
Advanced Data Structures

kd-trees

November 1, 2019

A kd-tree (short for “k-dimensional tree”) is a special data structure that stores a col-
lection S of points from k-dimensional space S = A0 × . . .×Ak−1︸ ︷︷ ︸ where A0, . . . , Ak−1 are

totally ordered sets1 of values, which can be used to answer questions like

Given a point X ∈ S and a finite collection of n points M ⊂ S

Find the point P ∈M which is most similar to X.

Remark: Most often, by “most similar point to X” we understand “closest point to X.” If
M has n points in R2, then a naive algorithm can solve this problem in linear time O(n):

FindNeaestPoint(S,X)
bestdist :=∞
guess := Null

for each P ∈ S do
d := distance(P,X)
if d < bestdist then
bestdist := d
guess := P

end for
return guess

In this lecture we show that, if we store the n points of M in a data structure called kd-tree,
then, for a random distribution of X, we can find in O(log n) time the nearest neighbor of
X in M . Even better, the kd-tree can be used to find the the K nearest neighbors of X in
O(log n) time, where K ≥ 1 is a constant.

A kd-tree with initial axis i ∈ {0, 1, . . . , k − 1} for a set of points M is a binary tree
whose nodes store the points in M , and satisfies the following conditions:

• For every node X at level n, if (a0, . . . , ak−1) is the point stored in X, and i = n
mod k then

1A set A is totally ordered if there is a binary relation ≤ on A which is total (for all a, b ∈ A, either
a ≤ b or b ≤ a), reflexive (a ≤ a for all a ∈ A), antisymmetric (for all a, b ∈ A, if a ≤ b and b ≤ a then
a = b) and transitive (for all a, b, c ∈ A, if a ≤ b and b ≤ c then a ≤ c).

1

– a′i ≤ ai for all points (a0, . . . , ak−1) stored in the left subtree of X,

– ai < a′i for all points (a′0, . . . , a
′
k−1) stored in the right subtree of X.

Thus, a kd-tree is generalization of a binary search tree where the position of the search key
in points depends on the level of the node: the search key at a point X stored in a node at
level n is the (n mod k)-th coordinate of X, where we assume that the point coordinates
are indexed starting from 0.

For example, if k = 3, A0 = A1 = A2 = R, and

S = { (0, 5, 7), (1, 4, 4), (2, 1, 3), (2, 3, 7), (2, 4, 5),
(3, 1, 4), (4, 0, 6), (4, 3, 4), (5, 2, 5), (6, 1, 4), (7, 1, 6)}

then a kd-tree which stores the points of S is

1 Building a balanced kd-tree

Given L a list of k-dimensional points and an initial axis i ∈ {0, 1, . . . , k − 1}, we define
recursively the kd-tree T (L, i) with initial axis i for L as follows:

Base case: If L is empty, then T (L, i) is the empty tree.

Recursive case: Let L′ = [P1, . . . , Pn] be the result of sorting L in increasing order of the
i-th coordinate value of its points, m0 = bn/2c, and

m1 := max{j | m0 ≤ j ≤ n and Pm0 , Pj have same i-th coordinate}.

Then T (L, i) has

• point Pm1
stored in the root,

• left subtree T ([P1, . . . , Pm1−1], (i + 1) mod k), and

• right subtree T ([Pm1+1, . . . , Pn], (i + 1) mod k).

Th kd-tree built in this way is balanced if m0 = m1 in all recursive steps.

2

2 Finding a node in a kd-tree

Suppose T is a kd-tree with initial axis i. The pseudocode to find the node of T for a point
A = (a0, . . . , ak−1) is:

FindPoint(T, i, A)
if T is empty then return ’node not found’

(a′0, . . . , a
′
k−1) :=the point stored in the root of T

if a′j = aj for 0 ≤ j < k then return root of T
if ai ≤ a′i then

return FindPoint(T.left, (i + 1) mod k,A)
else /* ai > a′i */

return FindPoint(T.right, (i + 1) mod k,A)

3 Finding the nearest neighbor of a point

Assume T is a kd-tree with initial axis i, and we want to find the point in T which is closest
to a test point A = (a0, . . . , ak−1).

The intuition behind the algorithm presented here is the following. Suppose that we
have a guess of what we think the nearest neighbor to the test point is. E.g., suppose that
the test point is indicated by the star and that we think the nearest neighbor is the point
connected to the star by the dashed line:

Observation: If there is a point in this data set that is closer to the test point than our
current guess, it must lie in the circle centered at the test point that passes through the
current guess:

In a k-dimensional space, this circle is a hypersphere, called the candidate hypersphere.

• The previous observation lets us prune subtrees of the kd-tree which do not hold the
nearest neighbor: If the hypersphere is entirely on one side of a splitting hyperplane,
then the nearest neighbor can not be in the subtree for the points in the side opposite
to the side of the hypersphere.

3

E.g., in the illustrated example, the circle is entirely to the right of the splitting
hyperplane running vertically through the root of the tree. Therefore, any point to
the left of the root of the tree cannot possibly be in the candidate hypersphere.

