Computational Geometry

October 25, 2019

What is computational geometry?

- Study of algorithms for geometric problem solving.
- Typical problems

Given a description of a set of geometric objects, e.g., set of points/segments/vertices of a polygon in a certain order.

Answer a query about this set, e.g.:

- do some segments intersect?
- what is the convex hull of the set of points?
- In this lecture, we assume objects represented by a set/sequence of n points $\langle p_0, p_1, \dots, p_{n-1} \rangle$ where each point p_i is given by its pair of coordinates $(x_i, y_i) \in \mathbb{R}^2$

Lines and segments

Assumption: $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$ are distinct points.

• The line through p_1 and p_2 is

$$p_1p_2 = \{(x(t), y(t)) \in \mathbb{R}^2 \mid x(t) = (1-t)x_1 + tx_2, y(t) = (1-t)y_1 + ty_2\}$$

• The segment with endpoints p_1 and p_2 is

$$\overline{p_1p_2} = \{(x(t), y(t)) \in \mathbb{R}^2 \mid x(t) = (1-t)x_1 + tx_2,
y(t) = (1-t)y_1 + ty_2, 0 \le t \le 1\}$$

Vectors and their representation

The directed segment (or vector) $\overrightarrow{p_1p_2}$ imposes an ordering on its endpoints: p_1 is its origin, and p_2 its destination.

Sum of vectors

- o = (0,0) is the origin of the system of coordinates.
 - If p = (x, y) is a point, then \overrightarrow{op} is the vector with origin o and destination p.
 - If $p_1=(x_1,y_1)$ and $p_2=(x_2,y_2)$ then p_1+p_2 is the point with coordinates (x_1+y_1,x_2+y_2) , and p_1-p_2 is the point with coordinates (x_1-y_1,x_2-y_2)

Remarks:

If $r = p_1 + p_2$ and $q = p_2 - p_1$ then

- 1) op₁rp₂ is a parallelogram
- 2) the vector \overrightarrow{or} is the sum of vectors $\overrightarrow{op_1}$ and $\overrightarrow{op_2}$
- 3) the vector $\overrightarrow{p_1p_2}$ coincides with the vector \overrightarrow{oq}

Segments and vectors

Let $p = (x_1, y_1), q = (x_2, y_2)$ be two points.

- The vector \overrightarrow{pq} and the segment \overline{pq} have the same length, which is $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$.
- ② The vector \overrightarrow{op} splits the plane in two parts: the semiplane of points to the left of \overrightarrow{op} (coloured green), and the semiplane of points to the right of \overrightarrow{op} (coloured blue).

Remarks:

- 1) q is to the right of \overrightarrow{op} if \overrightarrow{oq} is rotated clockwise w.r.t. \overrightarrow{op}
- 2) q is to the left of \overrightarrow{op} if \overrightarrow{oq} is rotated counterclockwise w.r.t. \overrightarrow{op}

Segments and vectors

Let $p = (x_1, y_1), q = (x_2, y_2)$ be two points.

- The vector \overrightarrow{pq} and the segment \overline{pq} have the same length, which is $\sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$.
- ② The vector \overrightarrow{op} splits the plane in two parts: the semiplane of points to the left of \overrightarrow{op} (coloured green), and the semiplane of points to the right of \overrightarrow{op} (coloured blue).

Remarks:

- 1) q is to the right of \overrightarrow{op} if \overrightarrow{oq} is rotated clockwise w.r.t. \overrightarrow{op}
- 2) q is to the left of \overrightarrow{op} if \overrightarrow{oq} is rotated counterclockwise w.r.t. \overrightarrow{op}

We can detect if q is to the left or right of \overrightarrow{op} by computing the sign of a cross product (see next slide).

