
Computational Geometry

October 25, 2019

Computational Geometry

What is computational geometry?

Study of algorithms for geometric problem solving.
Typical problems

Given a description of a set of geometric objects,
e.g., set of points/segments/vertices of a
polygon in a certain order.

Answer a query about this set, e.g.:
1 do some segments intersect?
2 what is the convex hull of the set of points?

. . .

In this lecture, we assume objects represented by a
set/sequence of n points 〈p0,p1, . . . ,pn−1〉 where each
point pi is given by its pair of coordinates (xi , yi) ∈ R2

Computational Geometry

Lines and segments

ASSUMPTION: p1 = (x1, y1) and p2 = (x2, y2) are distinct points.

The line through p1 and p2 is

p1p2 = {(x(t), y(t)) ∈ R2 | x(t) = (1−t) x1+t x2, y(t) = (1−t) y1+t y2}

The segment with endpoints p1 and p2 is

p1p2 = {(x(t), y(t)) ∈ R2 | x(t) = (1− t) x1 + t x2,
y(t) = (1− t) y1 + t y2,0 ≤ t ≤ 1}

p1 = (x(0), y(0))

p2 = (x(1), y(1))

(xt , yt)

p1p2

Computational Geometry

Vectors and their representation

The directed segment (or vector) # »p1p2 imposes an ordering on
its endpoints: p1 is its origin, and p2 its destination.

Sum of vectors
o = (0,0) is the origin of the system of coordinates.

If p = (x , y) is a point, then # »op is the vector with origin o
and destination p.
If p1 = (x1, y1) and p2 = (x2, y2) then p1 + p2 is the point
with coordinates (x1 + y1, x2 + y2), and p1 − p2 is the point
with coordinates (x1 − y1, x2 − y2)

o

q

p1

p2
r

Remarks:
If r = p1 + p2 and q = p2 − p1 then
1) op1rp2 is a parallelogram
2) the vector # »or is the sum

of vectors # »op1 and # »op2
3) the vector # »p1p2 coincides with the vector # »oq

Computational Geometry

Segments and vectors

Let p = (x1, y1), q = (x2, y2) be two points.
1 The vector # »pq and the segment pq have the same length,

which is
√

(x2 − x1)2 + (y2 − y1)2.
2 The vector # »op splits the plane in two parts: the semiplane

of points to the left of # »op (coloured green), and the
semiplane of points to the right of # »op (coloured blue).

q
p

o

Remarks:

1) q is to the right of # »op if # »oq is rotated
clockwise w.r.t. # »op

2) q is to the left of # »op if # »oq is rotated
counterclockwise w.r.t. # »op

We can detect if q is to the left or right of # »op by computing the
sign of a cross product (see next slide).

Computational Geometry

Segments and vectors

Let p = (x1, y1), q = (x2, y2) be two points.
1 The vector # »pq and the segment pq have the same length,

which is
√

(x2 − x1)2 + (y2 − y1)2.
2 The vector # »op splits the plane in two parts: the semiplane

of points to the left of # »op (coloured green), and the
semiplane of points to the right of # »op (coloured blue).

q
p

o

Remarks:

1) q is to the right of # »op if # »oq is rotated
clockwise w.r.t. # »op

2) q is to the left of # »op if # »oq is rotated
counterclockwise w.r.t. # »op

We can detect if q is to the left or right of # »op by computing the
sign of a cross product (see next slide).

Computational Geometry

Operations with vectors
Cross product

Let p = (x1, y1), q = (x2, y2), and r = p + q. The cross product
»op × # »oq is

»op × # »oq = det
(

x1 x2
y1 y2

)
= x1 · y2 − x2 · y1 = − # »oq × # »op

o

r

p

q

θ
sin(θ) =

»op × # »oq
| # »op| · | # »oq|

Geometric interpretation:

| # »op × # »oq| is the area of the parallelogram oprq

q is to the left of # »op if # »op × # »oq > 0

q is to the right of # »op if # »op × # »oq < 0

q is on line op if # »op × # »oq = 0

Computational Geometry

Cross product
Applications in computational geometry

Let p1 = (x1, y1),p2 = (x2, y2),p3 = (x3, y3).
1 The area of triangle p1p2p3 is half of the area of the

parallelogram spanned between vectors # »p1p2 and # »p1p3:

p1
p2

p3
r = (p3 − p1) + (p2 − p1)

area(p1p2rp3) = | # »p1p2 × # »p1p3| = abs
(∣∣∣∣ x2 − x1 x3 − x1

y2 − y1 y3 − y1

∣∣∣∣),

area(p1p2p3) = area(p1p2rp3)/2 = abs
(∣∣∣∣ x2 − x1 x3 − x1

y2 − y1 y3 − y1

∣∣∣∣) /2
2 p3 is to the left of # »p1p2 ⇔ # »p1p3 is rotated counterclockwise

w.r.t. # »p1p2 ⇔ # »p1p2 × # »p1p3 > 0.

