
String matching
The finite automaton approach.

The Aho-Corasick algorithm

November 8, 2019

String matching

String matching
Assumptions, conventions of notation

An alphabet Σ is a finite set of characters.
A string S of length n ≥ 0 is an array S[1..n] of characters
from Σ. We write |S| for the length of S. Thus, |S| = n
S[i] is the character of S at position i
S[i ..j] represents the substring of S form position i to
position j inclusively.

Example

If S = alphabet then |S| = 8, S[1] = a,S[2] = b,
S[1..4] = alph, S[3..7] = phabe

String matching

String matching
Preliminaries

ASSUMPTIONS:
I Σ : finite set of characters (an alphabet).

E.g., Σ = {a,b, . . . , z}
I P[1..m] : array of m > 0 characters from Σ (the pattern)
I T [1..n] : array of n > 0 characters from Σ (the text)

We say that P occurs with shift s in T (or, equivalently, that P
occurs beginning at position s + 1 in T) if 0 ≤ s ≤ n −m and
T [s + 1..s + m] = P[1..m] (that is, if T [s + j] = P[j], for
1 ≤ j ≤ m).
EXAMPLE:

String matching

The string matching problem

Given a pattern P[1..m] and a text T [1..n]

Find all shifts s where P occurs in T .

Terminology and notation:
Σ∗=the set of all strings of characters from Σ

If x , y ∈ Σ∗ then
x y :=the concatenation of x with y
|x | := the length (number of characters) of x
ε :=the zero-length empty string
x is prefix of y , notation x v y , if y = x w for some w ∈ Σ∗.
x is suffix of y , notation x w y , if y = w x for some w ∈ Σ∗.

Example: ab v abcca

REMARKS

1 x w y if and only if x a w y a.
2 Every string is either ε, or of the form wa where a ∈ Σ and

w a string.

String matching

The naive string matching algorithm

NAIVESTRINGMATCHER(T ,P)
1 n := T .length
2 m := P.length
3 for s = 0 to n −m
4 if P[1..m] == T [s + 1..s + m]
5 print “pattern occurs with shift” s

EXAMPLE:

Time complexity: O((n −m + 1) m)

I Several character comparison are performed repeatedly
I Can we do better?

String matching

String matching with finite automata

Definition (Finite automaton)

A finite automaton is a 5-tuple A = (Q,q0,A,Σ, δ) where
Q : finite set of states
q0 ∈ Q: the start state
A ⊆ Q: distinguished set of accepting states
Σ:=finite set of characters (the input alphabet)
δ : Q × Σ→ Q is the transition function

Alternative representations of a finite automaton:
1 Tabular representation of δ
2 state-transition diagram

(see next slide)

String matching

String matching with finite automata

Definition (Finite automaton)

A finite automaton is a 5-tuple A = (Q,q0,A,Σ, δ) where
Q : finite set of states
q0 ∈ Q: the start state
A ⊆ Q: distinguished set of accepting states
Σ:=finite set of characters (the input alphabet)
δ : Q × Σ→ Q is the transition function

Alternative representations of a finite automaton:
1 Tabular representation of δ
2 state-transition diagram

(see next slide)

String matching

Alternative representations of a finite automaton

A = (Q,q0,A,Σ, δ) where
Q = {0,1},q0 = 0,A = {1},Σ = {a,b}

Tabular representation:

δ a b
→ 0 1 0
← 1 0 0

State-transition diagram:

0start 1

b

a

a
b

String matching

Acceptance by finite automata

ASSUMPTION: A = (Q,q0,A,Σ, δ) is a finite automaton.
Define inductively φ : Σ∗ → Q, as follows:

φ(ε) := q0,
φ(wa) := δ(φ(w),a).

We say that w is accepted by A if φ(w) ∈ A.

Example
The following finite automaton accepts all (and only) words of
the form ambn where m ≥ 0, n ≥ 1 :

0start 1 2

a

b a

b a

b

REMARK: The time complexity of computing φ(w) is O(n)
where n = |w |.

String matching

A finite automaton for the string matching problem
Main ideas

I Define a finite automaton A such that T [1..i] is accepted
by A if and only if it has suffix P (that is, P w T [1..i]).

I A can be defined in a preprocessing step of P[1..m]

To understand the construction of A, we shall define the
suffix function σ corresponding to pattern P:

Definition
The suffix function corresponding to pattern P[1..m] is the
function σ : Σ∗ → {0, . . . ,m} such that σ(x) is the length of the
longest prefix of P that is also a suffix of x . Formally:

σ(x) := max{k | 0 ≤ k ≤ m and P[1..k] w x}.

EXAMPLES: If P = ab then σ(ε) = 0, σ(ccaca) = 1,
σ(acab) = 2.

String matching

A finite automaton for the string matching problem
Main ideas

I Define a finite automaton A such that T [1..i] is accepted
by A if and only if it has suffix P (that is, P w T [1..i]).

