String matching

The finite automaton approach. The Aho-Corasick algorithm

November 8, 2019

- An alphabet Σ is a finite set of characters.
- A string S of length $n \geq 0$ is an array $S[1 . . n]$ of characters from Σ. We write $|S|$ for the length of S. Thus, $|S|=n$
- $S[i]$ is the character of S at position i
- $S[i . . j]$ represents the substring of S form position i to position j inclusively.

Example

If $S=$ alphabet then $|S|=8, S[1]=\mathrm{a}, S[2]=\mathrm{b}$,
$S[1 . .4]=$ alph,$S[3 . .7]=$ phabe

String matching

Preliminaries

Assumptions:

- Σ : finite set of characters (an alphabet).

$$
\text { E.g., } \Sigma=\{a, b, \ldots, z\}
$$

- $P[1 . . m]$: array of $m>0$ characters from Σ (the pattern)
- T [1..n] : array of $n>0$ characters from Σ (the text)

We say that P occurs with shift s in T (or, equivalently, that P occurs beginning at position $s+1$ in T) if $0 \leq s \leq n-m$ and $T[s+1 . . s+m]=P[1 . . m]$ (that is, if $T[s+j]=P[j]$, for $1 \leq j \leq m)$.
ExAMPLE:
text T

a	b	c	a	b	a	a	b	c	a	b	a	c

pattern $P \xrightarrow{s=3}$| a | b | a | a |
| :--- | :--- | :--- | :--- |

The string matching problem

Given a pattern $P[1 . . m]$ and a text $T[1 . . n]$
Find all shifts s where P occurs in T.
Terminology and notation:

- $\Sigma^{*}=$ the set of all strings of characters from Σ
- If $x, y \in \Sigma^{*}$ then
- $x y$:=the concatenation of x with y
- $|x|:=$ the length (number of characters) of x
- $\epsilon:=$ the zero-length empty string
- x is prefix of y, notation $x \sqsubseteq y$, if $y=x w$ for some $w \in \Sigma^{*}$.
x is suffix of y, notation $x \sqsupseteq y$, if $y=w x$ for some $w \in \Sigma^{*}$.
Example: $\mathrm{ab} \sqsubseteq$ abcca

Remarks

(1) $x \sqsupseteq y$ if and only if $x a \sqsupseteq y a$.
(2) Every string is either ϵ, or of the form wa where $a \in \Sigma$ and w a string.

The naive string matching algorithm

NaiveStringMatcher (T, P)
$1 n:=$ T.length
$2 m:=P$.length
3 for $s=0$ to $n-m$
4 if $P[1 . . m]==T[s+1 . . s+m]$
5 print "pattern occurs with shift" s
Example:

(a)

(b)

(c)

(d)

- Time complexity: $O((n-m+1) m)$
- Several character comparison are performed repeatedly
- Can we do better?

String matching with finite automata

Definition (Finite automaton)

A finite automaton is a 5 -tuple $\mathcal{A}=\left(Q, q_{0}, A, \Sigma, \delta\right)$ where

- Q : finite set of states
- $q_{0} \in Q$: the start state
- $A \subseteq Q$: distinguished set of accepting states
- $\Sigma:=$ finite set of characters (the input alphabet)
- $\delta: Q \times \Sigma \rightarrow \boldsymbol{Q}$ is the transition function

String matching with finite automata

Definition (Finite automaton)

A finite automaton is a 5 -tuple $\mathcal{A}=\left(Q, q_{0}, A, \Sigma, \delta\right)$ where

- Q : finite set of states
- $q_{0} \in Q$: the start state
- $A \subseteq Q$: distinguished set of accepting states
- $\Sigma:=$ finite set of characters (the input alphabet)
- $\delta: Q \times \boldsymbol{\Sigma} \rightarrow \boldsymbol{Q}$ is the transition function

Alternative representations of a finite automaton:
(1) Tabular representation of δ
(2) state-transition diagram
(see next slide)

Alternative representations of a finite automaton

$\mathcal{A}=\left(Q, q_{0}, A, \Sigma, \delta\right)$ where
$Q=\{0,1\}, q_{0}=0, A=\{1\}, \Sigma=\{a, b\}$

- Tabular representation:

δ	a	b
$\rightarrow 0$	1	0
$\leftarrow 1$	0	0

- State-transition diagram:

Acceptance by finite automata

Assumption: $\mathcal{A}=\left(Q, q_{0}, A, \Sigma, \delta\right)$ is a finite automaton.