Computational Geometry

Application 1
Problem: The segment intersection test

ASSUMPTION: pi = (xi , yi) are four distinct points, 1 ≤ i ≤ 4.
Question: Do segments p1p2 and p3p4 intersect or not?
REMARK: p1p2 and p3p4 intersect if either (or both) of the
following conditions hold:

1 p1 and p2 are on different sides of the line p3p4; and
p3 and p4 are on different sides of the line p1p2,

2 an endpoint of one segment lies on the other segment (this
condition comes from the boundary case).

Computational Geometry

The segment intersection test problem
Pseudocode

/* check if p1p2 ∩ p3p4 6= ∅ */
SegmentsIntersect(p1,p2,p3,p4)
d1 = SignedArea(p3,p4,p1)
d2 = SignedArea(p3,p4,p2)
d3 = SignedArea(p1,p2,p3)
d4 = SignedArea(p1,p2,p4)
if ((d1 < 0 ∧ d2 > 0) ∨ (d1 > 0 ∧ d2 < 0))∨

((d3 < 0 ∧ d4 > 0) ∨ (d3 > 0 ∧ d4 < 0))
return TRUE

return FALSE

SignedArea(pi ,pj ,pk)
return ((pk − pi)× (pj − pi))/2

Computational Geometry

The segment intersection test problem

Given a set S = {s1, . . . , sn} of line segments
Determine if si ∩ sj 6= ∅ for some 1 ≤ i 6= j ≤ n.

We can do this in O(n log n) time with the sweeping technique:
An imaginary vertical sweep line passes through the given
set of geometric objects, usually from left to right.
I We will assume that the sweeping line moves across the

x-dimension

Simplifying assumptions
1 No input segment is vertical
2 No three input segments intersect at a single point

Computational Geometry

The segment intersection test problem

Given a set S = {s1, . . . , sn} of line segments
Determine if si ∩ sj 6= ∅ for some 1 ≤ i 6= j ≤ n.

We can do this in O(n log n) time with the sweeping technique:

An imaginary vertical sweep line passes through the given
set of geometric objects, usually from left to right.
I We will assume that the sweeping line moves across the

x-dimension

Simplifying assumptions
1 No input segment is vertical
2 No three input segments intersect at a single point

Computational Geometry

The segment intersection test problem

Given a set S = {s1, . . . , sn} of line segments
Determine if si ∩ sj 6= ∅ for some 1 ≤ i 6= j ≤ n.

We can do this in O(n log n) time with the sweeping technique:
An imaginary vertical sweep line passes through the given
set of geometric objects, usually from left to right.
I We will assume that the sweeping line moves across the

x-dimension

Simplifying assumptions
1 No input segment is vertical
2 No three input segments intersect at a single point

Computational Geometry

The segment intersection test problem

Given a set S = {s1, . . . , sn} of line segments
Determine if si ∩ sj 6= ∅ for some 1 ≤ i 6= j ≤ n.

We can do this in O(n log n) time with the sweeping technique:
An imaginary vertical sweep line passes through the given
set of geometric objects, usually from left to right.
I We will assume that the sweeping line moves across the

x-dimension

Simplifying assumptions
1 No input segment is vertical
2 No three input segments intersect at a single point

Computational Geometry

Auxiliary notions
Ordering segments

ASSUMPTIONS: s1, s2 ∈ S are two line segments; swx is the
vertical sweep line with x-coordinate x

s1, s2 are comparable at x if swx intersects both s1 and s2

s1 �x s2 if s1, s2 are x-comparable, and the intersection point
s1 ∩ swx is higher than s2 ∩ swx

Example

In the figure below, we have a �r c, a �t b, b �t c, and b �u c.
Segment d is not comparable with any other segment.

Remark: �x is a total preorder relation: reflexive, transitive, but
neither symmetric nor antisymmetric.

Computational Geometry

Detecting segment intersections

When line segments e and f intersect, they reverse their
orders: we have e �v f and f �w e.

Simplifying assumption 2 implies ∃vertical sweep line swx
for which the intersections with segments e and f are
consecutive w.r.t. total preorder �x .

⇒ Any sweep line that passes through the shaded region in
figure above (such as z) has e and f consecutive in its total
preorder.

Computational Geometry

Moving the sweep line

The sweep line moves from left to right, through the sequence of
endpoints sorted in increasing order of the x-coordinate.

The sweeping algorithm maintains two data structures:

Sweep line status: the relationships among the objects that the
sweep line intersects.

