String matching

The finite automaton approach.
The Aho-Corasick algorithm

November 8, 2019

- An alphabet Σ is a finite set of characters.
- A string S of length $n \ge 0$ is an array S[1..n] of characters from Σ . We write |S| for the length of S. Thus, |S| = n
- S[i] is the character of S at position i
- S[i..j] represents the substring of S form position i to position j inclusively.

Example

If
$$S = \text{alphabet then } |S| = 8$$
, $S[1] = a$, $S[2] = b$, $S[1..4] = \text{alph}$, $S[3..7] = \text{phabe}$

ASSUMPTIONS:

- Σ : finite set of characters (an alphabet). E.g., $\Sigma = \{a, b, ..., z\}$
- ▶ P[1..m]: array of m > 0 characters from Σ (the pattern)
- ▶ T[1..n]: array of n > 0 characters from Σ (the text)

We say that P occurs with shift s in T (or, equivalently, that P occurs beginning at position s+1 in T) if $0 \le s \le n-m$ and T[s+1..s+m] = P[1..m] (that is, if T[s+j] = P[j], for $1 \le j \le m$).

EXAMPLE:

The string matching problem

Given a pattern P[1..m] and a text T[1..n]Find all shifts s where P occurs in T.

Terminology and notation:

- Σ^* =the set of all strings of characters from Σ
- If $x, y \in \Sigma^*$ then
 - x y:=the concatenation of x with y
 - |x| := the length (number of characters) of x
 - ullet ϵ :=the zero-length empty string
 - x is prefix of y, notation $x \sqsubseteq y$, if y = x w for some $w \in \Sigma^*$. x is suffix of y, notation $x \supseteq y$, if y = w x for some $w \in \Sigma^*$.

Example: <u>ab</u> <u>⊆</u> <u>ab</u>cca

REMARKS

- \bigcirc $x \supseteq y$ if and only if $x a \supseteq y a$.
- ② Every string is either ϵ , or of the form wa where $a \in \Sigma$ and w a string.

The naive string matching algorithm

NaiveStringMatcher(T, P)

1 n := T.length

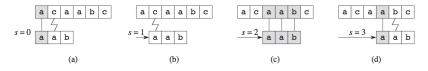
2 m := P.length

3 **for** s = 0 **to** n - m

4 **if** P[1..m] == T[s+1..s+m]

5 print "pattern occurs with shift" s

EXAMPLE:



- Time complexity: O((n-m+1) m)
 - Several character comparison are performed repeatedly
 - Can we do better?

String matching with finite automata

Definition (Finite automaton)

A finite automaton is a 5-tuple $A = (Q, q_0, A, \Sigma, \delta)$ where

- Q : finite set of states
- $q_0 \in Q$: the start state
- A ⊆ Q: distinguished set of accepting states
- Σ:=finite set of characters (the input alphabet)
- $\delta: Q \times \Sigma \to Q$ is the transition function

String matching with finite automata

Definition (Finite automaton)

A finite automaton is a 5-tuple $A = (Q, q_0, A, \Sigma, \delta)$ where

- Q: finite set of states
- $q_0 \in Q$: the start state
- A ⊆ Q: distinguished set of accepting states
- Σ:=finite set of characters (the input alphabet)
- $\delta: Q \times \Sigma \to Q$ is the transition function

Alternative representations of a finite automaton:

- **1** Tabular representation of δ
- state-transition diagram

(see next slide)

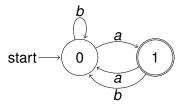
Alternative representations of a finite automaton

$$A = (Q, q_0, A, \Sigma, \delta)$$
 where $Q = \{0, 1\}, q_0 = 0, A = \{1\}, \Sigma = \{a, b\}$

Tabular representation:

$$\begin{array}{c|ccccc}
\delta & a & b \\
\hline
\rightarrow 0 & 1 & 0 \\
\leftarrow 1 & 0 & 0
\end{array}$$

State-transition diagram:



Acceptance by finite automata

ASSUMPTION: $A = (Q, q_0, A, \Sigma, \delta)$ is a finite automaton.

