lstn) returns the list produced by joining lists
lst1, . . . , lstn, one after another.

> (append ’(1 2 3) ’(a b c))

’(1 2 3 a b c)

(reverse lst) returns the list lst with the elements in reverse
order:

> (reverse ’(1 2 3))

’(3 2 1)

M. Marin ALFP

Operations on lists (1)
apply and filter

If f is a function and lst is a list with component values
v1, . . . , vn in this order, then

(apply f lst)

returns the value of the function call (f v1 . . . vn).
If p is a boolean function and lst is a list, then

(filter p lst)

returns the sublist of lst with elements v for which (p v) is
true.

Examples

> (apply + ’(4 5 6)) ; compute 4+5+6

15

> (filter symbol? ’(1 2 a #t "abc" (3 4) b))

’(a b)

> (filter number? ’(1 2 a #t "abc" (3 4) b))

’(1 2)

M. Marin ALFP

Operations on lists (2)
map

If f is a function and lst is a list with component values
v1, . . . , vn in this order, then

(apply f lst)

returns the list of values w1, . . . ,wn where every wi is the value of
(f vi)

Example

> (map (lambda (x) (+ x 1)) ’(1 2 3 4))

’(2 3 4 5)

> (map list? ’(1 2 () (3 4) (a . b)))

’(#f #f #t #t #f)

M. Marin ALFP

Vectors

A composite datatype of a fixed number of values.
Constructors:

(vector v0 v1 . . . vn−1)

constructs a vector with n component values, indexed from 0
to n − 1, and internal representation

v1 v2 vn

. . .
0 1 n − 1

(make-vector n v)
returns a new vector with n elements, all equal to v .

Recognizer: vector?

Selectors: (vector-ref vec i)

returns the component value with index i of the vector vec.

M. Marin ALFP

Operations on vectors

Example

> (define vec (vector "a" ’(1 . 2) ’(a b)))

> (vector? vec)

#t

> (vector-ref vec 1)

’(1 . 2)

> (vector-ref vec 2)

’(a b)

> (vector-length vec) ; compute the length of vec
3

M. Marin ALFP

Printed form of vectors

The printed form of a vector with component values v0, v1, . . . , vn
is

’#(w0 w1 . . . wn)

where wi is the printed form of vi from which we remove the
preceding quote character, if any.

Examples

> (vector ’a #t ’(a . b) ’(1 2 3))

’#(a #t (a . b) (1 2 3))

> (vector ’a (vector 1 2) (vector) "abc")

’#(a #(1 2) #() "abc")

> (make-vector 3 ’(1 2))

’#((1 2) (1 2) (1 2))

The printed forms of vectors are also valid input forms:

> ’#(1 2 3) > (vector? ’#(1 2 3))

’#(1 2 3) #t

M. Marin ALFP

The void datatype

Consists of only one value, ’#<void>:

The recognizer is void?

Attempts to input ’#<void> directly will raise a syntax error:

> ’#<void>

read: bad syntax ‘#<’

We can obtain ’#<void> indirectly, as the value of the
function call (void):

> (list 1 (void) ’a)

’(1 #<void> a)

> (void? (void))

#t

Usually, ’#void is not printed

> (void) ; nothing is printed

M. Marin ALFP

Block-structured programming
What is this?

Block: sequence of definitions, expressions and other
blocks that ends with an expression.

Representation:

comp1
. . .
compn
expr

where the block components comp1, . . . , compn are definitions,
expressions, or blocks.
Note: blocks can be nested.

A block-structured language interprets a block as a single
expression:

Every variable declaration has a lexical scope: the textual
portion of code where the name refers to that declaration.

The scope of a variable declaration is the block where the
variable is declared. We also say that the variable is local to
that block.
Block variables are visible only in the block where they are
defined.
Nested block may shadow each other’s declarations.

M. Marin ALFP

Block-structured programming with Racket

Racket is block-structured: We can evaluate the standalone
block

comp1
. . .
compn
expr

with the special form

(local [] comp1 ... compn expr)

Remark

(println expr)

prints the value of expr on a new line, and returns the value #<void>.

