String matching

The finite automaton approach.
The Aho-Corasick algorithm

November 8, 2019

String matching

Assumptions, conventions of notation

@ An alphabet X is a finite set of characters.

@ Astring S of length n > 0 is an array S[1..n] of characters
from X. We write |S| for the length of S. Thus, |S| =n

@ SJi] is the character of S at position i

@ SJi..j] represents the substring of S form position i to
position j inclusively.

If S= alphabet then |S| =8, S[1] = a, S[2] = b,

S[1..4] = alph, S[3..7] = phabe

String matching
Preliminaries

ASSUMPTIONS:
» 2 :finite set of characters (an alphabet).
Eg,.X={ab,...,z}
» P[1..m] : array of m > 0 characters from X (the pattern)
» T[1..n]: array of n > 0 characters from X (the text)
We say that P occurs with shift sin T (or, equivalently, that P
occurs beginning at position s+1in T)if0 <s<n-—mand
T[s+1..s+m] = P[1.m] (thatis, if T[s + j] = P[j], for
1<j<m).
EXAMPLE:

text T' |a‘blcla]b|a]a|b‘c‘albla|c‘

pattern P 9=3 Euﬂﬂ

The string matching problem

Given a pattern P[1..m] and a text T[1..n]
Find all shifts s where P occursin T.

Terminology and notation:
@ Y *=the set of all strings of characters from *

o If x,y € ¥* then

e x y:=the concatenation of x with y

e |x| :=the length (number of characters) of x

e ¢ :=the zero-length empty string

e x is prefix of y, notation x C y, if y = x w for some w € L*.
x is suffix of y, notation x J y, if y = w x for some w € X*.

Example: ab C abcca
REMARKS
Q@ xIyifandonlyifxadya.

@ Every string is either ¢, or of the form wa where a € ¥ and
w a string.

String matching

The naive string matching algorithm

NAIVESTRINGMATCHER(T, P)

1 n:= T.length

2 m:= P.length
3fors=0ton—m

4 ifP[1.m==T[s+1.s+m|

5 print “pattern occurs with shift” s
EXAMPLE:

lTIc\ala\blcl lale[afa[p[c] [a]c[afa]p]c] \a{clallelc\
s=0aab S=—1>aab 4_{5:3 alal|b

(@) (®) © @

@ Time complexity: O((n—m-+1)m)
» Several character comparison are performed repeatedly
» Can we do better?

String matching

String matching with finite automata

Definition (Finite automaton)
A finite automaton is a 5-tuple A = (Q, qu, A, X, §) where
@ Q :finite set of states
@ qo € Q: the start state
@ A C Q: distinguished set of accepting states
@ X :=finite set of characters (the input alphabet)
® §/: Q x X — Qisthe transition function

String matching

String matching with finite automata

Definition (Finite automaton)
A finite automaton is a 5-tuple A = (Q, qu, A, X, §) where
@ Q :finite set of states
@ qo € Q: the start state
@ A C Q: distinguished set of accepting states
@ X :=finite set of characters (the input alphabet)
® §/: Q x X — Qisthe transition function

Alternative representations of a finite automaton:
@ Tabular representation of §
@ state-transition diagram

(see next slide)

String matching

Alternative representations of a finite automaton

A=(Q,q,A X,0) where

Q={0,1},90=0,A={1},X = {a,b}
@ Tabular representation:

5

-0
«—1

o =
o ol

@ State-transition diagram:

String matching

Acceptance by finite automata

ASSUMPTION: A = (Q, qo, A, X, 0) is a finite automaton.
@ Define inductively ¢ : ¥* — Q, as follows:
¢(€) = Qo;
o(wa) := 5(6(w), a).
We say that w is accepted by A if ¢(w) € A.

Example

The following finite automaton accepts all (and only) words of
the form a™b"” where m>0,n> 1 :

a b a
OROSEO
b

REMARK: The time complexity of computing ¢(w) is O(n)
where n = |w]|.

