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Red-black trees

Red-back trees are binary search trees where every node has an additional field: a color which
is either red or black. A suitable C++ class to represent the nodes of a red-black tree with keys
of integer type is

struct RBNode {
int key; // key
... // satellite data (can be anything)
RBNode* left; // pointer to left child
RBNode* right; // pointer to right child
RBNode* p; // pointer to parent node
enum color {RED, BLACK };
color col; // color

};

A red-black tree is a binary search tree⇒ it most satisfy the conditions of a binary search tree:

• Every node has satellite data and a unique key.

• The keys belong to a totally ordered set of values (e.g., strings or integers).

• The keys are distributed in a special way: For every node, its key is larger then the keys
of the nodes in its left subtree, and larger than the keys of the nodes in its right subtree.

In addition, a red-black tree must have the following red-black properties: .

1. Every node is either red or black.

2. The root node is black.

3. The leaves are the NULL nodes, and they are considered to be black.

4. The children of a red node are black.

5. Every path from a node x to a descendant leaf contains the same number of black nodes.

The number of black nodes on a path from a node x of a red-black tree to a leaf, excluding x,
is called the black height of x in the tree.
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Questions and exercises

E1. Indicate the main red-black properties of a red-black tree.

E2. Indicate the derived properties of a red-black tree.

E3. What are the main operations supported by red-black trees, and what is their runtime
complexity? What is the advantage of using red-back trees instead of binary search trees?

E4. The following pictures illustrate binary trees whose nodes have color red or black, and
keys which are integer values. (The color of a node is indicated with r or b besides the
node of the tree.)

7 b

3 b

1 r 5 r

12 b

T1

7 b

3 b

1 r 5 r

12 r

15 b

T2

7 b

3 b

1 b 5 b

9 b

8 b 11 b

T3

7 r

3 b

1 r 5 r

9 b

8 r 11 r

T4

6 b

3 r

1 b 5 b

9 r

8 b 11 b

10 r

T5

5 b

2 b 9 r

1 b 4 b

3 r

7 b

6 b 8 b

20 b

15 b 30 r

25 b 32 b

36 r

T6

6 b

3 r

1 b 5 b

9 r

8 b 11 r

10 b 12 b

T7

6 b

3 r

1 b 5 b

9 r

8 b 11 b

10 r 12 b

T8

6 b

2 r

1 b 3 b

9 r

5 b 11 b

10 r 12 r

T9

Indicate which of these trees are red-black trees, and their red-black heights. For those
which are not red-black trees, indicate a reason why not.

E5. Indicate the red-black tree produced by inserting a node with key 34 in the tree T6 of
Exercise E4.

E6. Indicate the red-black tree produced by removing the node with key 20 from the tree T6
of Exercise E4.
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E7. Suppose r is a pointer to the root of a binary search tree whose nodes are instances of
the class

struct Node {

int key;

Node* p; // pointer to parent

Node* left; // pointer to left child

Node* right; // pointer to right child

}

Write down an implementation of the function

Node* tree_maximum(Node* r)

which returns a pointer to the node with maximum key from the tree with root r. What
is the worst runtime complexity of this operation, if the binary search tree has n nodes?

E8. Suppose x is a pointer to a node (not necessarily the root) of a binary search tree whose
nodes are instances of the class Node mentioned before. Write down an implementation
of the function

Node* maximum(Node* x)

which returns a pointer to the node with maximum key from the tree to which contains
the node pointed by x. What is the worst runtime complexity of this operation, if the
binary search tree has n nodes?

E9. Write down an efficient implementation of the function

int bh(RBNode* x)

which takes as input a pointer x to the root of a red-black tree, and returns the black-
height of the red-black tree with root referred by x. Indicate the runtime complexity of
your implementation of function bh().

E10. Indicate the results of LeftRotate(T, x) and RightRotate(T, x), where T is the tree with
node x illustrated below:

7 b

3 b

1 b 5 b

9 bx

8 b 11 b
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Answers

E1. There are five main red-black properties (see lecture notes).

E2. The derived properties of a red-black tree are:

(a) For every node n, bh(n) ≥ h(n)/2

(b) The subtree rooted at any node x contains ≥ 2 · bh(x)− 1 internal nodes.

(c) A red-black tree with n internal nodes has height ≤ 2 log2(n+ 1).

where bh(x) is the black-height of node x, that is, the number of black nodes on any path
from x to a leaf, excluding x; and h(x) is the height of the subtree rooted at node x.

E3. The main operations supported by red-black trees are: (1) search an element with an
given key, (2) find the element with minimum key, (3) find the element with maximem
key, (3) find successor = element with next largest key, (4) find predecessor = element
with next smallest key, (5) insert a new element, (6) delete element with a given key.

• The runtime complexity of all these operations is O(n) where n is the number of
elements in the tree.

• The worst-case runtime complexity of the operations of binary search trees is O(n),
and the worst-case runtime complexity of the operations of red-black trees isO(log n).