• Define inductively $\phi: \Sigma^* \to Q$, as follows:

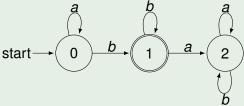
$$\phi(\epsilon) := q_0,$$

 $\phi(wa) := \delta(\phi(w), a).$

We say that w is accepted by A if $\phi(w) \in A$.

Example

The following finite automaton accepts all (and only) words of the form $a^m b^n$ where $m \ge 0$, $n \ge 1$:



REMARK: The time complexity of computing $\phi(w)$ is O(n)where n = |w|.

A finite automaton for the string matching problem Main ideas

- ▶ Define a finite automaton \mathcal{A} such that T[1..i] is accepted by \mathcal{A} if and only if it has suffix P (that is, $P \supseteq T[1..i]$).
- $ightharpoonup \mathcal{A}$ can be defined in a preprocessing step of P[1..m]
 - To understand the construction of A, we shall define the **suffix function** σ corresponding to pattern P:

A finite automaton for the string matching problem Main ideas

- ▶ Define a finite automaton \mathcal{A} such that T[1..i] is accepted by \mathcal{A} if and only if it has suffix P (that is, $P \supseteq T[1..i]$).
- $ightharpoonup \mathcal{A}$ can be defined in a preprocessing step of P[1..m]
 - To understand the construction of A, we shall define the **suffix function** σ corresponding to pattern P:

Definition

The suffix function corresponding to pattern P[1..m] is the function $\sigma: \Sigma^* \to \{0, ..., m\}$ such that $\sigma(x)$ is the length of the longest prefix of P that is also a suffix of x. Formally:

$$\sigma(x) := \max\{k \mid 0 \le k \le m \text{ and } P[1..k] \supseteq x\}.$$

A finite automaton for the string matching problem Main ideas

- ▶ Define a finite automaton \mathcal{A} such that T[1..i] is accepted by \mathcal{A} if and only if it has suffix P (that is, $P \supseteq T[1..i]$).
- $ightharpoonup \mathcal{A}$ can be defined in a preprocessing step of P[1..m]
 - To understand the construction of A, we shall define the **suffix function** σ corresponding to pattern P:

Definition

The suffix function corresponding to pattern P[1..m] is the function $\sigma: \Sigma^* \to \{0, ..., m\}$ such that $\sigma(x)$ is the length of the longest prefix of P that is also a suffix of x. Formally:

$$\sigma(x) := \max\{k \mid 0 \le k \le m \text{ and } P[1..k] \supseteq x\}.$$

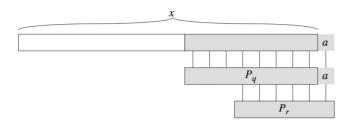
EXAMPLES: If $P = \text{ab then } \sigma(\epsilon) = 0$, $\sigma(\text{ccac}\underline{a}) = 1$, $\sigma(\text{ac}\underline{ab}) = 2$.

The suffix function Properties

Suffix-function recursion lemma

For any string x and character $a \in \Sigma$, if $q = \sigma(x)$, then $\sigma(x | a) = \sigma(P[1..q] | a)$.

A graphical illustration of a proof of this Lemma is shown below:



The finite automaton corresponding to a pattern

ASSUMPTION: P[1..m] is the given pattern,

The corresponding finite automaton is $A = (Q, q_0, A, \Sigma, \delta)$ where:

$$ightharpoonup Q = \{0, 1, 2, \dots, m\}$$

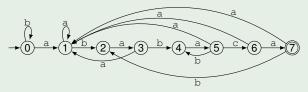
$$ightharpoonup q_0 = 0$$

$$A = \{m\}$$

$$\delta(q, a) = \sigma(P[1..q] a)$$

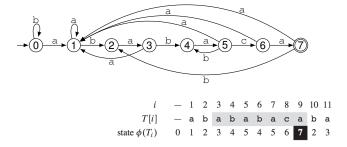
Example

The finite automaton corresponding to P[1..7] = ababaca is

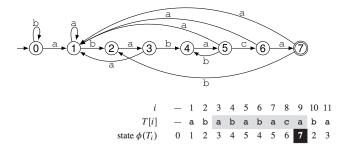


The missing transitions from a node point to state 0.

