
A data structure for polynomial manipulations.

Labwork

December 29, 2019

Deadline: December 13, 2019.

The purpose of this lab is to develop a data structure to work with univariate
polynomials with floating-point coefficients.

A univariate polynomial with floating-point coefficients is

p = a0 + a1 · x + . . . + an · xn

where x is the indeterminate of the polynomial p, and a0, a1, . . . , an ∈ R are
the coefficients of p. We assume that an 6= 0. The set of all polynomials of
this kind is R[x].

We want design a data structure for such polynomials, with the following
operations:

1. deg(p) returns the degree of polynomial p. If p = a0+a1 ·x+. . .+an ·xn
with an 6= 0 then deg(p) = n.

2. lc(p) returns the leading coefficient of polynomial p.
If p = a0 + a1 · x + . . . + an · xn with an 6= 0 then lc(p) = an.

3. coef(p, i) returns the coefficient ai of xi in p.

4. psum(p, q) returns the sum of polynomials p and q.

5. pprod(p, q) returns the product of polynomials p and p.

6. pquot(p, q) returns the quotient of dividing p by q.

7. prem(p, q) returns the remainder of dividing p by q.

8. peval(p, c) returns the value p(c) for some c ∈ R. If p = a0 + a1 · x +
. . . + an · xn then p(c) = a0 + a1 · c + . . . + an · cn.

1



In Lecture 10, we mentioned two representations of univariate polynomials:

• The dense representation, which stores all coefficients a0, a1, . . . , an
in a simply linked list.

• The sparse representation, which stores only the nonzero coeffi-
cients ai together with the power i of x in p.

For example, p = 1− 7 · x + 9 · x3 has the dense list representation

1 -7 0 9

and the sparse list representation

(0, 1) (1,−7) (3,−9)

g = 1 + x1000 has the dense representation

1 0 10

and the sparse representation

(0, 1) (1000, 1)

A suitable way to implement the nodes of the dense list representation of a
univariate polynomial is with the C++ class

struct DRepr {

float coeff;

DRepr* next;

};

To perform the polynomial operations mentioned before, consider imple-
menting the static methods of the C++ class

class PolyOps {

typedef DRepr* Poly;

static int deg(Poly p);

static float lc(Poly p);

static Poly psum(Poly p,Poly q);

static Poly pprod(Poly p,Poly q);

static Poly pquot(Poly p,Poly q);

static Poly prem(Poly p,Poly q);

static float peval(Poly p,float c);

static string toString(Poly p);

}

2



The last method is intended to return a string representation of the polyno-
mial represented by p, and can be defined as follows:

string toString(Poly p) {

if (p==nullptr) return "0";

ostringstream ostr;

ostr << "";

int i=0;

while (p!=nullptr) {

float c=p->coeff;

if(i==0) ostr<<c;

else

if(c!=0) {

ostr<<(c>0)?’+’:’-’;

c=abs(c);

if(c!=1) ostr<<c<<’*’;

ostr<<’x’;

if(i>1) ostr<<’^’<<i;

}

i++;

p=p->next;

}

return ostr.str();

}

For example, the string representation of 1− 7x + 9x3 + x4 − x5 is

1-7*x+9*x^3+x^4-x^5

Labwork

Implement the missing methods of class PolyOps and write a C++ program
that behaves as follows:

• It asks the user to type the coefficients of a polynomial p, on one line,
separated by spaces:

type the coefficients of p:

an an−1 . . . a1 a0

and creates the dense list representation of the polynomial
p = a0 + a1 x + . . . + an−1 x

n−1 + an x
n

3



• It asks the user to type the coefficients of a polynomial q, on one line,
separated by spaces:

type the coefficients of q:

bm bm−1 . . . b1 b0

and creates the dense list representation of the polynomial
q = b0 + b1 x + . . . + bm−1x

m−1 + bm xm

• It asks the user to type a value v for a floating point variable c:

type the value of c: v

• It computes p(c), and the sum, product, quotient and remainder of p
and q, and shows them to the user:

The value of p(c) is ...

psum(p,q) = ...

pprod(p,q) = ...

pquot(p,q) = ...

prem(p,q) = ...

Remark: The following function provides easy way to create the dense list
of a polynomial from the string of its coefficients:

Poly getPoly(string& coeff_list) {

float c;

Poly p = nullptr;

istringstream iss(coef_list);

while (iss >> c)

p=new DRepr(c,p);

return p;

}

(Note: in this implementation, we assumed that class DRepr was extended
with a suitable constructor DRepr(float,DRepr*))

4