We will use println to illustrate how block-structured evaluation
works (see next slide →)

M. Marin ALFP

Block-structured programming
Illustrated example

> (local []

(define x 1)

(local []

(define x 2) ; x=2 shadows x=1

(define y 3)

(println (+ x y))) ; print the value of x+y for x=2,y=3
(local []

(define y 4)

(define z 5)

(println (+ x y z))) ; print the value of x+y+z for x=1,y=4,z=5
(+ x 2)) ; return the value of x+2 for x=1

5

10

3

Remark: This is a block with two sub-blocks

M. Marin ALFP

Special forms with blocks

The lambda-form for function definitions:

(lambda (x1 . . . xn) block)

The cond-form

(cond [test1 block1]

...

[testn blockn])

evaluates test1, test2, . . . in this order until it finds the first
testi whose value is true, and returns the value of blocki .

If all expressions testi evaluate to #f, the value of the
cond-form is #<void>

Remarks

In Racket, any value different from #f acts as true. E.g.:

I "abc", ’abc, null, 0, ’(1 2), #t are true values.

I #f is the only value which is not true.

M. Marin ALFP

Special forms with blocks
Example: the cond-form

Let’s define the numeric function f : R× R→ R

f (x , y) =

{
(y−x2)

1+
√

y−x2
if x2 < y ,

(
√
|x |+ y) + (

√
|x |+ y)2 if x2 ≥ y .

(define (f x y)

(define z (* x x))

(cond [(< z y)

(define (u (- y z)))

(/ u (+ 1 (sqrt u)))]

[(>= z y)

(define u (+ (sqrt (abs x)) y))

(+ u (* u u))]))

Advice: Avoid doing the same computation repeatedly! You can
do so by computing the intermediary values z = x2 and

u = y− z if z < y,

u =
√
|x|+ y if z ≥ y.

M. Marin ALFP

Other useful conditional forms
when, unless, if

(when test block)
behaves the same as

(cond [test block])

(unless test block)
behaves the same as

(cond [test (void)]

[#t block])

Remark

The branches of the if-form can not be blocks: they must be
expressions:

(if test expr1 expr2)

M. Marin ALFP

The let form

(let ([var1 expr1]
...

[varn exprn])
block)

is evaluated as follows:

1 expr1, . . . , exprn are evaluated to values v1, . . . , vn.

2 The definitions var1 = v1, . . . , varn = vn are made local to
block.

3 block is evaluated, and its value is returned as final result.

Remark

This special form is equivalent to

((lambda (var1 . . . varn) body) expr1 . . . exprn)

M. Marin ALFP

The let form
Examples

M. Marin ALFP

The let* form

(let* ([var1 expr1]
...

[varn exprn])
block)

Similar with the let form, but with the following difference:

The scope of every local definition

[vari expri]

is expri+1, . . . , exprn, and block.

Remark

This special form is equivalent to

(...(lambda (var1)
...

(lambda (varn) body) exprn) ... expr1)

M. Marin ALFP

The let* form
Example

> (let* ([x 1] ; binds x to 1

[y (+ x 1)]) ; binds y to the value of (+ x 1), which is 2
(+ y x)) ; computes the value of 2+1

3

Note that the following expression can not be evaluated

> (let ([x 1] ; binds x to 1

[y (+ x 1)]) ;x is undefined here
(+ y x))

x: unbound identifier in module in: x

M. Marin ALFP

The letrec form

(letrec ([var1 expr1]
...

[varn exprn])
block)

Similar with the let* form, but with the following difference:

The scope of every local definition

(vari expri)

is expr1, . . . , exprn, and block.

Thus, var1, . . . , varn can depend on each other.

