
Suffix trees
Ukkonen algorithm

Suffix trees

What are suffix trees?

A tree-like data structure for a large string (the text T [1..n]),
which can be built in time O(n)

it is a compact representation of all suffixes of text T .

It allows to find all occurrences of a pattern P[1..m] in T in
time O(m + k) where k is the number of occurrences of P
in T .

REMARKS
1 The algorithm which builds the suffix tree of T [1..n] in

linear time O(n) was discovered by Wiener in 1973.
Donald Knuth called it “the algorithm of 1973” – he thought
the suffix tree can not be built in linear time.

2 Suffix trees have many other interesting applications.

Suffix trees

Suffix trees
Formal definition

The suffix tree of a string S[1..n] is a tree with the following
properties:

1 It has exactly n leaf nodes, labeled with numbers 1,2,. . . ,n.
2 Except for the root, every internal node has at lest two

children.
3 Every edge is labeled with a nonempty substring of S.
4 Edges from same node to different children are labeled

with substrings that start with different characters.
5 The string produced by concatenating the labels of the

edges from the root node to a leaf node i is the suffix
S[i ..n].

Suffix trees

Suffix trees
Example

S =carcasa$ has length 8, thus 8 suffixes.
The suffix tree of S is

1

4

2

3

5

6

7

8

$ sa$

$
ac$asacr

$a
s a

$a
sa
cr

s
a
$

rcasa$

Remarks

1 Some strings have no suffix trees.

2 If the last character of S occurs only once in S, then S has a
suffix tree.
From now on, we will assume S satisfies this condition.

Suffix trees

Auxiliary notions

Let T be the suffix tree of a string S[1..n], and α = S[i ..j] a
substring of S.

The label L(x) of a node x of T is the string produced by
concatenating the labels of edges from root to x .

The position posT (α) of α in T is defined as follows: Let x be
the node of T such that L(x) is the shortest node label with
prefix α. (Note: x can be foud in |α| steps)

1 If L(x) = α, then posT (α) := x
2 Otherwise, let y be the parent node of x in T and β the

substring such that α = L(y)β. In this case, posT (α) is the
triple 〈y , x , β〉.

Intuition: The position of α în T is between nodes y and x of
T .

Suffix trees

Auxiliary notions
Positions in a suffix tree

Example
String positions in the suffix tree of string S = carcasa

rx

y

1

4

2

3

5

6saacasacr

as
a

as
ac
r

s
a

r
c
a
s
a

posT (λ) = r
posT (c) = 〈r , x ,c〉
posT (ca) = x
posT (car) = 〈x , 1 ,r〉
posT (carcasa) = 1

posT (arc) = 〈y , 2 ,rc〉
posT (sa) = 6

Suffix trees

Auxiliary notions
Node depth

The node depth dT (α) of substring α of S in the suffix tree T of S is:

1 if posT (α) is a node y , then dT (α) is the number of nodes from
root of T to y . The root and node y are counted as well.

2 posT (α) = 〈y , x , β〉 then dT (α) is the number of nodes from root
of T to y , except y . The root is counted, but node y is not.

Example

rx

y

1

4

2

3

5

6saacasacr

as
a

as
ac
r
s
a

r
c
a
s
a

dT (ca) = 1
dT (carc) = 2
dT (carcasa) = 2

Suffix trees

Auxiliary notions
Suffix links

Suffix trees have a remarkable property:
For every interior node x different from root, there is
another interior node y such that L(y) is obtained from
L(x) by dropping its first character.

y is called the suffix link of x , and is denoted by suf (x).

Example (Suffix links in the suffix tree of carcasa)

1

4

2
3

5

6saacasacr

as
a

as
ac
r
s
a

rcasa

Suffix trees

Suffix trees
A compact representation

Main idea: Instead of labeling the edges with substrings S[i ..j],
we can label them with pairs of integers 〈i , j〉
⇒ edge labels of variable size (substrings) are replaced by

edge labels of constant size (pair of integer indices in S)

Example (Suffix tree for the string axabxb)

1 23

4

5

b

a

bx
ba
x b

x
b

x

abxb

bxb

is replaced with 1 23

4

5

〈6, 6〉

〈1
, 1
〉

〈2
, 6
〉

〈4, 6〉

〈2, 2〉

〈3, 6〉

〈4, 6〉

Suffix trees

Suffix trees
How big are they?

The suffix tree T of a string S[1..n] has
n leaf nodes
except for the root, every internal node has at least 2
children
the root node may have 1 child.