E4. The following are red-black trees: T1 with black-height 2; T3 with black-height 3; T5 with
black-height 2; and T6 with black-height 3.
T2 is not red-black tree because it does not satisfy red-black property 5: the path from
root to the left child of 12 (which is NULL) has 3 black nodes, and the path from root to
the right child of 12 has 3 black nodes. T4 is not red-black tree because its root is red. T7
is not red-black tree because red node 9 has red child 11. T8 is not red-black tree because
it does not satisfy red-black property 5. T9 is not red-black tree because it is not a binary
search tree.

E5. First, we insert node z with key 34 like in a binary search tree, and assign color red to z:

5 b

2 b 9 r

1 b 4 b

3 r

7 b

6 b 8 b

20 b

15 b 30 r

25 b 32 b

36 r

34 rz
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Next, we call RBInsertFixup(z) (see Appendix) because red-black property 4 does not
hold: z and z → p are both red. z is left child and its uncle is black ⇒ we perform the
operations of Case 2 with right and left exchanged (because z → p 6= z → p → p →
left), and obtain

5 b

2 b 9 r

1 b 4 b

3 r

7 b

6 b 8 b

20 b

15 b 30 r

25 b 32 b

34 r

36 rz

Next, we apply Case 3 with right and left exchanged. The recolorings of z → p and
z → p→ p yield

5 b

2 b 9 r

1 b 4 b

3 r

7 b

6 b 8 b

20 b

15 b 30 r

25 b 32 r

34 b

36 r

Afterwards, LeftRotate(z → p→ p) yields the red-black tree

5 b

2 b 9 r

1 b 4 b

3 r

7 b

6 b 8 b

20 b

15 b 30 r

25 b 34 b

36 r32 r
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E6. To delete node with key 20 from T6, we splice out its successor, which is the black node
with key 25. Therefore, we call RBDeleteFixup(x) (see Appendix) where x is the sentinel
node nil.

5 b

2 b 9 r

1 b 4 b

3 r

7 b

6 b 8 b

25 b

15 b 30 r

nil bx 34 b

36 r32 r

We apply Case 4 and obtain

5 b

2 b 9 r

1 b 4 b

3 r

7 b

6 b 8 b

25 b

15 b 34 r

30 b 36 b

32 r

E7. Node* tree_maximum(Node* r) {

if (r == Nil) return r;

while (r->right != Nil) r=r->right;

return r;

}

E8. See Appendix.

E9. int bh(RBNode* x) {

if (x==Nil) return 0;

return (x->col==RED)?bh(x->left):(bh(x->left)-1);

}

The runtime complexity of this implementation is proportional to the depth of the red-
black tree referred by x, which is O(log2 n), where n is the number of nodes in the tree.

E10.

7 b

3 b

1 b 5 b

9 bx

8 b 11 b

LeftRotate(x)−−−−−−−−−→

7 b

3 b

1 b 5 b

11 b

9 b

8 b
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7 b

3 b

1 b 5 b

9 bx

8
b

11 b

RightRotate(x)−−−−−−−−−−→

7 b

3 b

1 b 5 b

8 b

9 b

11 b

Disjoint-set structures

A disjoint-set data structure is a container for a collection S = {S1, S2, . . . , Sn} of non-empty
dynamic sets which are disjoint. (Two sets A,B are disjoint if A ∩B = ∅.)

Each set is identified by a member of the set, called its representative.
A disjoint-set data structure fulfils the following requirement:

I If we ask for the representative of a dynamic set twice without modifying the set, we
should get the same answer.

The main operations supported by a disjoint set data structure S are:

1. MakeSet(x): extends S with a new singleton set {x}. It is assumed that x is not already
an element of another set of S.

2. Union(x, y): unites the sets that contain x and y, say Sx and Sy, into a new set that is
their union. The sets Sx and Sy can be destroyed.

3. FindSet(x): returns a pointer to the representative element of the set of S which contains
element x.

Questions and exercises

E11. Indicate a C++ structure for the linked-list representation of a disjoint-set structure, to-
gether with the meaning of its fields and the implementation its main operations. Consider
the set elements to be strings.

E12. Indicate a C++ structure for the rooted-tree representation of a disjoint-set structure,
together with the meanings of its fields and the implementation of its main operations.
Consider the set elements to be strings.

E13. Explain how can we use a disjoint set data structure to compute the connected components
of an undirected graph G = (V,E).

E14. Explain how can we use a disjoint set data structure to compute a minimum spanning
tree (MST) of a connected, undirected, weighted graph.
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Answers

E11. In the linked-list representation, every subset of a disjoint set data structure is an instance
of the class LinkedListElem. For efficiency reasons, it is also useful to maintain two global
data structures: (1) a map tail, such that tail[x] refers to the last element in the linked
list representation of the set with representative x, and (2) a map len, such that len[x]
refers to the length of the linked list representation of the set with representative x.