The finite automaton corresponding to a pattern Illustrated example



The finite automaton corresponding to a pattern Illustrated example



The remaining question is:

How to compute the state transition function δ of \mathcal{A} ?

Computing the transition function

A naive implementation (pseudocode)

```
COMPUTETRANSITION FUNCTION (P, \Sigma) 1 m := P.length 2 for q := 0 to m 3 for each character a \in \Sigma 4 k := \min(m, q+1)+1 5 repeat 6 k := k-1 7 until P[1..k] \supset P[1..q] a 8 \delta(q, a) := k 9 return \delta
```

Time complexity: $O(m^3 |\Sigma|)$.

There are better algorithms, which can compute δ with time complexity $O(m|\Sigma|)$.

We assume given

- T[1..m] called text
- A finite set of patterns $\mathcal{P} = \{P_1, P_2, \dots, P_z\}$

Find **all** positions where some $P \in \mathcal{P}$ occurs in T.

Matching with a set of patterns

We assume given

- T[1..m] called text
- A finite set of patterns $\mathcal{P} = \{P_1, P_2, \dots, P_z\}$

Find **all** positions where some $P \in \mathcal{P}$ occurs in T.

USEFUL AUXILIARY NOTIONS

- lacksquare keyword tree $\mathcal K$ of the set $\mathcal P$
- 2 failure links between the nodes of K

1. Keyword tree Definition

The keyword tree of a set of patterns $\mathcal{P} = \{P_1, \dots, P_z\}$ is a tree \mathcal{K} which satisfies 3 conditions:

- every edge is labeled with exactly 1 character.
- ② Distinct edges which leave from a node are labeled with distinct characters.
- **3** Every pattern $P_i \in \mathcal{P}$ gets mapped to a unique node v of \mathcal{K} as follows: the string of characters along the branch from root to node v is P_i , and every leaf node of \mathcal{K} is the mapping of a pattern from \mathcal{P} .

1. Keyword tree Definition

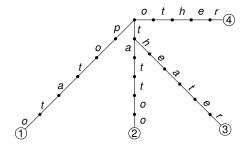
The keyword tree of a set of patterns $\mathcal{P} = \{P_1, \dots, P_z\}$ is a tree \mathcal{K} which satisfies 3 conditions:

- every edge is labeled with exactly 1 character.
- ② Distinct edges which leave from a node are labeled with distinct characters.
- **3** Every pattern $P_i \in \mathcal{P}$ gets mapped to a unique node v of \mathcal{K} as follows: the string of characters along the branch from root to node v is P_i , and every leaf node of \mathcal{K} is the mapping of a pattern from \mathcal{P} .

NOTATION: for every node $v \in \mathcal{K}$, $\mathcal{L}(v)$ is the string of characters along the branch of \mathcal{K} from root to node v.

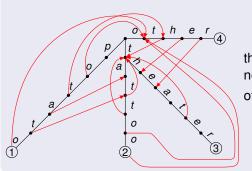
1. Keyword tree

Example for $P = \{potato, tattoo, theater, other\}$



2. Failure links

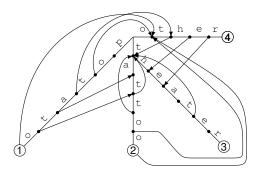
Let \mathcal{K} be the keyword tree for $\mathcal{P} = \{P_1, \dots, P_z\}$. Every node v of \mathcal{K} has only one failure link to the node n_v of \mathcal{K} which has the following property: $\mathcal{L}(n_v)$ is the longest proper suffix of $\mathcal{L}(v)$ which is a prefix of a pattern from \mathcal{P} .