Example

> (letrec ([is-even

(lambda (n) (if (= n 0) #t (is-odd (- n 1))))]

[is-odd

(lambda (n)(if (= n 0) #f (is-even (- n 1))))])

(is-even 5))

#f

M. Marin ALFP

The special forms and and or

They are not functions, they are identifiers of special forms:

I (and e1 e2 ... en)
evaluates e1, e2, . . . in this order, until it finds the first ei
whose value is #f

If all ei have non-#f values, return the value of en.
Otherwise, return #f

I (or e1 e2 ... en)
evaluates e1, e2, . . . in this order, until it finds the first ei
whose value is true.

If all ei have value #f, return #f.
Otherwise, return the value of ei .

> (and) > (and (< 1 2) 3 ’abc)

#t ’abc

> (and (= 1 2) (expt 2 50)) > and

#t and: bad syntax in: and

> (or) > (or (< 1 2) 3 ’abc)

#f #t

> (or (= 1 2) (expt 2 50)) > or

1125899906842624 or: bad syntax in: or

M. Marin ALFP

The evaluation process

Consider the expression

> (f x 3)

Question: How does Racket know how to compute the
value of (f x 3)?

Answer: It must know the following:
1 where to find the values of the variables f and x.

The values of the variables are stored in a global data
structure, called environment

2 the rules of evaluation.

I The evaluation of an expression expr happens in the presence
of an environment E which must provide values for the all the
variables in expr

M. Marin ALFP

The evaluation process

Consider the expression

> (f x 3)

Question: How does Racket know how to compute the
value of (f x 3)?

Answer: It must know the following:
1 where to find the values of the variables f and x.

The values of the variables are stored in a global data
structure, called environment

2 the rules of evaluation.

I The evaluation of an expression expr happens in the presence
of an environment E which must provide values for the all the
variables in expr

M. Marin ALFP

The evaluation process

Consider the expression

> (f x 3)

Question: How does Racket know how to compute the
value of (f x 3)?

Answer: It must know the following:
1 where to find the values of the variables f and x.

The values of the variables are stored in a global data
structure, called environment

2 the rules of evaluation.

I The evaluation of an expression expr happens in the presence
of an environment E which must provide values for the all the
variables in expr

M. Marin ALFP

The evaluation process

Consider the expression

> (f x 3)

Question: How does Racket know how to compute the
value of (f x 3)?

Answer: It must know the following:
1 where to find the values of the variables f and x.

The values of the variables are stored in a global data
structure, called environment

2 the rules of evaluation.

I The evaluation of an expression expr happens in the presence
of an environment E which must provide values for the all the
variables in expr

M. Marin ALFP

Environments

An environment is a stack of frames.

A frame is a table which stores values for variables.

Example (Environment E with two frames)

E z
x

5

4

y

z
"abc"

8

The first frame is the top frame.

Variable lookup: E (var) is the value of var found in the first
frame, from top to bottom (or left to right) which contains a
value for var :

E (x) = 4, E (y) = "abc", E (z) = 5

E (t) is not defined.
The binding z 7→ 8 is shadowed by the binding z 7→ 5 in the
top frame.

M. Marin ALFP

The evaluation of expressions

The value of an expression expr in an environment E is computed
in two steps:

1 All variables x in expr are replaced with E (x)

2 We compute the value of the new expression, using the rules
of evaluation.

Example

E z
x

5

4

y

z
7

8

The value of (+ x (* y z)) in E is computed as follows:

(+ x (* y z))→(+ 4 (* 7 5))→(+ 4 35)→39

M. Marin ALFP

The interpretation of definitions

When the interpreter reads a definition

(define var expr)

in an environment E , it does the following:

1 It computes the value v of expr in E

2 It adds the binding var 7→ v to the top frame of E .

Example

E z
x

5

4

y

z
7

8

> (+ x (* y z))

39

The definition (define y 1) changes E to be
E z

x
y

5

4

1

y

z
7

8

> (+ x (* y z))

9

M. Marin ALFP

User-defined functions

The value of (lambda (x1 . . . xn) block) in an environment
E is the pair

〈(lambda (x1 . . . xn) block),E 〉
User-defined function calls are evaluated as follows:
If f is a user-defined function with value

〈(lambda (x1 . . . xn) block),E 〉
the value of (f e1 . . . en) in E ′ is computed as follows:

I compute the values v1, . . . , vn of e1, . . . , en in E ′

I create the temporary environment

E ′′ Ex1...
xn

v1

vn

and compute v =the value of block in E ′′

I return v as the value of (f e1 . . . en) in E ′.