The class LinkedListElem and its operations can be defined as follows.

struct LinkedListElem;

using ElPtr = LinkedListElem*;

static map<ElPtr,ElPtr> tail;

static map<ElPtr,int> len;

struct LinkedListElem {

string id; // element name

ElPtr next; // pointer to next element in its set

ElPtr repr; // pointer to its representative

LinkedListElem(string s) : id(s), next(0) {

repr = this; tail[this] = this; len[this] = 1;

}

static ElPtr MakeSet(string s) { return new LinkedListElem(s); }

static ElPtr FindSet(ElPtr x) { return x->repr; }

static void Union(ElPtr x, ElPtr y) {

ElPtr xSet = FindSet(x);

ElPtr ySet = FindSet(y);

if (xSet != ySet) {

if (len[xSet] < len[ySet]) { // swap xSet with ySet

ElPtr tmp = xSet;

xSet = ySet;

ySet = tmp;

}

// find z = the last element of set xSet

ElPtr z = tail[xSet];

z->next = ySet;

// remove ySet as a set representative from tail

tail[xSet] = tail[ySet];

len[xSet] += len[ySet];

tail.erase(ySet);

len.erase(ySet);

z = ySet;

while (z != 0) {

z->repr = xSet;

z = z->next;

}

}

}

};
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E12. In the rooted-tree representation, every subset of a disjoint set data structure is an instance
of the class TreeElem. The class TreeElem and its operations can be defined as follows.

struct TreeElem;

using ElPtr = TreeElem*;

static map<string,ElPtr> elem;

struct TreeElem {

string id; // node identifier

int rank; // an upper bound on the height of this tree

ElPtr p; // pointer to the parent node

TreeElem(string s) : id(s), rank(0) {

p = this;

}

static ElPtr MakeSet(string s) {

return new TreeElem(s);

}

static void Link(ElPtr x, ElPtr y) {

if (x->rank>y->rank)

y->p=x;

else {

x->p=y;

if (x->rank==y->rank)

y->rank=y->rank+1;

}

}

static void Union(ElPtr x, ElPtr y) {

Link(FindSet(x),FindSet(y));

}

static ElPtr FindSet(ElPtr x) {

if (x!=x->p) x->p=FindSet(x->p);

return x->p;

}

};

Binomial heaps

A binomial heap is an advanced data structure designed to support well the following operations
on dynamic sets:

1. makeHeap(): creates and returns a new empty heap.

2. insert(H,x): inserts node referred by x, whose key field has already been filled in, into
heap H.

3. minimum(H): returns a pointer to the node with minimum key in heap H.
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4. extractMin(H): deletes the node with minimum key from heap H, and returns a pointer
to the deleted node.

5. Union(H1, H2): creates and returns a new heap that contains all the nodes of heaps H1
and H2. Heaps H1 and H2 are destroyed by this operation.

6. decreaseKey(x, k): assigns to node referred by x within the heap the new key value k. It
is assumed that k ≤ x→ key.

7. del(H,x): deletes the node referred by x from heap H.

Before defining binomial heaps, we define binomial trees. A binomial tree is an element of
the set of ordered trees {Bk | k ∈ N} defined recursively as follows:

B0 consists of a single node.
For any k > 0, Bk consists of two binomial trees Bk−1 that are linked such that one of
them has the other one as left child of its root.

A binomial heap H is a set of binomial trees that satisfies the following properties:

1. Each binomial tree in H is heap-ordered: the key of a node is greater than the key of
its parent.

2. There is at most one binomial tree in H whose root has a given degree.

Questions and exercises

E15. Indicate the main properties of a binomial tree. Draw a heap-ordered binomial tree B3.

E16. Indicate some important properties derived from the definition of binomial heaps.

E17. Indicate some suitable ways to implement binomial trees and binomial heaps in C++ .

E18. Consider simply-linked lists whose elements are instances of the class

struct Elem {
string s; // content
Elem* next; // link to next element

};

Write an implementation of the function Elem* reverse(Elem *x)

which takes as input a pointer x to the first element of a list with n elements, and reverses
destructively the list, by transforming

x

y

s1 s2 sn−1 sn

s1 s2 sn−1 sn

y=reverse(x)

The implementation should have runtime complexity O(n).
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E19. Indicate the runtime complexities of the main operations on binomial heaps.

E20. Write down efficient implementations of the main operations on binomial heaps.

E21. Draw the binomial heap that results by merging the binomial heaps H1 and H2 depicted
below:

H1.head 25

39

15

36 19

41

H2.head 1

3

5 6

37 18 8 14 29

42 11 17 38

27

Answers

E15. A binomial tree Bk has the following properties:

1. It has 2k nodes.

2. It has height k.

3. There are exactly C(k, i) nodes at depth i for i = 0, 1, . . . , k.

4. The root has degree k, which is greater than that of any other node. Moreover, if
the children of the root are numbered from left to right by k − 1, k − 2, . . . , 0, then
child i is the root of a subtree Bi.

The following is a heap-ordered binomial tree B3:

1

4 2 9

6

8

5 10

E16. Binomial heaps have the following important properties:

(a) The root of a heap-ordered tree contains the smallest key in the tree.

