A data structure for polynomial manipulations. Labwork

December 29, 2019

Deadline: December 13, 2019.
The purpose of this lab is to develop a data structure to work with univariate polynomials with floating-point coefficients.

A univariate polynomial with floating-point coefficients is

$$
p=a_{0}+a_{1} \cdot x+\ldots+a_{n} \cdot x^{n}
$$

where x is the indeterminate of the polynomial p, and $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$ are the coefficients of p. We assume that $a_{n} \neq 0$. The set of all polynomials of this kind is $\mathbb{R}[x]$.

We want design a data structure for such polynomials, with the following operations:

1. $\operatorname{deg}(p)$ returns the degree of polynomial p. If $p=a_{0}+a_{1} \cdot x+\ldots+a_{n} \cdot x^{n}$ with $a_{n} \neq 0$ then $\operatorname{deg}(p)=n$.
2. $\operatorname{lc}(p)$ returns the leading coefficient of polynomial p.

If $p=a_{0}+a_{1} \cdot x+\ldots+a_{n} \cdot x^{n}$ with $a_{n} \neq 0$ then $\operatorname{lc}(p)=a_{n}$.
3. coef (p, i) returns the coefficient a_{i} of x^{i} in p.
4. psum (p, q) returns the sum of polynomials p and q.
5. $\operatorname{pprod}(p, q)$ returns the product of polynomials p and p.
6. pquot (p, q) returns the quotient of dividing p by q.
7. $\operatorname{prem}(p, q)$ returns the remainder of dividing p by q.
8. $\operatorname{peval}(p, c)$ returns the value $p(c)$ for some $c \in \mathbb{R}$. If $p=a_{0}+a_{1} \cdot x+$ $\ldots+a_{n} \cdot x^{n}$ then $p(c)=a_{0}+a_{1} \cdot c+\ldots+a_{n} \cdot c^{n}$.

In Lecture 10, we mentioned two representations of univariate polynomials:

- The dense representation, which stores all coefficients $a_{0}, a_{1}, \ldots, a_{n}$ in a simply linked list.
- The sparse representation, which stores only the nonzero coefficients a_{i} together with the power i of x in p.

For example, $p=1-7 \cdot x+9 \cdot x^{3}$ has the dense list representation

and the sparse list representation

$g=1+x^{1000}$ has the dense representation

and the sparse representation

A suitable way to implement the nodes of the dense list representation of a univariate polynomial is with the $\mathrm{C}++$ class

```
struct DRepr {
    float coeff;
    DRepr* next;
};
```

To perform the polynomial operations mentioned before, consider implementing the static methods of the C++ class

```
class PolyOps {
    typedef DRepr* Poly;
    static int deg(Poly p);
    static float lc(Poly p);
    static Poly psum(Poly p,Poly q);
    static Poly pprod(Poly p,Poly q);
    static Poly pquot(Poly p,Poly q);
    static Poly prem(Poly p,Poly q);
    static float peval(Poly p,float c);
    static string toString(Poly p);
}
```

The last method is intended to return a string representation of the polynomial represented by p, and can be defined as follows:

```
string toString(Poly p) {
if (p==nullptr) return "0";
ostringstream ostr;
ostr << "";
int i=0;
while (p!=nullptr) {
        float c=p->coeff;
        if(i==0) ostr<<c;
        else
            if(c!=0) {
                    ostr<<(c>0)?'+':'-';
                    c=abs(c);
                    if(c!=1) ostr<<c<<'*';
                    ostr<<'x';
                    if(i>1) ostr<<'^'<<i;
                }
        i++;
        p=p->next;
    }
    return ostr.str();
}
```

For example, the string representation of $1-7 x+9 x^{3}+x^{4}-x^{5}$ is

```
1-7*x+9*x^3+x^4-x^5
```


Labwork

Implement the missing methods of class PolyOps and write a C++ program that behaves as follows:

- It asks the user to type the coefficients of a polynomial p, on one line, separated by spaces:

```
type the coefficients of p:
an
```

and creates the dense list representation of the polynomial
$p=a_{0}+a_{1} x+\ldots+a_{n-1} x^{n-1}+a_{n} x^{n}$

- It asks the user to type the coefficients of a polynomial q, on one line, separated by spaces:

```
type the coefficients of q:
bm}\mp@subsup{b}{m-1}{l
```

and creates the dense list representation of the polynomial $q=b_{0}+b_{1} x+\ldots+b_{m-1} x^{m-1}+b_{m} x^{m}$

- It asks the user to type a value v for a floating point variable c :

```
type the value of c: v
```

- It computes $p(\mathrm{c})$, and the sum, product, quotient and remainder of p and q, and shows them to the user:

```
The value of p(c) is ...
psum(p,q) = ...
pprod(p,q) = ...
pquot(p,q) = ...
prem(p,q) = ...
```

Remark: The following function provides easy way to create the dense list of a polynomial from the string of its coefficients:

```
Poly getPoly(string& coeff_list) {
    float c;
    Poly p = nullptr;
    istringstream iss(coef_list);
    while (iss >> c)
        p=new DRepr (c,p);
    return p;
}
```

(Note: in this implementation, we assumed that class DRepr was extended with a suitable constructor DRepr (float,DRepr*))