M. Marin ALFP

The evaluation of function calls
Illustrated example

Consider the environments E1 and E2 where

E1 f
y

〈(lambda (x) (+ z (* x y)),E2〉
4

E2 y

z
x

1
3
0

What is the value of (f y) in E1?

(f y) in E1 → (f 4) in E1 → (+ z (* x y)) in E ′

where

E ′

E2

x 4 y

z
x

1

3

0

> (+ z (* x y)) in E ′

12

⇒ the value of (f y) in E1 is 12.

M. Marin ALFP

The evaluation of function calls
Illustrated example

Consider the environments E1 and E2 where

E1 f
y

〈(lambda (x) (+ z (* x y)),E2〉
4

E2 y

z
x

1
3
0

What is the value of (f y) in E1?

(f y) in E1 → (f 4) in E1 → (+ z (* x y)) in E ′

where

E ′

E2

x 4 y

z
x

1

3

0

> (+ z (* x y)) in E ′

12

⇒ the value of (f y) in E1 is 12.

M. Marin ALFP

The evaluation of function calls
Illustrated example

Consider the environments E1 and E2 where

E1 f
y

〈(lambda (x) (+ z (* x y)),E2〉
4

E2 y

z
x

1
3
0

What is the value of (f y) in E1?

(f y) in E1 → (f 4) in E1 → (+ z (* x y)) in E ′

where

E ′

E2

x 4 y

z
x

1

3

0

> (+ z (* x y)) in E ′

12

⇒ the value of (f y) in E1 is 12.
M. Marin ALFP

More about function values
Remarks

A function value f created by the evaluation of

(lambda (x1 . . . xn) block)

in an environment E is the pair

〈(lambda (x1 . . . xn) block),E 〉
I The first component is the textual definition of the function
I The second component is the environment where f was

created.

The evaluation of (f v1 . . . vn) in any environment E ′ is
reduced to the evaluation of block in the environment E
where f was defined, extended with the top frame

x1...
xn

v1

vn

⇒ during the evaluation of the body of f , x1, . . . , xn have
values v1, . . . , vn.

M. Marin ALFP

The evaluation of blocks

The evaluation of block in E is reduced to the top-down
evaluation of the content of block in the extension E ′ of E with an
empty first frame:

E ′ E

The top frame of E ′ will be filled with bindings for the local
variables in block

M. Marin ALFP

Recursion

What is recursion?

I Technique that allows us to break a problem into one or more
subproblems that are similar to the initial problem.

I In functional programming

A function is recursive when it calls itself directly or indirectly.
A data structure is recursive if it is defined in terms of itself.

Why learn recursion?

I New way of thinking

I Powerful programming tool

I Divide-and-conquer paradigm

Many computations and data structures are naturally
recursive

I Recursive computations: Euclid’s gcd algorithm, quicksort,
etc.

I Recursive data structures: linked lists, file directories, etc.

M. Marin ALFP

Recursion

What is recursion?

I Technique that allows us to break a problem into one or more
subproblems that are similar to the initial problem.

I In functional programming

A function is recursive when it calls itself directly or indirectly.
A data structure is recursive if it is defined in terms of itself.

Why learn recursion?

I New way of thinking

I Powerful programming tool

I Divide-and-conquer paradigm

Many computations and data structures are naturally
recursive

I Recursive computations: Euclid’s gcd algorithm, quicksort,
etc.

I Recursive data structures: linked lists, file directories, etc.

M. Marin ALFP

Recursion

What is recursion?

I Technique that allows us to break a problem into one or more
subproblems that are similar to the initial problem.

I In functional programming

A function is recursive when it calls itself directly or indirectly.
A data structure is recursive if it is defined in terms of itself.