(b) A binomial heap with n nodes has at most blog2 nc+ 1 binomial trees.

E17. Binomial trees can be implemented as instances of the C++ class BinTree;
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struct BinTree;

using BPtr = BinTree*;

struct BinTree {
BPtr p; // pointer to parent. It is NULL if this is a root node
BPtr child; // pointer to its left child
BPtr sibling; // pointer to its right sibling
int key; // key
int degree; // number of children

};

A binomial heap for a set S of binomial trees can be conveniently implemented as the
simply linked list of the trees of S in strictly increasing order of their degrees. We define
the class

struct BHeap {
BPtr head;

};

where head is a pointer to the root of the binomial tree from S with smallest degree. The
roots of the binomial trees in S are linked through the sibling field of class BinTree.

E18. The following is a recursive implementation of reverse() with runtime complexity O(n):

Elem* reverse(Elem* x) {

if (x==NULL || x->next == NULL) return x;

Elem* y = x->next;

Elem* z = reverse(y);

y->next = x;

x->next = NULL;

return z;

}

E19. The worst-case runtime complexities of the main operations on binomial heaps are:

makeHeap(): O(1)
insert(H,x): O(log n)
minimum(H): O(log n)
extractMin(H): O(log n)
Union(H1, H2): O(log n)
decreaseKey(x, k): O(log n)
del(H,x): O(log n)

where n is the number of elements in the heap(s).

E20. The following are efficient implementations in C++ of the main operations on binomial
heaps. They operate on C++ structures described in exercise E23, and make use of the aux-
iliary operations binomialHeapMerge, binomialLink, nodeListMerge, and reverseList:
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BHeap* makeHeap() {
BHeap* H = new BHeap();

H->head = NULL;

return H;

}
BPtr minimum(BHeap* H) {

if (H == NULL || H->head==NULL) return NULL;

BPtr m=H->head, crt=H->head;

while (crt->sibling != NULL) {
crt = crt->sibling;

if (m->key>crt.key) m = crt;

}
return m;

}
BHeap* insert(BHeap *H, BPtr x) {

BHeap* H1 = makeHeap();

x->p = x->child = x->sibling = NULL;

x->degree = 0;

H1->head = x;

BHeap* HH = Union(H,H1);

delete H;

delete H1;

return HH;

}
BHeap* Union(BHeap* H1, BHeap* H2) {

BHeap* H = makeHeap();

H->head = binomialHeapMerge(H1,H2);

if (H->head == NULL) return H;

BPtr prev x = NULL, x = H->head, next x = x->sibling;

while (next x != NULL) {
if (x->degree != next x->degree ||

(next x->sibling && next x->sibling->degree==x->degree)) {
prev x = x; // Cases 1 and 2

x = next x; // Cases 1 and 2

} else if (x->key <= next x->key) {
x->sibling = next x->sibling; // Case 3

binomialLink(next x, x); // Case 3

} else {
if (prev x == NULL) // Case 4

H->head = next x; // Case 4

else

prev x->sibling = next x; // Case 4

binomialLink(x, next x); // Case 4

x = next x; // Case 4

}
next x = x->sibling;

}
return H;

}
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void decreaseKey(BPtr x,int k) { ... }
void del(BHeap* H, BPtr x) {

// Note: INT MIN is the minimum value of an int in C++.

// It is defined in <cstdint>

decreaseKey(x,INT MIN);

extractMin(H);

}
BPtr extractMin(BHeap* H) {

// find the root x with the minimum key from the root

// list of H, and remove it from the root list of H

BPtr x = minimum(H->head);

if (x == NULL) { // H is empty

return NULL; // this heap is empty

} else {
BPtr n = H->head;

// drop x from the root list of H

if (n == x) H->head = n->sibling;

else {
while (n->sibling != x) n = n->sibling;

n->sibling = n->sibling->sibling;

}
}
BHeap* H1 = makeHeap();

H1->head = reverseList(x->child);

H->head = Union(H, H1)->head;

x->child = x->sibling = x->p = NULL;

return x;

}
BPtr nodeListMerge(BPtr l1, BPtr l2) {

if (l1 == NULL) return l2;

else if (l2 == NULL) return l1;

else if (l1->degree <= l2->degree) {
l1->sibling = nodeListMerge(l1->sibling, l2);

return l1;

} else {
l2->sibling = nodeListMerge(l1, l2->sibling);

return l2;

}
}
BPtr reverseList(BPtr x) {

if (x==NULL || x->sibling == NULL) return x;

BPtr y = x->next;

BPtr z = reverseList(y);

y->next = x;

x->next = NULL;

return z;

}
BPtr binomialHeapMerge(BHeap* H1, BHeap* H2) {

return nodeListMerge(H1->head,H2->head);

}
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Computational geometry

This lecture was about:

I data structures to represent geometric objects (points, segments, vectors, polygons, etc.)
in the Cartesian plane, and

I operations on such representations, and their geometric interpretation.

