Suffix trees Ukkonen algorithm

æ

・ロト ・回ト ・ヨト ・ヨト

What are suffix trees?

- A tree-like data structure for a large string (the text *T*[1..*n*]), which can be built in time *O*(*n*)
 - it is a compact representation of all suffixes of text T.
- It allows to find all occurrences of a pattern P[1..m] in T in time O(m + k) where k is the number of occurrences of P in T.

REMARKS

- The algorithm which builds the suffix tree of T[1..n] in linear time O(n) was discovered by Wiener in 1973.
 - Donald Knuth called it "the algorithm of 1973" he thought the suffix tree can not be built in linear time.
- Suffix trees have many other interesting applications.

ヘロト ヘアト ヘヨト ヘ

The suffix tree of a string S[1..n] is a tree with the following properties:

- It has exactly *n* leaf nodes, labeled with numbers 1,2,...,*n*.
- Except for the root, every internal node has at lest two children.
- Severy edge is labeled with a nonempty substring of *S*.
- Edges from same node to different children are labeled with substrings that start with different characters.
- The string produced by concatenating the labels of the edges from the root node to a leaf node *i* is the suffix *S*[*i*..*n*].

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Suffix trees

S = carcasa has length 8, thus 8 suffixes. The suffix tree of S is

Remarks

- Some strings have no suffix trees.
- If the last character of *S* occurs only once in *S*, then *S* has a suffix tree.

From now on, we will assume *S* satisfies this condition.

ъ

ヘロト 人間 ト ヘヨト ヘヨト

Let \mathcal{T} be the suffix tree of a string S[1..n], and $\alpha = S[i..j]$ a substring of S.

- The label L(x) of a node x of T is the string produced by concatenating the labels of edges from root to x.
- The position pos_T(α) of α in T is defined as follows: Let x be the node of T such that L(x) is the shortest node label with prefix α. (Note: x can be foud in |α| steps)
 - 1 If $\mathcal{L}(x) = \alpha$, then $pos_{\mathcal{T}}(\alpha) := x$
 - Otherwise, let y be the parent node of x in T and β the substring such that α = L(y)β. In this case, pos_T(α) is the triple (y, x, β).
 - Intuition: The position of *α* în *T* is between nodes *y* and *x* of *T*.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Example

String positions in the suffix tree of string S = carcasa

 $pos_{\mathcal{T}}(\lambda) = r$ $pos_{\mathcal{T}}(c) = \langle r, x, c \rangle$ $pos_{\mathcal{T}}(ca) = x$ $pos_{\mathcal{T}}(carc) = \langle x, (1), r \rangle$ $pos_{\mathcal{T}}(carcasa) = (1)$ $pos_{\mathcal{T}}(arc) = \langle y, (2), rc \rangle$ $pos_{\mathcal{T}}(sa) = (6)$

ヘロト ヘアト ヘビト ヘビト

ъ

Auxiliary notions

The node depth $d_{\mathcal{T}}(\alpha)$ of substring α of *S* in the suffix tree \mathcal{T} of *S* is:

- if $pos_{\mathcal{T}}(\alpha)$ is a node y, then $d_{\mathcal{T}}(\alpha)$ is the number of nodes from root of \mathcal{T} to y. The root and node y are counted as well.
- *pos_T*(α) = (y, x, β) then d_T(α) is the number of nodes from root of T to y, except y. The root is counted, but node y is not.

ヘロト ヘアト ヘビト ヘ

Suffix trees have a remarkable property:

For every interior node x different from root, there is another interior node y such that $\mathcal{L}(y)$ is obtained from $\mathcal{L}(x)$ by dropping its first character.

y is called the suffix link of x, and is denoted by suf(x).

Example (Suffix links in the suffix tree of carcasa)

Main idea: Instead of labeling the edges with substrings S[i..j], we can label them with pairs of integers $\langle i, j \rangle$

 \Rightarrow edge labels of variable size (substrings) are replaced by edge labels of constant size (pair of integer indices in *S*)

<ロ> <同> <同> <同

The suffix tree T of a string S[1..n] has

- n leaf nodes
- except for the root, every internal node has at least 2 children
- the root node may have 1 child.

Therefore:

- T has at most *n* internal nodes.
- \mathcal{T} has at most $2 \cdot n$ edges
- \Rightarrow the size of \mathcal{T} is O(n).