- Define inductively $\phi: \Sigma^{*} \rightarrow Q$, as follows:

$$
\begin{aligned}
& \phi(\epsilon):=q_{0} \\
& \phi(w a):=\delta(\phi(w), a) .
\end{aligned}
$$

We say that w is accepted by \mathcal{A} if $\phi(w) \in A$.

Example

The following finite automaton accepts all (and only) words of the form $a^{m} b^{n}$ where $m \geq 0, n \geq 1$:

REMARK: The time complexity of computing $\phi(w)$ is $O(n)$ where $n=|w|$.

A finite automaton for the string matching problem

 Main ideas- Define a finite automaton \mathcal{A} such that $T[1 . . i]$ is accepted by \mathcal{A} if and only if it has suffix P (that is, $P \sqsupseteq T[1 . . i]$).
- \mathcal{A} can be defined in a preprocessing step of $P[1 . . m]$
- To understand the construction of \mathcal{A}, we shall define the suffix function σ corresponding to pattern P :

A finite automaton for the string matching problem Main ideas

- Define a finite automaton \mathcal{A} such that $T[1 . . i]$ is accepted by \mathcal{A} if and only if it has suffix P (that is, $P \sqsupseteq T[1 . . i]$).
- \mathcal{A} can be defined in a preprocessing step of $P[1 . . m]$
- To understand the construction of \mathcal{A}, we shall define the suffix function σ corresponding to pattern P :

Definition

The suffix function corresponding to pattern $P[1 . . m]$ is the function $\sigma: \Sigma^{*} \rightarrow\{0, \ldots, m\}$ such that $\sigma(x)$ is the length of the longest prefix of P that is also a suffix of x. Formally:

$$
\sigma(x):=\max \{k \mid 0 \leq k \leq m \text { and } P[1 . . k] \sqsupseteq x\} .
$$

A finite automaton for the string matching problem
 \section*{Main ideas}

- Define a finite automaton \mathcal{A} such that $T[1 . . i]$ is accepted by \mathcal{A} if and only if it has suffix P (that is, $P \sqsupseteq T[1 . . i]$).
$-\mathcal{A}$ can be defined in a preprocessing step of $P[1 . . m]$
- To understand the construction of \mathcal{A}, we shall define the suffix function σ corresponding to pattern P :

Definition

The suffix function corresponding to pattern $P[1 . . m]$ is the function $\sigma: \Sigma^{*} \rightarrow\{0, \ldots, m\}$ such that $\sigma(x)$ is the length of the longest prefix of P that is also a suffix of x. Formally:

$$
\sigma(x):=\max \{k \mid 0 \leq k \leq m \text { and } P[1 . . k] \sqsupseteq x\} .
$$

EXAMPLES: If $P=\mathrm{ab}$ then $\sigma(\epsilon)=0, \sigma($ ccaca $)=1$, $\sigma(\mathrm{acab})=2$.

The suffix function

Properties

Suffix-function recursion lemma

For any string x and character $a \in \Sigma$, if $q=\sigma(x)$, then $\sigma(x a)=\sigma(P[1 . . q] a)$.

A graphical illustration of a proof of this Lemma is shown below:

The finite automaton corresponding to a pattern

ASSUMPTION: $P[1 . . m]$ is the given pattern,
The corresponding finite automaton is $\mathcal{A}=\left(Q, q_{0}, A, \Sigma, \delta\right)$ where:

$$
\begin{aligned}
& \text { - } Q=\{0,1,2, \ldots, m\} \\
& \text { - } q_{0}=0 \\
& \text { - } A=\{m\} \\
& \delta(q, a)=\sigma(P[1 . . q] a)
\end{aligned}
$$

Example

The finite automaton corresponding to $P[1 . .7]=$ ababaca is

The missing transitions from a node point to state 0.

The finite automaton corresponding to a pattern Illustrated example

The finite automaton corresponding to a pattern Illustrated example

The remaining question is:
How to compute the state transition function δ of \mathcal{A} ?