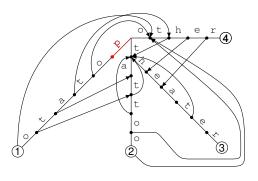
the failure links which are not depicted, go to the root of $\boldsymbol{\mathcal{K}}$

Allows to find all occurrences of \mathcal{P} in T[1..m] in time O(m). It relies on the keyword tree \mathcal{K} for \mathcal{P} and its failure links. The characters of T[1..m] are read from left to right:

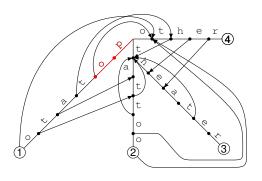
- ② If $\mathcal{L}(crt) = P_j$ or there is a sequence of failure links $crt \to \ldots \to w$ with $\mathcal{L}(w) = P_j$
 - signal " P_j occurs at position i in T"
- If i = m then STOP.
- If T[i] = c and there is an edge crt v then i := i + 1, crt := v, goto 2.
- If T[i] = c and there is no edge $crt \stackrel{c}{-} v$ then let $crt \rightarrow \ldots \rightarrow v$ the shortest sequence of failure links such that $\exists v \stackrel{c}{-} w$ an let crt := v. If no such sequence exists, let crt := root of \mathcal{K} .
- goto 2.



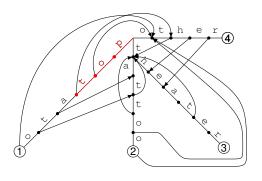
potheater

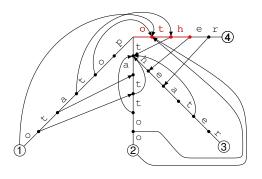


potheater

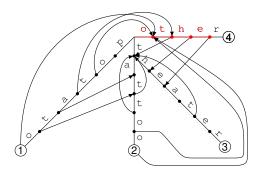


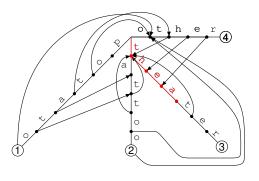
potheater $\Delta\Delta$



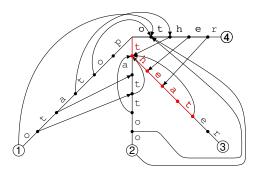


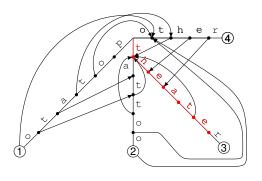
potheater ΔΔΔΔ



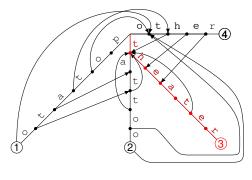


potheater ΔΔΔΔΔΔ





Illustrated example: $P = \{potato, tattoo, theater, other\}, T = potheater\}$



potheater $\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta\Delta$

 \Rightarrow detected occurrence of $P_3 = \texttt{theater}$

The construction of the suffix tree and of the failure links in time O(n)

$$\mathcal{P} = \{P_1, \dots, P_z\}, n := |P_1| + \dots + |P_z|$$

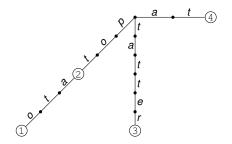
- ▶ The keyword tree \mathcal{K} for \mathcal{P} is built by adding repeatedly the edges for P_1, \ldots, P_z to an initially empty tree.
 - The addition of the edges for P_i has runtime complexity $O(|P_i|)$
 - \Rightarrow the construction of \mathcal{K} has runtime complexity $O(|P_1| + ... + |P_z|) = O(n)$
- ▶ The failure links are added to each node of K in the order of a breadth-first traversal: If r is the root of K then
 - add a failure link for the root of \mathcal{K} : $r \to r$
 - for the nodes of v at tree depth 1: add failure links $v \rightarrow r$
 - if v is a node at depth k > 1, then let
 - v' be the parent of v
 - x be the label of v v'
 - $\pi: v' \to v_1 \to \dots v_i$ be the shortest sequence of failure links such that there is an edge $v_i w$ in $\mathcal K$ with label x