String matching

A finite automaton for the string matching problem

Main ideas

» Define a finite automaton A such that T[1..i] is accepted
by A if and only if it has suffix P (thatis, P J T[1..i]).
» A can be defined in a preprocessing step of P[1..m]

e To understand the construction of A, we shall define the
suffix function o corresponding to pattern P:

String matching

A finite automaton for the string matching problem

Main ideas

» Define a finite automaton A such that T[1..i] is accepted
by A if and only if it has suffix P (thatis, P J T[1..i]).
» A can be defined in a preprocessing step of P[1..m]
e To understand the construction of A, we shall define the
suffix function o corresponding to pattern P:

Definition

The suffix function corresponding to pattern P[1..m] is the
function o : ¥* — {0, ..., m} such that o(x) is the length of the
longest prefix of P that is also a suffix of x. Formally:

o(x):=max{k |0 < k <mand P[1..k] O x}.

String matching

A finite automaton for the string matching problem

Main ideas

» Define a finite automaton A such that T[1..i] is accepted
by A if and only if it has suffix P (thatis, P J T[1..i]).
» A can be defined in a preprocessing step of P[1..m]

e To understand the construction of A, we shall define the
suffix function o corresponding to pattern P:

Definition

The suffix function corresponding to pattern P[1..m] is the
function o : ¥* — {0, ..., m} such that o(x) is the length of the
longest prefix of P that is also a suffix of x. Formally:

o(x):=max{k |0 < k <mand P[1..k] O x}.

EXAMPLES: If P = ab then o(¢) = 0, o(ccaca) =1,
o(acab) = 2.

String matching

The suffix function
Properties

Suffix-function recursion lemma

For any string x and character a € ¥, if g = o(x), then
o(xa) =o(P[1..9] a).

A graphical illustration of a proof of this Lemma is shown below:

String matching

The finite automaton corresponding to a pattern

ASSUMPTION: P[1..m] is the given pattern,
The corresponding finite automaton is A = (Q, qo, A, ¥, 9)
where:
» Q=1{0,1,2,...,m}
» go=0
» A={m}

5(q,a) = o(P[1..q] a)

The finite automaton corresponding to P[1..7] = ababaca is

The missing transitions from a node point to state 0.

String matching

The finite automaton corresponding to a pattern
lllustrated example

i — 1234567891011
Tli] — a b a b a b ac a b a
saeg(@) 0 123 45 45 cfge 3

The finite automaton corresponding to a pattern
lllustrated example

i — 1234567891011
Tli] — a b a b a b ac a b a
saeg(@) 0 123 45 45 cfge 3

The remaining question is:
How to compute the state transition function 6 of A?

String matching

Computing the transition function

A naive implementation (pseudocode)

COMPUTETRANSITIONFUNCTION(P, X)
1 m:= P.length

2forg:=0tom

3 foreachcharacterac &

4 K :=min(m,q+1)+1
5 repeat

6 k:=k-1

7 until P[1..k] O P[1..q]a
8 i(qg,a) =k

9 return ¢

Time complexity: O(m? |Z|).

There are better algorithms, which can compute ¢ with time
complexity O(m|X|).

Generalizaton
Matching with a set of patterns

We assume given

@ T[1..m] called text

@ Afinite set of patterns P = {Py, P>, ..., P}
Find all positions where some P € P occursin T.

Generalizaton
Matching with a set of patterns

We assume given
@ T[1..m] called text
@ Afinite set of patterns P = {Py, P>, ..., P}

Find all positions where some P € P occursin T.
USEFUL AUXILIARY NOTIONS

@ keyword tree K of the set P
@ failure links between the nodes of K

1. Keyword tree
Definition

The keyword tree of a set of patterns P = {Py, ..., P;} is atree
K which satisfies 3 conditions:
@ every edge is labeled with exactly 1 character.
© Distinct edges which leave from a node are labeled with
distinct characters.
© Every pattern P; € P gets mapped to a unigue node v of
as follows: the string of characters along the branch from
root to node v is P;, and every leaf node of K is the
mapping of a pattern from P.

String matching

1. Keyword tree
Definition

The keyword tree of a set of patterns P = {Py, ..., P;} is atree
K which satisfies 3 conditions:

@ every edge is labeled with exactly 1 character.

© Distinct edges which leave from a node are labeled with
distinct characters.