Event-point schedule: a sequence of points (the event points)
ordered from left to right according to their
x-coordinates.

Whenever the sweep line reaches the x-coordinate of an event point:
the sweep halts, processes the event point, and then resumes

I Changes to the sweep-line status occur only at event points.

Computational Geometry

Moving the sweep line

The sweep line moves from left to right, through the sequence of
endpoints sorted in increasing order of the x-coordinate.

The sweeping algorithm maintains two data structures:

Sweep line status: the relationships among the objects that the
sweep line intersects.

Event-point schedule: a sequence of points (the event points)
ordered from left to right according to their
x-coordinates.

Whenever the sweep line reaches the x-coordinate of an event point:
the sweep halts, processes the event point, and then resumes

I Changes to the sweep-line status occur only at event points.

Computational Geometry

The sweeping algorithm for segment intersections
Auxiliary data structures

THE SWEEP LINE STATUS: container for a total preorder T =�x
between line segments from S

Requirements: to perform efficiently the following operations:
1 insert(T , s) : insert segment s into T
2 delete(T , s): delete segment s from T
3 above(T , s): return the segment immediately above

segment s in T .
4 below(T , s): return the segment immediately below

segment s in T .
REMARK: all these operations can be performed in O(log n)
time using red-black trees.

Computational Geometry

The sweeping algorithm for segment intersections
Pseudocode

AnySegmentsIntersect(S)
1. T = ∅
2. sort the endpoints of the segments in S from left to right,

breaking ties by putting left endpoints before right endpoints
and breaking further ties by putting points with lower y -coordinates first

3. for each point p in the sorted list of endpoints
4. if p is the left endpoint of a segment s
5. insert(T , s)
6. if (above(T , s) exists and intersects s)

or (below(T , s) exists and intersects s)
7. return TRUE
8. if p is the right endpoint of a segment s
9. if both above(T , s) and below(T , s) exist

and above(T , s) intersects below(T , s)
10. return TRUE
11. delete(T,s)
12. return FALSE

Computational Geometry

The sweeping algorithm for segment intersection

B Every dashed line is the sweep line at an event point.
B The ordering of segment names below each sweep line

corresponds to the total preorder T at the end of the for
loop processing the corresponding event point.

B The rightmost sweep line occurs when processing the right
endpoint of segment c.

Computational Geometry

Applicaton 2
Finding the convex hull of a set of points

ASSUMPTION: Q is a finite set of n points.
The convex hull CH(Q) of Q is the smallest convex polygon P
with vertices in Q, such that each point in Q is either on the
boundary of P or in its interior.
Intuition: each point of Q is a nail stuck in a board⇒ convex
hull = the shape formed by a tight rubber band that surrounds
all the nails.
EXAMPLE:

Computational Geometry

The Graham’s scan method

Computes CH(P) in O(n log n), where n = |Q| with a technique
named rotational sweep:
I vertices are processed in the order of the polar angles they

form with a reference vertex.
MAIN IDEA: Maintain a stack S of candidate points for the
vertices of P in counterclockwise order.

each point of Q is pushed onto S one time.
the points in already S, which are not in CH(Q), are
popped from S.
Related operations: push(p,S), pop(S), and
I top(S) return, but do not pop, the point on top of S
I nextToTop(S): return the point one entry below the top of

S without changing S

Computational Geometry

Convex hull
Graham’s scan algorithm: pseudocode

GrahamScan(Q)
1 let p0 be the point in Q with the minimum y -coordinate,

or the leftmost such point in case of a tie
2 let 〈p1, p2, . . . , pm〉 be the remaining points in Q, sorted by polar angle

in counterclockwise order around p0 (if more than one point has the same angle,
remove all but the one that is farthest from p0)

3 let S be an empty stack
4 push(p0,S)
5 push(p1,S)
6 push(p2,S)
7 for i = 3 to m
8 while the angle formed by nextToTop(S), top(S), and pi

makes a nonleft turn
9 pop(S)

10 push(pi ,S)
11 return S

Computational Geometry

Graham’s scan algorithm: pseudocode
Snapshots of algorithm execution

Computational Geometry

Applicaton 3
Finding the closest pair of points

Given a set Q of n ≥ 2 points Pi(xi , yi), 1 ≤ i ≤ n
Find a closest pair of points in Q.