Therefore:
T has at most n internal nodes.
T has at most 2 · n edges

⇒ the size of T is O(n).

Suffix trees

Suffix trees with suffix links
Construction in linear time

Fact: The suffix tree and suffix links of a text S[1..n] can be
constructed in time O(n)

1 Such an algorithm was first described by Wiener, in 1973.
2 A simpler linear-time algorithm was proposed by Ukkonen;

it is described in Chapter 6 of the book
Dan Gusfield, Algorithms of Strings, trees, and sequences.
Cambridge University Press, 1997.

Suffix trees

Generalized suffix trees
What are they?

Let S = {S1, . . . ,Sp} a set of p non-empty strings.

We assume w.l.o.g. that every string Sj ends with a specific character zj which
occurs nowhere else.

The generalized suffix tree of S is a tree with the following properties:

1 It has |S1|+ . . .+ |Sp| leaves, with labels from the set
{j:i | 1 ≤ j ≤ p, 1 ≤ i ≤ |Sj |}

2 All internal nodes, except the root, have ar least 2 children.
3 Every edge is labeled with a nonempty substring of strings from S.
4 Edges from same node to different children are labeled with substrings that start

with different characters.
5 L(j:i) = Sj [i..nj] where nj = |Sj |.

Like for suffix tree, we define a compact representation of generalized suffix trees:

We replace every edge label Sj [k ..`] with the constant-size label j:〈k , `〉

Suffix trees

Generalized suffix trees
Linear-time construction

1 We build suffix tree G1 of S1 with Ukkonen alg. in O(|S1|) time
we label edges with 1:〈k , `〉 instead of 〈k , `〉,
and leaves with 1:i instead of i .

2 For m := 2 to p, we build the generalized suffix tree Gm of set of
strings {S1, . . . ,Sm} as follows:

I Traverse Gm−1 from root, to find longest prefix Sm[1..j]
which has a position in Gm−1.

Sm[1..j] is longest prefix of Sm which is prefix of a suffix of a string
from {S1, . . . ,Sm−1}

I Start extending Gm−1 from that position, until we produce
Gm

⇒ Gp is a suffix tree of S = {S1, . . . ,Sp}, built in O(n) time, where
n = |S1|+ . . .+ |Sp|

Suffix trees

Generalized suffix trees
Example

The generalized suffix tree of S = {cocos,comod} is

1:5

1:1 1:3 1:2 1:42:1 2:2 2:4

2:3 2:5

δ

γ δ

γ

1:〈2, 2〉1:〈1
, 2〉

α

β
α

β
α γ

where α = 〈1,5,5〉, β = 1:〈3,5〉, γ = 2:〈3,5〉, δ = 2:〈5,5〉.

Suffix trees

Applications of (generalized) suffix trees
1. String matching

Given text S[1..n] and pattern P[1..m], find all occurrences of P
in S.

1 Construct the suffix tree T of S in time O(n)
2 Find posP(T) in time O(m). Suppose posP(T) is y or
〈x , y , β〉.

3 Find all leaf nodes of T below node y .
Every occurrence of P in S is a prefix of a suffix P[j ..n] of S,
where j is the label of such a leaf node.
If there are k occurrences of P in S, there are k such leaf
nodes. These leaf nodes can be found in O(k) time.

Suffix trees

Applications of (generalized) suffix trees
1. String matching

Properties of string matching with (generalized) suffix trees:
1 Finding all occurrences of P[1..m] in a text S[1..n] takes

O(n + m + k) time
If the suffix tree of S is precomputed, then finding all
occurrences of P in S takes O(m + k) time
This method is useful if we search often in the same text S
(representation of a large database)

2 Finding all occurrences of P[1..m] in all texts of a set
S = {S1, . . . ,Sp} takes O(n + m + k) time where
n = |S1|+ . . .+ |Sp|

Suffix trees

Applications of suffix trees
2. Finding the longest substrings common to two texts

Given two texts S1 and S2,
Find the longest substrings common to S1 and S2.

Answer:
1 Build the generalized suffix tree G of {S1,S2} and mark its

internal nodes that have leaf descendants for suffixes of
both S1 and S2

Can be done in time O(n) where n = |S1|+ |S2|
2 Traverse the internal nodes of G, and compute the

character depth of those which are marked.
Note: their character depth is the length of a common
substring of S1 and S2

Overall computation time: O(n)

Suffix trees