Why learn recursion?

I New way of thinking

I Powerful programming tool

I Divide-and-conquer paradigm

Many computations and data structures are naturally
recursive

I Recursive computations: Euclid’s gcd algorithm, quicksort,
etc.

I Recursive data structures: linked lists, file directories, etc.

M. Marin ALFP

Recursion

What is recursion?

I Technique that allows us to break a problem into one or more
subproblems that are similar to the initial problem.

I In functional programming

A function is recursive when it calls itself directly or indirectly.
A data structure is recursive if it is defined in terms of itself.

Why learn recursion?

I New way of thinking

I Powerful programming tool

I Divide-and-conquer paradigm

Many computations and data structures are naturally
recursive

I Recursive computations: Euclid’s gcd algorithm, quicksort,
etc.

I Recursive data structures: linked lists, file directories, etc.

M. Marin ALFP

Recursion

What is recursion?

I Technique that allows us to break a problem into one or more
subproblems that are similar to the initial problem.

I In functional programming

A function is recursive when it calls itself directly or indirectly.
A data structure is recursive if it is defined in terms of itself.

Why learn recursion?

I New way of thinking

I Powerful programming tool

I Divide-and-conquer paradigm

Many computations and data structures are naturally
recursive

I Recursive computations: Euclid’s gcd algorithm, quicksort,
etc.

I Recursive data structures: linked lists, file directories, etc.

M. Marin ALFP

Recursion

What is recursion?

I Technique that allows us to break a problem into one or more
subproblems that are similar to the initial problem.

I In functional programming

A function is recursive when it calls itself directly or indirectly.
A data structure is recursive if it is defined in terms of itself.

Why learn recursion?

I New way of thinking

I Powerful programming tool

I Divide-and-conquer paradigm

Many computations and data structures are naturally
recursive

I Recursive computations: Euclid’s gcd algorithm, quicksort,
etc.

I Recursive data structures: linked lists, file directories, etc.

M. Marin ALFP

Recursion

What is recursion?

I Technique that allows us to break a problem into one or more
subproblems that are similar to the initial problem.

I In functional programming

A function is recursive when it calls itself directly or indirectly.
A data structure is recursive if it is defined in terms of itself.

Why learn recursion?

I New way of thinking

I Powerful programming tool

I Divide-and-conquer paradigm

Many computations and data structures are naturally
recursive

I Recursive computations: Euclid’s gcd algorithm, quicksort,
etc.

I Recursive data structures: linked lists, file directories, etc.

M. Marin ALFP

Recursion

What is recursion?

I Technique that allows us to break a problem into one or more
subproblems that are similar to the initial problem.

I In functional programming

A function is recursive when it calls itself directly or indirectly.
A data structure is recursive if it is defined in terms of itself.

Why learn recursion?

I New way of thinking

I Powerful programming tool

I Divide-and-conquer paradigm

Many computations and data structures are naturally
recursive

I Recursive computations: Euclid’s gcd algorithm, quicksort,
etc.

I Recursive data structures: linked lists, file directories, etc.

M. Marin ALFP

Recursion

What is recursion?

I Technique that allows us to break a problem into one or more
subproblems that are similar to the initial problem.

I In functional programming

A function is recursive when it calls itself directly or indirectly.
A data structure is recursive if it is defined in terms of itself.

Why learn recursion?

I New way of thinking

I Powerful programming tool

I Divide-and-conquer paradigm

Many computations and data structures are naturally
recursive

I Recursive computations: Euclid’s gcd algorithm, quicksort,
etc.

I Recursive data structures: linked lists, file directories, etc.

M. Marin ALFP

Recursion

What is recursion?

I Technique that allows us to break a problem into one or more
subproblems that are similar to the initial problem.

I In functional programming

A function is recursive when it calls itself directly or indirectly.
A data structure is recursive if it is defined in terms of itself.

Why learn recursion?

I New way of thinking

I Powerful programming tool

I Divide-and-conquer paradigm

Many computations and data structures are naturally
recursive

I Recursive computations: Euclid’s gcd algorithm, quicksort,
etc.