Remarks
“closest” refers to the usual euclidean distance between
two points P(x1, y1) and Q(x2, y2), which is√

(x2 − x1)2 + (y2 − y1)2

A simple, brute-force approach is to compute the distances
between all

(n
2

)
= n(n−1)

2 pairs of points
⇒ alg. with time complexity O(n2)

We will indicate an algorithm that solves this problem in
time O(n log n)

Computational Geometry

Finding the closest pair of points
A divide-and-conquer algorithm

Each recursive call of the algorithm takes as input a subset
P ⊆ Q with |P| > 3, and arrays X and Y , each of which
contains all the points of the input set P:
I X contains the elements of P sorted in increasing order of

the x-coordinate
I Y contains the elements of P sorted in increasing order of

the y -coordinate

The base case of the algorithm is when |P| ≤ 3: in this
case we try all the

(|P|
2

)
pairs and return the closest pair.

Computational Geometry

Problem 1: Finding the closest pair of points
The structure of the recursive step when |P| > 3

Consists of three substeps:
Divide
Conquer
Combine

Computational Geometry

The recursive step
1. The divide phase

1 Find a vertical line ` that bisects the point set P into two
sets PL and PR such that |PL| = d|P|/2e, QL = b|P|/2c, all
points in PL are on or to the left of line l , and all points in
PR are on or to the right of l .

2 Divide the array X into arrays XL and XR, which contain the
points of PL and PR respectively, sorted by monotonically
increasing x-coordinate.

3 Similarly, divide the array Y into arrays YL and YR, which
contain the points of PL and PR respectively, sorted by
monotonically increasing y -coordinate.

Computational Geometry

The recursive step
1. The divide phase: illustrated example

P2

P1

P5

P3

P4

P6

`

X = [P2,P1,P5,P3,P4,P6]

Y = [P6,P1,P2,P4,P5,P3]

XL = [P2,P1,P5]

XR = [P3,P4,P6]

YL = [P1,P2,P5]

YR = [P6,P4,P3]

Computational Geometry

The recursive step
2. The conquer phase

Make two recursive calls, one to find the closest pair of points in
PL and the other to find the closest pair of points in PR.

The inputs to the first call are the subset PL and arrays XL
and YL

the second call receives the inputs PR, XR, and YR.
Let the closest-pair distances returned for PL and PR be δL and
δR, respectively, and let δ = min(δL, δR).

Computational Geometry

The recursive step
3. The combine phase

The closest pair is either
the pair with distance δ found by one of the recursive calls,
or
a pair of points with one point in pL and the other in pR.

The algorithm determines whether there is a pair with one point
in pL and the other point in pR and whose distance is less than
δ.

If such a pair exists, both points of the pair must be within δ
units of line `. Thus, they both must reside in the 2 δ-wide
vertical strip centered at line `. The way to find such a pair,
if one exists, is explained next.

Computational Geometry

The recursive step
3. The combine phase (contd.)

1. Create an array Y ′, which is the array Y with all points not
in the 2 δ-wide vertical strip removed. The array Y ′ is
sorted by y -coordinate, just as Y is.

2. For each point p in Y ′, find if there is a point q in Y ′ whose
distance to p is δ′ smaller than δ. It turns out that it is
sufficient to consider only the (max.) 7 points that follow p
in Y ′.

Computational Geometry

The recursive step
3. The combine phase (contd.)

3. If δ′ < δ, then the vertical strip does indeed contain a
closer pair than the recursive calls found. Return this pair
and its distance δ′. Otherwise, return the closest pair and
its distance δ found by the recursive calls.

Computational Geometry

The divide-and-conquer algorithm
Why are seven points sufficient for lookup?

Suppose that at some level of the recursion, the closest pair of points
is pL ∈ PL and pR ∈ PR . Let δ′ be the distance between pL and pR .
Note that δ′ < δ and

pL is on or to the left of `, and pL is on or to the right of `.

both pL ane pR are less than δ units away from `.

pL and pR are within δ units of each other vertically.

⇒ pL and pR are within a δ × 2δ rectangle centered t line `

I there may be other points in this rectangle as well, but

I at most 8 points of P can reside in the δ × 2δ rectangle:

Computational Geometry

The divide-and-conquer algorithm
Implementation and running time

We know from the Master theorem that, if we have the
recurrence

T (n) = 2T (n/2) + O(n)

where T (n) is the running time of the alg. for a set of n points,
then T (n) = O(n log n).

To ensure this runtime complexity, we must ensure that the
combine phase gets executed in O(n) time.
This happens if, after partitioning P into PL and PR, we can
form arrays YL and YR in linear time:

This is possible, because we can use Y (which is P sorted
in increasing order of the y -coordinate) to compute YL and
YR in linear time (see pseudo-code on next slide)

Computational Geometry

The divide-and-conquer algorithm
Implementation and running time (contd.)

The following algorithm splits Y into YL and YR

Computational Geometry

References

I Chapters 33: Computational Geometry from the book
Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest. Introduction to Algorithms. McGraw Hill, 2000.

Computational Geometry