Points, segments, vectors, and operations on them

The simplest geometrical objects are points. A point P in plane is represented by its Cartesian
coordinates: (xP , yP ) where xP ∈ R is the x-coordinate of P , and yP ∈ R is the y-coordinate
of P . For example, we can use C++ to represent every point as an instance of the class

struct Point { float x, y; };

We write P (x, y) to indicate that the Cartesian coordinates of a point P are (x, y). The point
O(0, 0) is the origin of the system of Cartesian coordinates.

The segment with endpoints P and Q is denoted by PQ.

PQ

x1 x2

y1

y2

P

O

Q

The length of PQ is |PQ| =
√

(x2 − x1)2 + (y2 − y1)2 if P (x1, y1) and Q(x2, y2). For example,

if P (1, 1) and Q(4, 5) then |PQ| =
√

(4− 1)2 + (5− 1)2 = 5.

The vector with origin P (x1, y1) and destination Q(x2, y2) is denoted by
#    »

PQ. The vector
#    »

PQ has the same length and direction as the vector
#    »

OR where R(x2 − x1, y2 − y1). The vector
#    »

OR is called the shift of
#    »

PQ to the origin.

x1 x2

y1

y2

P
R

O

Q

If two vectors
#    »

PQ and
#    »

PR have the same origin, we can compute their cross product: if
P (xP , yP ), Q(xQ, yQ), and R(xR, yR) then

#    »

PQ and
#    »

PR are vectors with same origin P , and
their cross product is

#    »

PQ× #    »

PR = det

(
xQ − xP xR − xP
yQ − yP yR − yP

)
= (xQ − xP )(yR − yP )− (xR − xP )(yQ − yP ).
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Note that
#    »

PR× #    »

PQ = det

(
xR − xP xQ − xP
yR − yP yQ − yP

)
= − #    »

PQ× #    »

PR.

The geometric interpretation of the cross product is derived from the formula

#    »

PQ× #    »

PR = |PQ| · |PR| · sin Q̂PR where Q̂PR is measured counterclockwise around P

and is easy to understand by looking at the picture below:

R

U

P

Q

S1

S2

The line through P and Q splits the plane in two semiplanes: S1 (light gray) and S2 (light
green). Observe that:

1. If R ∈ S1 then Q̂PR is an angle in the interval (0◦..180◦), therefore sin Q̂PR > 0 and

thus
#    »

PQ× #    »

PR > 0. In this case
#    »

PR is turned counterclockwise with respect to
#    »

PQ.

2. If R ∈ S2 then Q̂PR is an angle in the interval (180◦..360◦), therefore sin Q̂PR < 0 and

thus
#    »

PQ× #    »

PR < 0. In this case
#    »

PR is turned clockwise with respect to
#    »

PQ.

3. If R is on line PQ then Q̂PR is either 0◦ or 180◦, thus sin Q̂PR = 0 and
#    »

PQ× #    »

PR = 0.

Moreover, the absolute value | #    »

PQ × #    »

PR| of the cross product is the area of the parallelogram

QPRU between vectors
#    »

PQ and
#    »

PR.

Consequences of the geometric interpretation of the cross product

1. The points R1 and R2 are on opposite sides of the line PQ iff the cross products
#    »

PQ× #      »

PR1

and
#    »

PQ× #      »

PR2 have different signs: (
#    »

PQ× #      »

PR1) · ( #    »

PQ× #      »

PR2) < 0.

2. Three points P,Q,R are collinear iff
#    »

PQ× #    »

PR = 0.

3. The area of the triangle PQR is half of the area of the parallelogram between vectors
#    »

PQ
and

#    »

PR, which is | #    »

PQ× #    »

PR|/2.
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Exercises

In these exercises, we assume that all points are represented by instances of the class

struct Point { float x,y; };

and you can make use of the function

float Cross(Point P, Point Q, Point R)

which returns the value of the cross product
# »
PQ× # »

PR.

E22. Let A, B, C the vertices of a triangle, enumerated in clockwise order. Define the function

bool inside(Point P, Point A, Point B, Point C)

which returns true if point P is in the interior of triangle ABC, and false otherwise.

E23. Let P1, P2 be the bottom left nodes, and Q1, Q2 the top right corners of two rectangles
with edges parallel with the axes of coordinates. Define the functions

(a) bool overlap(Node P1, Node P2, Node Q1, Node Q2)

which yields true if the rectangles overlap, and false otherwise. The rectangles
overlap if their intersection has a non-zero area.

(b) float area(Node P1, Node P2, Node Q1, Node Q2)

which computes the area of the overlap of these two rectangles. If the rectangles do
not overlap, return 0.

E24. Suppose v is a vector of n ≥ 2 points. Define the function

float minArea(vector<Node> v)

which computes the area of the smallest rectangle which satisfies the following conditions:
(1) its edges are parallel with the axes of coordinates; and (2) all points of v are in the
rectangle.

E25. Write an implementation of the function

float dist(Point X,Point Y,Point Z)

which computes the distance from point P to line YZ.