I Recursive data structures: linked lists, file directories, etc.

M. Marin ALFP

Recursive function definitions
General structure

A simple base case (or base cases): a terminating scenario
that does not use recursion to produce an answer.

One or more recursive cases that reduce the computation,
directly or indirectly, to simpler computations of the same
kind.

I To ensure termination of the computation, the reduction
process should eventually lead to base case computations.

Classic recursive functions:

1 Factorial function

2 Fibonacci function

3 Ackermann function

4 Euclid’s Greatest Common Divisor (GCD) function

M. Marin ALFP

Recursive function definitions
General structure

A simple base case (or base cases): a terminating scenario
that does not use recursion to produce an answer.

One or more recursive cases that reduce the computation,
directly or indirectly, to simpler computations of the same
kind.

I To ensure termination of the computation, the reduction
process should eventually lead to base case computations.

Classic recursive functions:

1 Factorial function

2 Fibonacci function

3 Ackermann function

4 Euclid’s Greatest Common Divisor (GCD) function

M. Marin ALFP

How to write a recursive definition?

1 Try to break a problem into subparts, at least one of which is
similar to the original problem.

There may be many ways to do so. For example, if m, n ∈ N
and m > n > 0 then
gcd(m, n) = gcd(m − n, n), or gcd(m, n) = gcd(n,m mod n)

2 Make sure that recursion will operate correctly:

I there should be at least one base case and one recursive case
(it’s OK to have more)

I The test for the base case must be performed before the
recursive calls.

I The problem must be broken down such that a base case is
always reached in a finite number of recursive calls.

I The recursive call must not skip over the base case.
I The non-recursive portions of the subprogram must operate

correctly.

M. Marin ALFP

Example: The factorial function

0! := 1, and n! = 1 · 2 · . . . · (n − 1) · n if n > 0.

I The recursive thinking approach:

Mathematical definition In Racket

n! :=

{
1 if n = 0,
n · (n − 1)! if n > 0.

(define (fact n)

(if (= n 0) 1 (* n (fact (- n 1)))))

The recursive case of (fact n) when n > 0 asks for a simpler
computation: (fact (- n 1))

In this case, “simpler” means “smaller value of the function
call argument”

M. Marin ALFP

The factorial function
Time and space complexity of computation

(define (fact n) (if (= n 0) 1 (* n (fact (- n 1)))))

time

space
(fact 4) in E

(* n (fact 3)) in n 4 E

(* n (* n (fact 2))) in En 3 n 4

(* n (* n (* n (fact 1)))) in En n n2 3 4

(* n (* n (* n (* n (fact 0))))) in En n n n1 2 3 4

(* n (* n (* n (* n (if (= n 0) 1 ...))))) in n n n n n0 1 2 3 4

(* n (* n (* n (* n 1)))) in En n n n1 2 3 4

(* n (* n (* n 1))) in En n n2 3 4

(* n (* n 2)) in En n3 4

(* n 6) in n 4 E

24 in E

M. Marin ALFP

The factorial function
Time and space complexity of computation

The computation of (fact n) has

time complexity 2 · (n + 1) = O(n)

space complexity O(n): the maximum number of frames added to
E is n + 1

Can we reduce the space complexity?

Main idea: Add an extra argument to accumulate and propagate
the result computed so far.
This extra argument is called accumulator.

Implementation:

(define (fact n) (fact-acc n 1))

(define (fact-acc n a)

(if (= n 0) a (fact-acc (- n 1) (* a n))))

(fact-acc n a) computes n! · a, therefore (fact-acc n 1)

computes n!

M. Marin ALFP

The factorial function
Time and space complexity of computation

The computation of (fact n) has

time complexity 2 · (n + 1) = O(n)

space complexity O(n): the maximum number of frames added to
E is n + 1

Can we reduce the space complexity?

Main idea: Add an extra argument to accumulate and propagate
the result computed so far.
This extra argument is called accumulator.