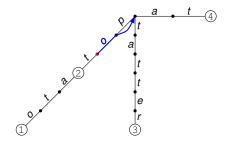
If π exists: add the failure link $\mathbf{v} \to \mathbf{w}$

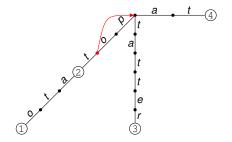
If π does not exist: add the failure link $\vee \rightarrow \Gamma$

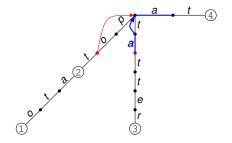
Addition of failure links to a keyword tree

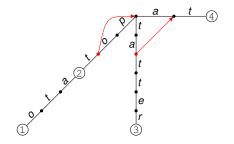
Illustrated example for the keyword tree of $P = \{potato, pot, tatter, at\}$

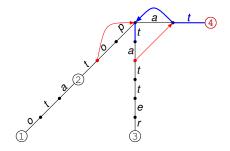


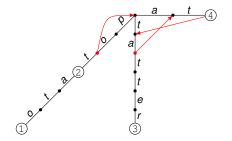


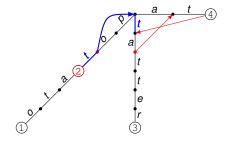


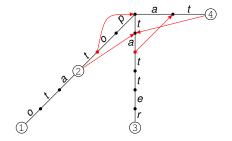


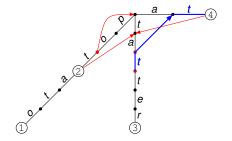


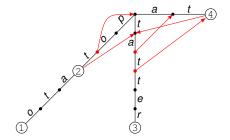


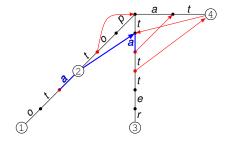


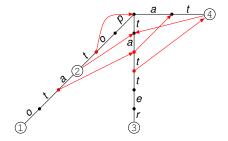


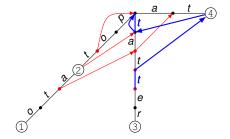


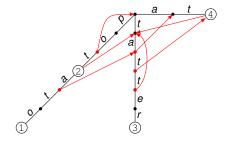


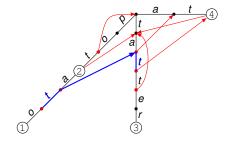


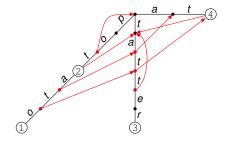


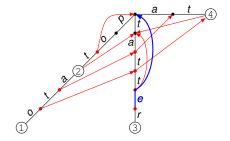


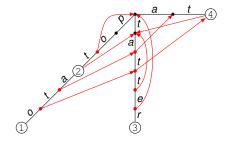


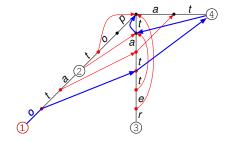


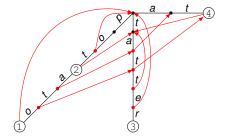


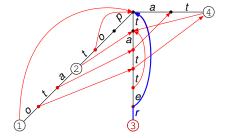


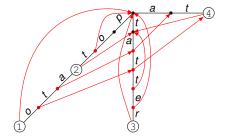


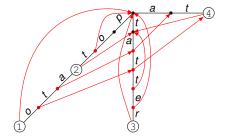




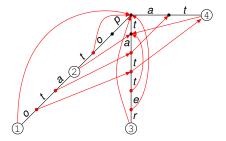








Illustrated example for the keyword tree of $P = \{potato, pot, tatter, at\}$



REMARK: The runtime complexity of this algorithm for the computation of failure links is O(n), where $n = |P_1| + ... + |P_z|$

A proof of this fact can be found in the recommended bibliography.

References

- ► Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms. Third Edition. Chapter 32. The MIT Press. 2009.
- ▶ D. Gusfield: Algorithms on Strings, Trees, and Sequences. Published by Press Syndicate of the University of Cambridge. 1997.