Computing the transition function

A naive implementation (pseudocode)

ComputeTransitionFunction (P, Σ)
$1 m$:= P.length
2 for $q:=0$ to m
3 for each character $a \in \Sigma$
$4 \quad k:=\min (m, q+1)+1$
5 repeat
$6 \quad k:=k-1$
7 until $P[1 . . k] \sqsupset P[1 . . q] a$
$8 \quad \delta(q, a):=k$
9 return δ

Time complexity: $O\left(m^{3}|\Sigma|\right)$.
There are better algorithms, which can compute δ with time complexity $O(m|\Sigma|)$.

Generalizaton

Matching with a set of patterns

We assume given

- $T[1 . . m]$ called text
- A finite set of patterns $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{z}\right\}$

Find all positions where some $P \in \mathcal{P}$ occurs in T.

Generalizaton

Matching with a set of patterns

We assume given

- $T[1 . . m]$ called text
- A finite set of patterns $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{z}\right\}$

Find all positions where some $P \in \mathcal{P}$ occurs in T.
USEFUL AUXILIARY NOTIONS
(1) keyword tree \mathcal{K} of the set \mathcal{P}
(2) failure links between the nodes of \mathcal{K}

1. Keyword tree
 Definition

The keyword tree of a set of patterns $\mathcal{P}=\left\{P_{1}, \ldots, P_{z}\right\}$ is a tree \mathcal{K} which satisfies 3 conditions:
(1) every edge is labeled with exactly 1 character.
(2) Distinct edges which leave from a node are labeled with distinct characters.
(3) Every pattern $P_{i} \in \mathcal{P}$ gets mapped to a unique node v of \mathcal{K} as follows: the string of characters along the branch from root to node v is P_{i}, and every leaf node of \mathcal{K} is the mapping of a pattern from \mathcal{P}.

1. Keyword tree
 Definition

The keyword tree of a set of patterns $\mathcal{P}=\left\{P_{1}, \ldots, P_{z}\right\}$ is a tree \mathcal{K} which satisfies 3 conditions:
(1) every edge is labeled with exactly 1 character.
(2) Distinct edges which leave from a node are labeled with distinct characters.
(3) Every pattern $P_{i} \in \mathcal{P}$ gets mapped to a unique node v of \mathcal{K} as follows: the string of characters along the branch from root to node v is P_{i}, and every leaf node of \mathcal{K} is the mapping of a pattern from \mathcal{P}.
Notation: for every node $v \in \mathcal{K}, \mathcal{L}(v)$ is the string of characters along the branch of \mathcal{K} from root to node v.

1. Keyword tree

Example for $\mathcal{P}=\{$ potato, tattoo, theater, other $\}$

2. Failure links

Definition

Let \mathcal{K} be the keyword tree for $\mathcal{P}=\left\{P_{1}, \ldots, P_{z}\right\}$. Every node v of \mathcal{K} has only one failure link to the node n_{v} of \mathcal{K} which has the following property: $\mathcal{L}\left(n_{v}\right)$ is the longest proper suffix of $\mathcal{L}(v)$ which is a prefix of a pattern from \mathcal{P}.

Example for $\mathcal{P}=\{$ potato, tattoo, theater, other $\}$

the failure links which are not depicted, go to the root of \mathcal{K}

Aho-Corasick algorithm

Allows to find all occurrences of \mathcal{P} in $T[1 . . m]$ in time $O(m)$. It relies on the keyword tree \mathcal{K} for \mathcal{P} and its failure links.
The characters of $T[1 . . m]$ are read from left to right:
(1) crt :=root of \mathcal{K} $i:=1$
(2) If $\mathcal{L}(c r t)=P_{j}$ or there is a sequence of failure links crt $\rightarrow \ldots \rightarrow w$ with $\mathcal{L}(w)=P_{j}$

- signal " P_{j} occurs at position i in T "
(3) If $i=m$ then STOP.
(4) If $T[i]=c$ and there is an edge $c r t \stackrel{c}{-} v$ then
$i:=i+1, c r t:=v$, goto 2.
(5) If $T[i]=c$ and there is no edge $c r t \stackrel{c}{-} v$ then let $c r t \rightarrow \ldots \rightarrow v$ the shortest sequence of failure links such that $\exists v \stackrel{c}{-} w$ an let $c r t:=v$.
If no such sequence exists, let $c r t:=$ root of \mathcal{K}.
(6) goto 2 .