Implementation:

(define (fact n) (fact-acc n 1))

(define (fact-acc n a)

(if (= n 0) a (fact-acc (- n 1) (* a n))))

(fact-acc n a) computes n! · a, therefore (fact-acc n 1)

computes n!

M. Marin ALFP

The factorial function
Time and space complexity of computation

The computation of (fact n) has

time complexity 2 · (n + 1) = O(n)

space complexity O(n): the maximum number of frames added to
E is n + 1

Can we reduce the space complexity?

Main idea: Add an extra argument to accumulate and propagate
the result computed so far.
This extra argument is called accumulator.

Implementation:

(define (fact n) (fact-acc n 1))

(define (fact-acc n a)

(if (= n 0) a (fact-acc (- n 1) (* a n))))

(fact-acc n a) computes n! · a, therefore (fact-acc n 1)

computes n!

M. Marin ALFP

The factorial function
Time and space complexity of computation

The computation of (fact n) has

time complexity 2 · (n + 1) = O(n)

space complexity O(n): the maximum number of frames added to
E is n + 1

Can we reduce the space complexity?

Main idea: Add an extra argument to accumulate and propagate
the result computed so far.
This extra argument is called accumulator.

Implementation:

(define (fact n) (fact-acc n 1))

(define (fact-acc n a)

(if (= n 0) a (fact-acc (- n 1) (* a n))))

(fact-acc n a) computes n! · a, therefore (fact-acc n 1)

computes n!

M. Marin ALFP

The factorial function
Towards a space-efficient implementation

space
(fact-acc 4 1) in E

(fact-acc (- n 1) (* a n)) in

En

a

4

1

(fact-acc 3 4) in
n

a

4

1

E

(fact-acc (- n 1) (* a n)) in
n

a

3

4

n

a

4

1

E

(fact-acc 2 12) in
En

a

3

4

n

a

4

1

(fact-acc (- n 1) (* a n)) in
n

a

2

12

n

a

3

4

n

a

4

1

E

(fact-acc 1 24) in

(fact-acc (- n 1) (* a n)) in

n

a

2

12

n

a

3

4

n

a

4

1

E

(fact-acc (- n 1) (* a n)) in
n

a

1

24

n

a

2

12

n

a

3

4

n

a

4

1

E

(fact-acc 0 24) in
n

a

1

24

n

a

2

12

n

a

3

4

n

a

4

1

E

a in
En 0

a 24

n 1

a 24

n 2

a 12

n 3

a 4

n 4

a 1

24 in

En 0

a 24

n 1

a 24

n 2

a 12

n 3

a 4

n 4

a 1

M. Marin ALFP

A space-efficient implementation
Tail call optimization

(define (fact n) (fact-acc n 1))

(define (fact-acc n a)

(if (= n 0) 1 (fact-acc (- n 1) (* a n))))

Clever compilers and interpreters recognize the fact that the
gray-colored frames are useless:

The gray frames can be discarded by a garbage-collector

⇒ the space complexity of computing (fact-acc n 1) becomes

constant, O(1) (see next slide).

This technique of saving memory is called tail call optimization

I Tail call optimization can be applied whenever the recursive
call is the last action in the body of a recursive function.

I Functions written in this way (including fact-acc) are called
tail recursive.

Most languages, including Racket, Java, C++ implement tail call

optimization.

M. Marin ALFP

Tail call optimization
Example: computation of (fact-acc 4 1) with tail call optimization

all evaluations happen in an exten-

sion af E with at most one frame

(constant space of memory)

space
(fact-acc 4 1) in E

(fact-acc (- n 1) (* a n)) in

En

a

4

1

(fact-acc 3 4) in
n

a

4

1

E

(fact-acc (- n 1) (* a n)) in
n

a

3

4

E

(fact-acc 2 12) in
En

a

3

4

(fact-acc (- n 1) (* a n)) in
n

a

2

12

E

(fact-acc 1 24) in

(fact-acc (- n 1) (* a n)) in

n

a

2

12

E

(fact-acc (- n 1) (* a n)) in
n

a

1

24

E

(fact-acc 0 24) in
n

a

1

24

E

a in
En 0

a 24

24 in

En 0

a 24

M. Marin ALFP

More examples
The Fibonacci function

(define (fib n)

(if (or (= n 0) (= n 1))

1

(+ (fib (- n 1)) (fib (- n 2)))))

The computation of (fib n) for n > 0 has a tree-like structure.