E26. Write an implementation of the function

bool inside_circle(Point A, Point B, Point C, Point O, float r)

which returns true if the circle with center O and adius r is inside triangle ABC. You can
use the functions bool inside() from E26 and dist() from E29.
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E27. Suppose v is a vector of points which contains the points P1, P2, . . . , Pn of a convex
polygon in counterclockwise order.

(a) Write an implementation of the function

double area(vector<Point> v)

which computes the area of the polygon P1P2 . . . Pn.

(b) Write an implementation of the function

double perim(vector<Point> v)

which computes the permieter of the polygon P1P2 . . . Pn.

Answers

E22. P is in the interior of triangle ABC iff the following three conditions hold simultaneously:

1. P and A are on the same side of line BC

2. P and B are on the same side of line AB

3. P and B are on the same side of line AC

Two points U and V are on the same side of a line XY iff (
# »
XY× # »

XU) · ( # »
XY× # »

XV) > 0.

From these observations we can derive an implementation of the function inside().

Amortized Analysis

Amortized analysis is a technique used to estimate the time required to perform a sequence of
operations, by taking the average over all the operations performed. It differs from average-case
type analysis in the following ways:

• Average-case time analysis takes into account the probabilities of occurrences of different
cases.

• Amortized-case analysis does not involve probabilities; it computes the average perfor-
mance of each operation in the worst case. For example, amortized-case analysis can be
used to show that the average cost of an operation is small, if one averages over a sequence
of operations, even though a single operation might be expensive.

The most common methods of amortized analysis are: the aggregate method, the accounting
method, and the potential method.

Questions and exercises

E28. What is amortised analysis and how does it differ from average-case time analysis?

E29. Describe the aggregate method for amortized analysis.

E30. Describe the accounting method for amortized analysis.

E31. Describe the potential method for amortized analysis.
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Fibonacci heaps

A Fibonacci heap is an advanced data structure designed to support well the following opera-
tions on dynamic sets (same as binomial heaps):

1. makeHeap(): creates and returns a new empty heap.

2. insert(H,x): inserts node referred by x, whose key field has already been filled in, into
heap H.

3. minimum(H): returns a pointer to the node with minimum key in heap H.

4. extractMin(H): deletes the node with minimum key from heap H, and returns a pointer
to the deleted node.

5. Union(H1, H2): creates and returns a new heap that contains all the nodes of heaps H1
and H2. Heaps H1 and H2 are destroyed by this operation.

6. decreaseKey(x, k): assigns to node referred by x within the heap the new key value k. It
is assumed that k ≤ x→ key.

7. del(H,x): deletes the node referred by x from heap H.

Before defining Fibonacci heaps, we define unordered binomial trees. An unordered binomial
tree is an element of the set of unordered trees {Uk | k ∈ N} defined recursively as follows:

U0 consists of a single node.
For any k > 0, Uk is obtained from two trees Uk−1, for which the root of one is made into
any child of the root of the other.

A rooted unordered tree is heap-ordered if, for every node x except the root, the key of x
is larger than the key of the parent of x. A Fibonacci heap is a container for a set H of
heap-ordered rooted unordered trees, where each node x contains

• the fields

I x.key and possibly more fields for satellite data associated with key key.

I x.degree: number of children in the child list of node x.

I x.mark: a boolean value, which indicates whether node x has lost a child since the
last time x was made the child of another node. Newly created nodes are unmarked.

• the pointers

I x.p: pointer to the parent node. If x is a root node then x.p = NULL.

I x.child pointer to any one of its children.

I x.left and x.right which point to the left and right siblings of x, respectively. If x
has no siblings. then x.left = x.right = pointer to x.

The children of a node x are linked together in a circular, doubly linked list, called the
child list of x. The order in which children appear in the child list is arbitrary.
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The root nodes of the trees in H are linked together into a circular, doubly linked list, using
the left and right fields of the root nodes. This circular list is called the root list of the
Fibonacci heap. The order of the trees in the root list is arbitrary.

In addition, H has two fields:

• H.min: a pointer to the root of the tree in H with minimum key; this node is called the
minimum node of the Fibonacci heap.

• H.n: the number of nodes currently in H.

For example, the figure below is a diagrammatic representation of a Fibonacci heap with five
heap-ordered trees. The dashed line indicates the root list. The marked nodes are blackened
(there are three marked nodes).

H.min

23 7 3 17 24

18 52 38 30 26 46

39 41 35

A more complete representation of the previous heap, showing the pointers p (up arrows), child
(down arrows), left and right (sideways arrows), is illustrated below.

H.min

Fibonacci heaps perform better than binomial heaps because the amortized cost of their
operations is better.

Questions and exercises

E32. What are the amortized costs of the main operations on Fibonacci heaps?