© Every pattern P; € P gets mapped to a unigue node v of
as follows: the string of characters along the branch from
root to node v is P;, and every leaf node of K is the
mapping of a pattern from P.

NOTATION: for every node v € K, L(v) is the string of
characters along the branch of 1C from root to node v.

String matching

1. Keyword tree

Example for P = {potato, tattoo, theater, other}

2. Failure links

Definition

Let K be the keyword tree for P = { Py, ..., P,}. Every node v
of K has only one failure link to the node n, of X which has the
following property: £(n,) is the longest proper suffix of L(v)
which is a prefix of a pattern from P.

Example for P = {potato, tattoo, theater, other}

the failure links which are
not depicted, go to the root

of K

String matching

Aho-Corasick algorithm

Allows to find all occurrences of P in T[1..m] in time O(m). It
relies on the keyword tree K for P and its failure links.
The characters of T[1..m] are read from left to right:
@ crt :=root of £
i=1
@ If L(crt) = P; or there is a sequence of failure links
crt — ... — wwith L(w) = PF;
e signal “P; occurs at position i in T”
Q If i= mthen STOP.
c
Q If T[] = c and there is an edge crt — v then
i:=i+1,crt:= v, goto 2.
@ If T[i] = c and there is no edge crt ° v then let
crt — ... — v the shortest sequence of failure links such
that v ‘w an let crt :=v.

If no such sequence exists, let crt := root of K.
© goto 2.

String matching

Aho-Corasick algorithm

lllustrated example: P = {potato, tattoo, theater, other}, T = potheater

potheater

String matching

Aho-Corasick algorithm

lllustrated example: P = {potato, tattoo, theater, other}, T = potheater

potheater
A

String matching

Aho-Corasick algorithm

lllustrated example: P = {potato, tattoo, theater, other}, T = potheater

potheater
AN

String matching

Aho-Corasick algorithm

lllustrated example: P = {potato, tattoo, theater, other}, T = potheater

String matching

Aho-Corasick algorithm

lllustrated example: P = {potato, tattoo, theater, other}, T = potheater

String

Aho-Corasick algorithm

lllustrated example: P = {potato, tattoo, theater, other}, T = potheater

String

Aho-Corasick algorithm

lllustrated example: P = {potato, tattoo, theater, other}, T = potheater

String

Aho-Corasick algorithm

lllustrated example: P = {potato, tattoo, theater, other}, T = potheater

String

Aho-Corasick algorithm

lllustrated example: P = {potato, tattoo, theater, other}, T = potheater

Aho-Corasick algorithm

lllustrated example: P = {potato, tattoo, theater, other}, T = potheater

Aho-Corasick algorithm

The construction of the suffix tree and of the failure links in time O(n)

P=A{Py,...,P;},n:=|Py|+ ... +|P;]
» The keyword tree K for P is built by adding repeatedly the

edges for Py, ..., P; to an initially empty tree.
e The addition of the edges for P; has runtime complexity
O(IPil)

= the construction of K has runtime complexity
O(|Pi| + ...+ |Pz|) = O(n)
» The failure links are added to each node of K in the order
of a breadth-first traversal: If r is the root of K then
@ add a failure link for the root of K: r — r
o for the nodes of v at tree depth 1: add failure links v — r
e if vis a node at depth k > 1, then let
@ V' be the parent of v
@ x be the label of v — v/
o m:V — vy — ...V, be the shortest sequence of failure links
such that there is an edge v; — w in K with label x
If © exists: add the failure link v — w
If = does not exist: add the failure link v, — r

String matching

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

String

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

String

Addition of failure links to a keyword tree

lllustrated example for the keyword tree of P = {potato, pot, tatter, at}

REMARK: The runtime complexity of this algorithm for the
computation of failure links is O(n), where n = |Py| 4 ... + | P;|

» A proof of this fact can be found in the recommended
bibliography.

String matching

References

» Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest, C. Stein:
Introduction to Algorithms. Third Edition. Chapter 32. The
MIT Press. 2009.

» D. Gusfield: Algorithms on Strings, Trees, and Sequences.
Published by Press Syndicate of the University of
Cambridge. 1997.

String matching