Aho-Corasick algorithm

Illustrated example: $\mathcal{P}=\{$ potato, tattoo, theater, other $\}, T=$ potheater

Aho-Corasick algorithm

Illustrated example: $\mathcal{P}=\{$ potato, tattoo, theater, other $\}, T=$ potheater

${\underset{\Delta}{ }}_{\mathrm{p}}^{\mathrm{D}}$ otheater

Aho-Corasick algorithm

Illustrated example: $\mathcal{P}=\{$ potato, tattoo, theater, other $\}, T=$ potheater

potheater
$\Delta \Delta$

Aho-Corasick algorithm

Illustrated example: $\mathcal{P}=\{$ potato, tattoo, theater, other $\}, T=$ potheater

potheater
$\Delta \Delta \Delta$

Aho-Corasick algorithm

Illustrated example: $\mathcal{P}=\{$ potato, tattoo, theater, other $\}, T=$ potheater

potheater
$\Delta \Delta \Delta \Delta$

Aho-Corasick algorithm

Illustrated example: $\mathcal{P}=\{$ potato, tattoo, theater, other $\}, T=$ potheater

potheater
$\Delta \Delta \Delta \Delta \Delta$

Aho-Corasick algorithm

Illustrated example: $\mathcal{P}=\{$ potato, tattoo, theater, other $\}, T=$ potheater

potheater
$\Delta \Delta \Delta \Delta \Delta \Delta$

Aho-Corasick algorithm

Illustrated example: $\mathcal{P}=\{$ potato, tattoo, theater, other $\}, T=$ potheater

potheater
$\Delta \Delta \Delta \Delta \Delta \Delta \Delta$

Aho-Corasick algorithm

Illustrated example: $\mathcal{P}=\{$ potato, tattoo, theater, other $\}, T=$ potheater

potheater
$\Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta$

Aho-Corasick algorithm

Illustrated example: $\mathcal{P}=\{$ potato, tattoo, theater, other $\}, T=$ potheater

potheater
$\Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta \Delta$
\Rightarrow detected occurrence of $P_{3}=$ theater

Aho-Corasick algorithm

The construction of the suffix tree and of the failure links in time $O(n)$

$\mathcal{P}=\left\{P_{1}, \ldots, P_{z}\right\}, n:=\left|P_{1}\right|+\ldots+\left|P_{z}\right|$

- The keyword tree \mathcal{K} for \mathcal{P} is built by adding repeatedly the edges for P_{1}, \ldots, P_{z} to an initially empty tree.
- The addition of the edges for P_{i} has runtime complexity $O\left(\left|P_{i}\right|\right)$
\Rightarrow the construction of \mathcal{K} has runtime complexity $O\left(\left|P_{1}\right|+\ldots+\left|P_{z}\right|\right)=O(n)$
- The failure links are added to each node of \mathcal{K} in the order of a breadth-first traversal: If r is the root of \mathcal{K} then
- add a failure link for the root of $\mathcal{K}: r \rightarrow r$
- for the nodes of v at tree depth 1: add failure links $v \rightarrow r$
- if v is a node at depth $k>1$, then let
- v^{\prime} be the parent of v
- x be the label of $v-v^{\prime}$
- $\pi: v^{\prime} \rightarrow v_{1} \rightarrow \ldots v_{i}$ be the shortest sequence of failure links such that there is an edge $v_{i}-w$ in \mathcal{K} with label x
If π exists: add the failure link $v \rightarrow w$
If π does not exist: add the failure link $v \rightarrow \varepsilon$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

Addition of failure links to a keyword tree

Illustrated example for the keyword tree of $\mathcal{P}=\{$ potato, pot, tatter, at $\}$

REMARK: The runtime complexity of this algorithm for the computation of failure links is $O(n)$, where $n=\left|P_{1}\right|+\ldots+\left|P_{z}\right|$

- A proof of this fact can be found in the recommended bibliography.

References

- Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein: Introduction to Algorithms. Third Edition. Chapter 32. The MIT Press. 2009.
- D. Gusfield: Algorithms on Strings, Trees, and Sequences. Published by Press Syndicate of the University of Cambridge. 1997.