E33. An important auxiliary operation on Fibonacci heaps is the consolidation of the root list.
Draw the Fibonacci heap produced by consolidating the root list of the Fibonacci heap
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H.min

7

30

24

4626

35

23 17 18

39

52 41

44

E34. Draw the Fibonacci heap produced by consolidating the root list of the Fibonacci heap

15 25

12 6 8

9

4

13 24

H.min

Answers

E32. The amortized cost of the main operations on binomial heaps are:

makeHeap(): O(1)
insert(H,x): O(1)
minimum(H): O(1)
extractMin(H): O(log n)
Union(H1, H2): O(1)
decreaseKey(x, k): O(1)
del(H,x): O(log n)

where n is the number of elements in the heap(s).

E33. The number of nodes in H is 13, and an upper bound on the maximum degree of any
node in Fibonacci heaps with 13 nodes is D(13) = log2 13 < 4. This means that, during
consolidation we will encounter only trees with degrees between 0 and 3. Therefore, for
the consolidation of H we allocate an array A of size 4 (for pointers to trees of degree 0,
1, 2, or 3). The consolidation algorithm traverses from left to right the root list of H,
starting from w = H.min until w = the left sibling of H.min (which is the node with key
41). The consolidations performed during this traversal are shown in the picture below:
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Thus, the result of consolidation is the Fibonacci heap
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Data structures for symbolic computation

In this lecture, we described (1) the representation of polynomials by dense lists, and by sparse
lists, and (2) some of the main operations that we wish to perform with polynomials. For
example, the polynomial f = 1− 7x+ 9x3 has the dense list representation

1 -7 0 9

and the sparse list representation

(0, 1) (1,−7) (3,−9)

Questions and exercises

E35. Illustrate the dense representation of the polynomial f = 3x− 91x4 + x5 − x6 + 4x8.

E36. Illustrate the sparse representation of the polynomial g = 2916+3x2− x12 +x24−2x216.

E37. Consider polynomials represented by dense lists for the coefficients of its terms in in-
creasing order of their degree, where the elements of the list are instances of the C++

class

struct Term {
float coeff;
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Term* next;

Term(float c, Term* nxt) : coeff(c), next(nxt) { }
};

Define the following operations with polynomials:

1. Term* pdiff(Term* f, Term* g)

which takes as inputs two pointers to the dense list representations of some polyno-
mials, and returns a pointer to the dense list representation of their difference.

2. Term* cprod(float c,Term* f)

which takes as inputs a number c and a pointer to the dense list representation of a
polynomial f , and returns a pointer to the dense list representation of the polynomial
c · f .

3. Term* x2quot(Term* f)

which takes as input the dense list representation of a polynomial f and returns the
dense list representation of quotient of dividing f by 2x.

Answers

E37. Operations with polynomials.

1. Term* pdiff(Term* f,Term* g) {
if (f==Nil) return minus(g);

if (g==Nil) return f;

Term* h = pdiff(f->next,g->next);

float c = f->coeff - g->coeff;

if (c==0 && h==Nil) return Nil;

return new Term(c,h);

}

Term* minus(Term* g) {
if (g==Nil) return Nil;

else return new Term(-(g->coeff),minus(g->next));

}

2. . . .

3. // quotient of f(x)/(2*x)
Term* x2quot(Term* f) {

if (f==Nil || f->next==Nil) // f is a constant polynomial
return Nil;

return cprod(f->next,1/2);

}

Term cprod(Term* g, float c) {
return (g==Nil)?Nil:(new Term(c*g->coeff,cprod(g->next,c)));

}
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Data structures for operations on strings

Strings are arrays of characters from a finite alphabet Σ. The most important operations with
strings are:

1. String matching: finding all occurrences of a string P [1..m] in another string T [1..n].

• P is the string we are looking for; we call it pattern

• T is the string in which we search; we call it text.

An occurrence of P in T is indicated by an index i in T such that T [i..i+m−1] = P [1..m].

2. Finding all occurrences of a set of patterns {P1, . . . , Pz} in a string.

The following data structures are used to implement efficiently the string operations:

• Finite automata.

• Keyword trees with failure links.

• Suffix trees with suffix links.

• Generalized suffix trees with suffix links.

Finite automata

are used when we search often the same pattern P [1..m] in many texts. In such situations, we
proceed as follows:

1. We compute a finite automaton A = (Q, q0, A,Σ, δ) for the pattern P . The construction
of A for a pattern P [1..m] can be done in O(m) time.

2. We find all occurrences of P in T by reading text T with automaton A.

• A reads T [1..n] in n steps = O(n) time.

• Every occurrence of P in T is detected when P enters a final state q ∈ A.

Remark: In the lecture notes, we indicated a method to construct A in O(m3) time, and
mentioned that there exists a better method which constructs A in O(m) time.

lllustrated example: Suppose P [1..6] = baobab. In general, the automaton for a string of
length m has m + 1 states: Q = {0, 1, . . . ,m}. Th intial state is q0 = 0 and the final state id
m ∈ A. For short patterns, like P , we compute A as follows:

1. We draw the states in increasing order, from left to right, and connect consecutive states
with arrows labeled with the characters of P :

0 1 2 3 4 5 6b a o b a b

2. The letters in P are from alphabet Σ = {b, a, o}. We must complete the state transition
diagram such that from every state there are 3 outgoing transitions: a transition labeled
with b, another transition labeled with a, and another transition labeled with o:
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• We add i
u−→ j iff j is the largest number such that P [1..j] is suffix of P [1..i]u.