Fact: The suffix tree and suffix links of a text S[1..n] can be constructed in time O(n)

- Such an algorithm was first described by Wiener, in 1973.
- A simpler linear-time algorithm was proposed by Ukkonen; it is described in Chapter 6 of the book

Dan Gusfield, *Algorithms of Strings, trees, and sequences.* Cambridge University Press, 1997.

ヘロト 人間 ト ヘヨト ヘヨト

Let $S = \{S_1, \ldots, S_p\}$ a set of *p* non-empty strings.

• We assume w.l.o.g. that every string *S_j* ends with a specific character *z_j* which occurs nowhere else.

The generalized suffix tree of S is a tree with the following properties:

- It has $|S_1| + \ldots + |S_p|$ leaves, with labels from the set $\{j:i \mid 1 \le j \le p, 1 \le i \le |S_j|\}$
- 2 All internal nodes, except the root, have ar least 2 children.
- Solution Every edge is labeled with a nonempty substring of strings from S.
- Edges from same node to different children are labeled with substrings that start with different characters.

Like for suffix tree, we define a compact representation of generalized suffix trees:

We replace every edge label $S_j[k..\ell]$ with the constant-size label $j:\langle k, \ell \rangle$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

() We build suffix tree \mathcal{G}_1 of S_1 with Ukkonen alg. in $O(|S_1|)$ time

- we label edges with 1:(k, l) instead of (k, l), and leaves with 1:i instead of i.
- For m := 2 to p, we build the generalized suffix tree G_m of set of strings {S₁,..., S_m} as follows:
 - ► Traverse \mathcal{G}_{m-1} from root, to find longest prefix $S_m[1...j]$ which has a position in \mathcal{G}_{m-1} .

 $S_m[1..j]$ is longest prefix of S_m which is prefix of a suffix of a string from $\{S_1,\ldots,S_{m-1}\}$

Start extending G_{m-1} from that position, until we produce \mathcal{G}_m

 $\Rightarrow \mathcal{G}_p$ is a suffix tree of $\mathcal{S} = \{S_1, \dots, S_p\}$, built in O(n) time, where $n = |S_1| + \ldots + |S_p|$

ヘロト 人間 とくほとく ほとう

The generalized suffix tree of $S = \{ cocos, comod \}$ is

where $\alpha = \langle 1, 5, 5 \rangle$, $\beta = 1:\langle 3, 5 \rangle$, $\gamma = 2:\langle 3, 5 \rangle$, $\delta = 2:\langle 5, 5 \rangle$.

イロト イポト イヨト イヨト

Given text S[1..n] and pattern P[1..m], find all occurrences of P in S.

- Oconstruct the suffix tree T of S in time O(n)
- Similar Find $pos_P(\mathcal{T})$ in time O(m). Suppose $pos_P(\mathcal{T})$ is y or $\langle x, y, \beta \rangle$.
- Sind all leaf nodes of \mathcal{T} below node y.
 - Every occurrence of *P* in *S* is a prefix of a suffix *P*[*j*..*n*] of *S*, where *j* is the label of such a leaf node.
 - If there are *k* occurrences of *P* in *S*, there are *k* such leaf nodes. These leaf nodes can be found in *O*(*k*) time.

ヘロト ヘアト ヘヨト ヘ

Applications of (generalized) suffix trees 1. String matching

Properties of string matching with (generalized) suffix trees:

- Finding all occurrences of P[1..m] in a text S[1..n] takes O(n + m + k) time
 - If the suffix tree of S is precomputed, then finding all occurrences of P in S takes O(m + k) time
 - This method is useful if we search often in the same text *S* (representation of a large database)
- Finding all occurrences of *P*[1..*m*] in all texts of a set

$$S = \{S_1, \dots, S_p\}$$
 takes $O(n + m + k)$ time where

$$n = |S_1| + \ldots + |S_p|$$

Given two texts S_1 and S_2 ,

Find the longest substrings common to S_1 and S_2 .

Answer:

Build the generalized suffix tree G of {S₁, S₂} and mark its internal nodes that have leaf descendants for suffixes of both S₁ and S₂

Can be done in time O(n) where $n = |S_1| + |S_2|$

- Traverse the internal nodes of G, and compute the character depth of those which are marked.
 - Note: their character depth is the length of a common substring of *S*₁ and *S*₂

Overall computation time: O(n)

ヘロト ヘ戸ト ヘヨト ヘヨト