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What are suffix trees?

A tree-like data structure for a large string (the text T [1..n]),
which can be built in time O(n)

it is a compact representation of all suffixes of text T .

It allows to find all occurrences of a pattern P[1..m] in T in
time O(m + k) where k is the number of occurrences of P
in T .

REMARKS
1 The algorithm which builds the suffix tree of T [1..n] in

linear time O(n) was discovered by Wiener in 1973.
Donald Knuth called it “the algorithm of 1973” – he thought
the suffix tree can not be built in linear time.

2 Suffix trees have many other interesting applications.

Suffix trees



Suffix trees
Formal definition

The suffix tree of a string S[1..n] is a tree with the following
properties:

1 It has exactly n leaf nodes, labeled with numbers 1,2,. . . ,n.
2 Except for the root, every internal node has at lest two

children.
3 Every edge is labeled with a nonempty substring of S.
4 Edges from same node to different children are labeled

with substrings that start with different characters.
5 The string produced by concatenating the labels of the

edges from the root node to a leaf node i is the suffix
S[i ..n].
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Suffix trees
Example

S =carcasa$ has length 8, thus 8 suffixes.
The suffix tree of S is
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Remarks

1 Some strings have no suffix trees.

2 If the last character of S occurs only once in S, then S has a
suffix tree.
From now on, we will assume S satisfies this condition.
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Auxiliary notions

Let T be the suffix tree of a string S[1..n], and α = S[i ..j] a
substring of S.

The label L(x) of a node x of T is the string produced by
concatenating the labels of edges from root to x .

The position posT (α) of α in T is defined as follows: Let x be
the node of T such that L(x) is the shortest node label with
prefix α. (Note: x can be foud in |α| steps)

1 If L(x) = α, then posT (α) := x
2 Otherwise, let y be the parent node of x in T and β the

substring such that α = L(y)β. In this case, posT (α) is the
triple 〈y , x , β〉.

Intuition: The position of α în T is between nodes y and x of
T .
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Auxiliary notions
Positions in a suffix tree

Example
String positions in the suffix tree of string S = carcasa
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posT (λ) = r
posT (c) = 〈r , x ,c〉
posT (ca) = x
posT (car) = 〈x , 1 ,r〉
posT (carcasa) = 1

posT (arc) = 〈y , 2 ,rc〉
posT (sa) = 6
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Auxiliary notions
Node depth

The node depth dT (α) of substring α of S in the suffix tree T of S is:

1 if posT (α) is a node y , then dT (α) is the number of nodes from
root of T to y . The root and node y are counted as well.

2 posT (α) = 〈y , x , β〉 then dT (α) is the number of nodes from root
of T to y , except y . The root is counted, but node y is not.

Example
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dT (ca) = 1
dT (carc) = 2
dT (carcasa) = 2
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Auxiliary notions
Suffix links

Suffix trees have a remarkable property:
For every interior node x different from root, there is
another interior node y such that L(y) is obtained from
L(x) by dropping its first character.

y is called the suffix link of x , and is denoted by suf (x).

Example (Suffix links in the suffix tree of carcasa)
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Suffix trees
A compact representation

Main idea: Instead of labeling the edges with substrings S[i ..j],
we can label them with pairs of integers 〈i , j〉
⇒ edge labels of variable size (substrings) are replaced by

edge labels of constant size (pair of integer indices in S)

Example (Suffix tree for the string axabxb)
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Suffix trees
How big are they?

The suffix tree T of a string S[1..n] has
n leaf nodes
except for the root, every internal node has at least 2
children
the root node may have 1 child.

Therefore:
T has at most n internal nodes.
T has at most 2 · n edges

⇒ the size of T is O(n).
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Suffix trees with suffix links
Construction in linear time

Fact: The suffix tree and suffix links of a text S[1..n] can be
constructed in time O(n)

1 Such an algorithm was first described by Wiener, in 1973.
2 A simpler linear-time algorithm was proposed by Ukkonen;

it is described in Chapter 6 of the book
Dan Gusfield, Algorithms of Strings, trees, and sequences.
Cambridge University Press, 1997.
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Generalized suffix trees
What are they?

Let S = {S1, . . . ,Sp} a set of p non-empty strings.

We assume w.l.o.g. that every string Sj ends with a specific character zj which
occurs nowhere else.

The generalized suffix tree of S is a tree with the following properties:

1 It has |S1|+ . . .+ |Sp| leaves, with labels from the set
{j:i | 1 ≤ j ≤ p, 1 ≤ i ≤ |Sj |}

2 All internal nodes, except the root, have ar least 2 children.
3 Every edge is labeled with a nonempty substring of strings from S.
4 Edges from same node to different children are labeled with substrings that start

with different characters.
5 L(j:i) = Sj [i..nj ] where nj = |Sj |.

Like for suffix tree, we define a compact representation of generalized suffix trees:

We replace every edge label Sj [k ..`] with the constant-size label j:〈k , `〉
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Generalized suffix trees
Linear-time construction

1 We build suffix tree G1 of S1 with Ukkonen alg. in O(|S1|) time
we label edges with 1:〈k , `〉 instead of 〈k , `〉,
and leaves with 1:i instead of i .

2 For m := 2 to p, we build the generalized suffix tree Gm of set of
strings {S1, . . . ,Sm} as follows:

I Traverse Gm−1 from root, to find longest prefix Sm[1..j]
which has a position in Gm−1.

Sm[1..j] is longest prefix of Sm which is prefix of a suffix of a string
from {S1, . . . ,Sm−1}

I Start extending Gm−1 from that position, until we produce
Gm

⇒ Gp is a suffix tree of S = {S1, . . . ,Sp}, built in O(n) time, where
n = |S1|+ . . .+ |Sp|
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Generalized suffix trees
Example

The generalized suffix tree of S = {cocos,comod} is

1:5
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γ

1:〈2, 2〉1:〈1
, 2〉

α

β
α
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α γ

where α = 〈1,5,5〉, β = 1:〈3,5〉, γ = 2:〈3,5〉, δ = 2:〈5,5〉.
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Applications of (generalized) suffix trees
1. String matching

Given text S[1..n] and pattern P[1..m], find all occurrences of P
in S.

1 Construct the suffix tree T of S in time O(n)
2 Find posP(T ) in time O(m). Suppose posP(T ) is y or
〈x , y , β〉.

3 Find all leaf nodes of T below node y .
Every occurrence of P in S is a prefix of a suffix P[j ..n] of S,
where j is the label of such a leaf node.
If there are k occurrences of P in S, there are k such leaf
nodes. These leaf nodes can be found in O(k) time.
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Applications of (generalized) suffix trees
1. String matching

Properties of string matching with (generalized) suffix trees:
1 Finding all occurrences of P[1..m] in a text S[1..n] takes

O(n + m + k) time
If the suffix tree of S is precomputed, then finding all
occurrences of P in S takes O(m + k) time
This method is useful if we search often in the same text S
(representation of a large database)

2 Finding all occurrences of P[1..m] in all texts of a set
S = {S1, . . . ,Sp} takes O(n + m + k) time where
n = |S1|+ . . .+ |Sp|
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Applications of suffix trees
2. Finding the longest substrings common to two texts

Given two texts S1 and S2,
Find the longest substrings common to S1 and S2.

Answer:
1 Build the generalized suffix tree G of {S1,S2} and mark its

internal nodes that have leaf descendants for suffixes of
both S1 and S2

Can be done in time O(n) where n = |S1|+ |S2|
2 Traverse the internal nodes of G, and compute the

character depth of those which are marked.
Note: their character depth is the length of a common
substring of S1 and S2

Overall computation time: O(n)
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