I A can be defined in a preprocessing step of P[1..m]

To understand the construction of A, we shall define the
suffix function σ corresponding to pattern P:

Definition
The suffix function corresponding to pattern P[1..m] is the
function σ : Σ∗ → {0, . . . ,m} such that σ(x) is the length of the
longest prefix of P that is also a suffix of x . Formally:

σ(x) := max{k | 0 ≤ k ≤ m and P[1..k] w x}.

EXAMPLES: If P = ab then σ(ε) = 0, σ(ccaca) = 1,
σ(acab) = 2.

String matching

A finite automaton for the string matching problem
Main ideas

I Define a finite automaton A such that T [1..i] is accepted
by A if and only if it has suffix P (that is, P w T [1..i]).

I A can be defined in a preprocessing step of P[1..m]

To understand the construction of A, we shall define the
suffix function σ corresponding to pattern P:

Definition
The suffix function corresponding to pattern P[1..m] is the
function σ : Σ∗ → {0, . . . ,m} such that σ(x) is the length of the
longest prefix of P that is also a suffix of x . Formally:

σ(x) := max{k | 0 ≤ k ≤ m and P[1..k] w x}.

EXAMPLES: If P = ab then σ(ε) = 0, σ(ccaca) = 1,
σ(acab) = 2.

String matching

The suffix function
Properties

Suffix-function recursion lemma
For any string x and character a ∈ Σ, if q = σ(x), then
σ(x a) = σ(P[1..q] a).

A graphical illustration of a proof of this Lemma is shown below:

String matching

The finite automaton corresponding to a pattern

ASSUMPTION: P[1..m] is the given pattern,
The corresponding finite automaton is A = (Q,q0,A,Σ, δ)
where:
I Q = {0,1,2, . . . ,m}
I q0 = 0
I A = {m}

δ(q,a) = σ(P[1..q] a)

Example

The finite automaton corresponding to P[1..7] = ababaca is

0 1 2 3 4 5 6 7a b a b a c a

b a

a

b

a

b

a
a

The missing transitions from a node point to state 0.

String matching

The finite automaton corresponding to a pattern
Illustrated example

0 1 2 3 4 5 6 7a b a b a c a

b a

a

b

a

b

a
a

The remaining question is:
How to compute the state transition function δ of A?

String matching

The finite automaton corresponding to a pattern
Illustrated example

0 1 2 3 4 5 6 7a b a b a c a

b a

a

b

a

b

a
a

The remaining question is:
How to compute the state transition function δ of A?

String matching

Computing the transition function
A naive implementation (pseudocode)

COMPUTETRANSITIONFUNCTION(P,Σ)
1 m := P.length
2 for q := 0 to m
3 for each character a ∈ Σ
4 k := min(m,q + 1) + 1
5 repeat
6 k := k − 1
7 until P[1..k] A P[1..q] a
8 δ(q,a) := k
9 return δ

Time complexity: O(m3 |Σ|).

There are better algorithms, which can compute δ with time
complexity O(m |Σ|).

String matching

Generalizaton
Matching with a set of patterns

We assume given
T [1..m] called text
A finite set of patterns P = {P1,P2, . . . ,Pz}

Find all positions where some P ∈ P occurs in T .

USEFUL AUXILIARY NOTIONS

1 keyword tree K of the set P
2 failure links between the nodes of K

String matching

Generalizaton
Matching with a set of patterns

We assume given
T [1..m] called text
A finite set of patterns P = {P1,P2, . . . ,Pz}

Find all positions where some P ∈ P occurs in T .
USEFUL AUXILIARY NOTIONS

1 keyword tree K of the set P
2 failure links between the nodes of K

String matching

1. Keyword tree
Definition

The keyword tree of a set of patterns P = {P1, . . . ,Pz} is a tree
K which satisfies 3 conditions:

1 every edge is labeled with exactly 1 character.
2 Distinct edges which leave from a node are labeled with

distinct characters.
3 Every pattern Pi ∈ P gets mapped to a unique node v of K

as follows: the string of characters along the branch from
root to node v is Pi , and every leaf node of K is the
mapping of a pattern from P.

NOTATION: for every node v ∈ K, L(v) is the string of
characters along the branch of K from root to node v .

String matching

1. Keyword tree
Definition

The keyword tree of a set of patterns P = {P1, . . . ,Pz} is a tree
K which satisfies 3 conditions:

1 every edge is labeled with exactly 1 character.
2 Distinct edges which leave from a node are labeled with

distinct characters.
3 Every pattern Pi ∈ P gets mapped to a unique node v of K

as follows: the string of characters along the branch from
root to node v is Pi , and every leaf node of K is the
mapping of a pattern from P.

NOTATION: for every node v ∈ K, L(v) is the string of
characters along the branch of K from root to node v .