0 1 2 3 4 5 6b a o b a b
b

b

o

b

a, o a

b

The transitions that were not drawn go to state 0.

Keyword trees with failure links

are used when we search often the same patterns from a set {P1, . . . , Pz} in many texts. In
such situations, we use the Aho-Corasick algorithm, which proceeds as follows:

1. For the set of patterns P = {P1, . . . , Pz} we construct a tree-like data structure K called
keyword tree with failure links. This data structure can be constructed in time O(m)
where m is the sum of lengths of patterns P1, . . . , Pz.

2. The occurrences of pattems from P in a text T [1..n] are detected by traversing simulta-
neously

(a) the tree K: downward from root, and following the failure links when going down is
impossible

(b) the text T [1..m] from left to right.

Suffix trees with suffix links

A suffix tree (with suffix links) is a tree-like data structure that can be constructed in time
O(n) for a large text T [1..n]. It can be used to find all occurrences of a pattern P [1..n] in T in
time T (m+ k) where k is the number of occurrences of P in T .

Questions and exercises

E38. Draw the transition diagram of the matching automaton for the pattern P = salsa.

E39. Draw the keyword tree with failure links for the set of patterns {GTA,AGT,AAC}

E40. Draw the suffix tree with suffix links for the text mississippi

Binary heaps

E41. What is a binomial heap? Indicate the main operations supported by binary heaps, and
their runtime complexity.

E42. Write down the pseudocode of the algorithm for heap-sort, using a binomial heap.
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kd-trees

E43. Draw a balanced kd-tree for the set of points

{(1, 3, 1), (2, 1, 6), (3, 6, 5), (4, 4, 2), (5, 10, 3), (6, 5, 8), (7, 7, 12)}

Sorting in sublinear time

E44. Write down the pseudocode of counting sort.

E45. How many assignments are performed by counting sort, when it is used to sort an array
of 20 elements with values between 0 and 6?
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A Binary search trees

maximum

// finds the node with maximum key in tree with root r

Node* tree_maximum(Node* r) {

if (r == Nil) return r;

while (r->right != Nil) r=r->right;

return r;

}

// finds the node with minimum key in tree with root r

Node* tree_minimum(Node* r) {

if (r == Nil) return r;

while (r->left != Nil) r=r->left;

return r;

}

Node* predecessor(Node* x) {

if (x == Nil) return x;

if (x->left!=Nil) return tree_maximum(x->left);

Node* y = x->p;

while (y!=Nil && x==y->left) {

x=y;

y=y->p;

}

return y;

}

Node* successor(Node* x) {

if (x == Nil) return x;

if (x->right!=Nil) return tree_minimum(x->right);

Node* y = x->p;

while (y!=Nil && x==y->right) {

x=y;

y=y->p;

}

return y;

}
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// finds the node with maximum key in the

// tree which contains this node

Node* maximum(Node* x) {

Node* z = x;

Node* y = x->p;

while (y!=Nil && z==y->right) {

z=y;

y=y->p;

}

if (y==Nil) return tree_maximum(x);

z = y->p;

while (z!=Nil && y==z->left) {

y=z;

z=z->p;

}

if (z==Nil) return y;

return tree_maximum(z);

}

B Red-Black trees

RBInsertFixup

RBInsertFixup(Node∗ z) // method of class RBNode

1 while z->p->color == Red
2 if z->p == z->p->p->left
3 then y = z->p->p->right
4 if y->color == Red
5 then z->p->color = Black // Case 1
6 y->color = Black // Case 1
7 z->p->p->color = Red // Case 1
8 z = z->p->p // Case 1
9 else if z == z->p->right

10 then z = z->p // Case 2
11 LeftRotate(z) // Case 2
12 z->p->color = Black // Case 3
13 z->p->p->color = Red // Case 3
14 RightRotate(z->p->p) // Case 3
15 else
16 (same as then clause with right and left exchanged)
17 root->color = Black
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RBDeleteFixup

RBDeleteFixup(x)
1 while x 6= root and x->color == Black
2 if x == x->p->left
3 w = x->p->right
4 if w->color = Redxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
5 w->color = Black Case 1
6 x->p->color = Red Case 1
7 LeftRotate(x->p) Case 1
8 w = x->p->right Case 1
9 if w->left->color == Black and w->right->color == Black

10 w->color = Red Case 2
11 x = x->p Case 2
12 else if w->right->color == Black
13 w->left->color = Black Case 3
14 w->color = Red Case 3
15 RightRotate(w) Case 3
16 w = x->p->right Case 3
17 w->color = x->p->color Case 4
18 x->p->color = Black Case 4
19 w->right->color = Black Case 4
20 LeftRotate(x->p) Case 4
21 x = root Case 4
22 else (same as then clause, with right and left exchanged)
23 x->color = Black
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