• The criterion to detect if a hypersphere with center (a0, . . . , ak−1) and radius d is not
completely on one side of a hyperplane defined by xi = curri is straightforward:
|curri − ai| < d.

• If the coordinates of points are real values, it is common to assume that the distance
between points X = (x0, . . . , xk−1) and Y = (y0, . . . , yk−1) is the Euclidean distance,
that is:

distance(X,Y) =
√

(x0 − y0)2 + . . . + (xk−1 − yk−1)2.

Based on these remarks, we define the following algorithm (pseudocode) to find the point
in T which is closest to the test point A:

1NN(T, i, A)
Maintain a global best estimate of the nearest neighbor, called guess

Maintain a global value of the distance to that neighbor, called bestDist

guess := Null

bestDist :=∞
1NNaux(T.root, i, A)
return guess

where

1NNaux(curr, i, A)
if curr is empty then return
if distance(A, curr) < bestDist then
guess := curr

bestDist :=distance(A, curr)
/* recursive search of A in current kd-tree curr */
if ai ≤ curri then
search :=′ left′

1NNaux(curr.left, (i + 1) mod k,A)
else
search :=′ right′

1NNaux(curr.right, (i + 1) mod k,A)
/* Check if the candidate hypersphere crosses this splitting hyperplane */
if |curri − ai| < bestDist then

if search =′ left′ then
1NNaux(curr.right, (i + 1) mod k,A)

else
1NNaux(curr.left, (i + 1) mod k,A)

4

4 Finding the K nearest neighbors of a point

The 1NN algorithm can be generalized to find the K nearest neighbors of a test point
A = (a0, . . . , ak−1) in a kd-tree T with initial axis i: instead of keeping track only of a
global best guess guess, we keep track of global structure where we store the best K guesses
found so far. A convenient auxiliary data structure for this purpose if a bounded priority
queue (BPQ), whose behavior is described in the Appendix.

kNN(T, i, A)
Maintain a BPQ of the candidate nearest neighbors, called bpq

Set the maximum size of bpq to K
kNNaux(T.root, i, A)
return bpq

where

kNNaux(curr, i, A)
if curr is empty then return
/* add curr to bpq */
enqueue curr into bpq with priority distance(A, curr)
/* recursively search the half of the tree that contains the test point A */
if ai < curri then
search :=′ left′

kNNaux(curr.left, (i + 1) mod k,A)
else
search :=′ right′

kNNaux(curr.right, (i + 1) mod k,A)
p :=priority of max.-priority element of bpq
if bpq is not full OR |curri − ai| < p then

if search =′ left′ then
kNNaux(curr.right, (i + 1) mod k,A)

else
kNNaux(curr.left, (i + 1) mod k,A)

Figure 1: Algorithm kNN.

The generalized algorithm is called kNN (short for K nearest neighbors). Its pseudocode
is shown in Figure 1.

5

Labworks

1. (A data structure for kd-trees) Use C++ to implement a kd-tree data structure kdTree

for sets of points represented as instances of the structure

struct Point {

float x[3]; // the coordinates of the point

}

and implement the methods

• makeKdTree(vector<Point> v) which creates a balanced kd-tree for the nodes
stored in vector v

• insert(T, P) which inserts point P in the kd-tree T.

2. (The kNN problem) Write a program that does the following:

(a) It creates a balanced kd-tree T for a set of n points, by reading their coordinates
from a text file points.txt with the following structure:

It has n lines, and each line contains three floating-point numbers separated
by spaces, representing the coordinates of a point.

For example, points.txt could have the following content:

1.0 4.0 5.14

-17.3 25 6.42

0 0 0.3

3.0 4.0 5.0

(b) It asks the user to type in

• the value of K, and

• the coordinates of a test point A

and returns the K nearest neighbors of A from T .

Use the structures Point and BPQ available from the website of this lecture, and the
class kdTree from Labwork 1.

6

A Bounded priority queues

A bounded priority queue (BPQ for short) is a special data structure similar to a regular
priority queue, except that there is a fixed upper bound on the number of elements that can
be stored in the BPQ. Whenever a new element is added to the queue, if the queue is at
capacity, the element with the highest priority value is ejected from the queue. For example,
suppose that we have a BPQ with maximum size five that holds the following elements:

Value

Priority

A B C D E

0.1 0.25 1.33 3.2 4.6

Suppose that we want to insert the element F with priority 0.4 into this bounded priority
queue. Because this BPQ has maximum size five, this will insert the element F, but then
evict the highest-priority element (E), yielding the following BPQ:

Value

Priority

A B F C D

0.1 0.25 0.4 1.33 3.2

Now suppose that we wish to insert the element G with priority 4.0 into this BPQ. Because
G’s priority value is greater than the maximum-priority element in the BPQ, upon inserting
G it will immediately be evicted. In other words, inserting an element into a BPQ with
priority greater than the maximum-priority element of the BPQ has no effect.

Note: an implementation of BPQ, designed to work with elements which represent points
in R3, is provided in BPQ.cpp and BPQ.h, which can be downloaded from the website
of this lecture.

7