.
(fib 37) (fib 36) (fib 36) (fib 35) (fib 36) (fib 35) (fib 35) (fib 34)

(fib 38) (fib 37) (fib 37) (fib 36)

(fib 40)

(fib 39) (fib 38)

I (fib 40) is computed once

I (fib 38) is computed 2 times

. . .

I (fib 0) is computed 165,580,141 times.

⇒ (fib 40) performs 331,160,281 function calls!

M. Marin ALFP

The Fibonacci function
A tail recursive definition

Add 2 extra arguments to accumulate and propagate the values of
two successive Fibonacci numbers:

I Suppose fn is the value of (fib n) for n ≥ 0.
I To compute fn, we call (fib-acc n f0 f1) whose computation

evolves as follows:

(fib-acc n f0 f1) → (fib-acc n − 1 f1 f2)
→ (fib-acc n − 2 f2 f3)
→ ...

→ (fib-acc k fn−k fn−k+1)

→ ...

→ (fib-acc 0 fn fn+1)

→ fn

(define (fib-acc n a1 a2)

(if (= n 0)

a1

(fib-acc (- n 1) a2 (+ a1 a2))))

M. Marin ALFP

Another example of tail call optimized computation
Computation of f4 with (fib-acc 4 1 1)

(fib-acc 4 1 1) in E

(fib-acc (- n 1) a2 (+ a1 a2)) in

En
a1
a2

4

1

1

(fib-acc 3 1 2) in
n
a1
a2

4

1

1

E

(fib-acc (- n 1) a2 (+ a1 a2)) in
n
a1
a2

3

1

2

E

(fib-acc 2 2 3) in
En

a1
a2

3

1

2

(fib-acc (- n 1) a2 (+ a1 a2)) in
n
a1
a2

2

2

3

E

(fib-acc 1 3 5) in
n
a1
a2

2

2

3

E

(fib-acc (- n 1) a2 (+ a1 a2)) in
n
a1
a2

1

3

5

E

(fib-acc 0 5 8) in

n
a1
a2

1

3

5

E

a1 in
En 0

a1 5

a2 8

5

M. Marin ALFP

Computation of Fibonacci numbers

Remarks

(fib n) has time complexity O(2n) and space complexity
O(n)

(fib-acc n 1 1) has time complexity O(n) and space
complexity O(1):

The cail call optimized computation of the Fibonacci number
fn with (fib-acc n 1 1) is similar to the computation of fn
with the imperative program:

a1=1; a2=1;

for (i = n;i>0;i--) { tmp=a1;

a1=a2;

a2=tmp+a2;

}
return a1;

Suggestion: Use Racket to implement fib and fib-acc, and
compare the runtimes of computing f39 with (fib 39) and
(fib-acc 39 1 1).

M. Marin ALFP

Possible pitfalls with recursion

Is recursive computation fast?

Yes: some tail-recursive functions are remarkably efficient

No: We can easily write elegant, but spectacularly inefficient
recursive programs, e.g.

(define (fib n)

(if (or (= n 0) (= n 1))

1

(+ (fib (- n 1)) (fib (-n 2)))))

Recursion can take a long time if it needs to repeatedly recompute
intermediate results

General principle: Use tail recursion to make your functions
efficient.

M. Marin ALFP

References

[Hughes:1989] John Hughes. Why functional programming
matters. Computer Journal, 32(2), 1989.

[Thompson:1999] Simon Thompson. The Craft of Functional
Programming, Second Edition. International Computer
Science Series. Pearson Addison Wesley, 1999.

M. Marin ALFP