String matching

1. Keyword tree
Example for P = {potato, tattoo, theater , other}

1 2 3

4
p

o

t

a

t
o

o t h e r

t

a

t

t

o
o

h

e
a

t
e

r

String matching

2. Failure links
Definition

Let K be the keyword tree for P = {P1, . . . ,Pz}. Every node v
of K has only one failure link to the node nv of K which has the
following property: L(nv) is the longest proper suffix of L(v)
which is a prefix of a pattern from P.

Example for P = {potato, tattoo, theater ,other}

1 2 3

4
p

o

t

a

t
o

o t h e r

t

a

t

t

o
o

h

e
a

t
e

r

the failure links which are
not depicted, go to the root
of K

String matching

Aho-Corasick algorithm

Allows to find all occurrences of P in T [1..m] in time O(m). It
relies on the keyword tree K for P and its failure links.
The characters of T [1..m] are read from left to right:

1 crt :=root of K
i := 1

2 If L(crt) = Pj or there is a sequence of failure links
crt → . . .→ w with L(w) = Pj

signal “Pj occurs at position i in T ”
3 If i = m then STOP.
4 If T [i] = c and there is an edge crt

c
− v then

i := i + 1, crt := v , goto 2.
5 If T [i] = c and there is no edge crt

c
− v then let

crt → . . .→ v the shortest sequence of failure links such

that ∃v
c
− w an let crt := v .

If no such sequence exists, let crt := root of K.
6 goto 2.

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2 3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a

t

e

r

potheater

M

p

M

o

M

t

M

o t h eo t h e

t
h

e

a

t

e

r

MMMMM

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2 3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a

t

e

r

potheater
M

p

M

o

M

t

M

o t h eo t h e

t
h

e

a

t

e

r

MMMMM

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2 3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a

t

e

r

potheater
M

p

M

o

M

t

M

o t h eo t h e

t
h

e

a

t

e

r

MMMMM

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2 3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a

t

e

r

potheater
M

p

M

o

M

t

M

o t h eo t h e

t
h

e

a

t

e

r

MMMMM

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2 3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a

t

e

r

potheater
M

p

M

o

M

t

M

o t h

eo t h e

t
h

e

a

t

e

r

MMMMM

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2 3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a

t

e

r

potheater
M

p

M

o

M

t

M

o t h e

o t h e

t
h

e

a

t

e

r

M

MMMM

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2 3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a

t

e

r

potheater
M

p

M

o

M

t

M

o t h e

o t h e

t
h

e

a

t

e

r

MM

MMM

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2 3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a

t

e

r

potheater
M

p

M

o

M

t

M

o t h e

o t h e

t
h

e

a

t

e

r

MMM

MM

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2 3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a

t

e

r

potheater
M

p

M

o

M

t

M

o t h e

o t h e

t
h

e

a

t

e

r

MMMM

M

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
Illustrated example: P = {potato, tattoo, theater , other}, T = potheater

1 2

3

3

44p

o

t

a

t

o

o t h e r

t

a

t

t

o

o

h

e

a

t

e

r

potheater
M

p

M

o

M

t

M

o t h e

o t h e

t
h

e

a

t

e

r

MMMMM

⇒ detected occurrence of P3 = theater

String matching

Aho-Corasick algorithm
The construction of the suffix tree and of the failure links in time O(n)

P = {P1, . . . ,Pz}, n := |P1|+ . . .+ |Pz |
I The keyword tree K for P is built by adding repeatedly the

edges for P1, . . . ,Pz to an initially empty tree.
The addition of the edges for Pi has runtime complexity
O(|Pi |)

⇒ the construction of K has runtime complexity
O(|P1|+ . . .+ |Pz |) = O(n)

I The failure links are added to each node of K in the order
of a breadth-first traversal: If r is the root of K then

add a failure link for the root of K: r → r
for the nodes of v at tree depth 1: add failure links v → r
if v is a node at depth k > 1, then let

v ′ be the parent of v
x be the label of v − v ′

π : v ′ → v1 → . . . vi be the shortest sequence of failure links
such that there is an edge vi − w in K with label x

If π exists: add the failure link v → w
If π does not exist: add the failure link v → r

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

o

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

a

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t 4t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

2

t

t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a tt

t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

a

a

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

t

t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

t

t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

e

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

o
1

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

r
3

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

Addition of failure links to a keyword tree
Illustrated example for the keyword tree of P = {potato, pot , tatter , at}

2

1 3

4p

o
t

a
t

o

t

a

t

t

e
r

a t

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |P1|+ . . .+ |Pz |
I A proof of this fact can be found in the recommended

bibliography.

String matching

References

I Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein:
Introduction to Algorithms. Third Edition. Chapter 32. The
MIT Press. 2009.

I D. Gusfield: Algorithms on Strings, Trees, and Sequences.
Published by Press Syndicate of the University of
Cambridge. 1997.

String matching