Operations with vectors Cross product

Let $p = (x_1, y_1)$, $q = (x_2, y_2)$, and r = p + q. The cross product $\overrightarrow{op} \times \overrightarrow{oq}$ is

$$\overrightarrow{op} \times \overrightarrow{oq} = \det \begin{pmatrix} x_1 & x_2 \\ y_1 & y_2 \end{pmatrix} = x_1 \cdot y_2 - x_2 \cdot y_1 = -\overrightarrow{oq} \times \overrightarrow{op}$$

$$\sin(\theta) = \frac{\overrightarrow{op} \times \overrightarrow{oq}}{|\overrightarrow{op}| \cdot |\overrightarrow{oq}|}$$

Geometric interpretation:

- $|\overrightarrow{op} \times \overrightarrow{oq}|$ is the area of the parallelogram *oprq*
- q is to the left of \overrightarrow{op} if $\overrightarrow{op} \times \overrightarrow{oq} > 0$
- q is to the right of \overrightarrow{op} if $\overrightarrow{op} \times \overrightarrow{oq} < 0$
- q is on line op if $\overrightarrow{op} \times \overrightarrow{oq} = 0$

Let
$$p_1 = (x_1, y_1), p_2 = (x_2, y_2), p_3 = (x_3, y_3).$$

• The area of triangle $p_1p_2p_3$ is half of the area of the parallelogram spanned between vectors $\overrightarrow{p_1p_2}$ and $\overrightarrow{p_1p_3}$:

$$p_3$$
 p_2 p_2 p_2 p_3 p_2

$$area(p_1p_2rp_3) = |\overrightarrow{p_1p_2} \times \overrightarrow{p_1p_3}| = abs \left(\begin{vmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{vmatrix} \right),$$

$$area(p_1p_2p_3) = area(p_1p_2rp_3)/2 = abs \left(\begin{vmatrix} x_2 - x_1 & x_3 - x_1 \\ y_2 - y_1 & y_3 - y_1 \end{vmatrix} \right)/2$$

2 p_3 is to the left of $\overrightarrow{p_1p_2} \Leftrightarrow \overrightarrow{p_1p_3}$ is rotated counterclockwise w.r.t. $\overrightarrow{p_1p_2} \Leftrightarrow \overrightarrow{p_1p_2} \times \overrightarrow{p_1p_3} > 0$.

ASSUMPTION: $p_i = (x_i, y_i)$ are four distinct points, $1 \le i \le 4$. **Question:** Do segments $\overline{p_1p_2}$ and $\overline{p_3p_4}$ intersect or not?

REMARK: $\overline{p_1p_2}$ and $\overline{p_3p_4}$ intersect if either (or both) of the following conditions hold:

- p_1 and p_2 are on different sides of the line p_3p_4 ; and p_3 and p_4 are on different sides of the line p_1p_2 ,
- an endpoint of one segment lies on the other segment (this condition comes from the boundary case).

Pseudocode

```
/* check if \overline{p_1p_2} \cap \overline{p_3p_4} \neq \emptyset */
SegmentsIntersect(p_1, p_2, p_3, p_4)
d_1 = \text{SignedArea}(p_3, p_4, p_1)
d_2 = \text{SignedArea}(p_3, p_4, p_2)
d_3 = \text{SignedArea}(p_1, p_2, p_3)
d_4 = \text{SignedArea}(p_1, p_2, p_4)
if ((d_1 < 0 \land d_2 > 0) \lor (d_1 > 0 \land d_2 < 0)) \lor
    ((d_3 < 0 \land d_4 > 0) \lor (d_3 > 0 \land d_4 < 0))
    return TRUF
return FALSE
```

SignedArea
$$(p_i, p_j, p_k)$$

return $((p_k - p_i) \times (p_j - p_i))/2$

Given a set $S = \{s_1, \dots, s_n\}$ of line segments Determine if $s_i \cap s_j \neq \emptyset$ for some $1 \leq i \neq j \leq n$.

Given a set $S = \{s_1, \dots, s_n\}$ of line segments Determine if $s_i \cap s_j \neq \emptyset$ for some $1 \leq i \neq j \leq n$.

We can do this in $O(n \log n)$ time with the sweeping technique:

Given a set $S = \{s_1, \dots, s_n\}$ of line segments Determine if $s_i \cap s_j \neq \emptyset$ for some $1 \leq i \neq j \leq n$.

We can do this in $O(n \log n)$ time with the sweeping technique:

- An imaginary vertical sweep line passes through the given set of geometric objects, usually from left to right.
 - We will assume that the sweeping line moves across the x-dimension

Given a set $S = \{s_1, \dots, s_n\}$ of line segments Determine if $s_i \cap s_j \neq \emptyset$ for some $1 \leq i \neq j \leq n$.

We can do this in $O(n \log n)$ time with the sweeping technique:

- An imaginary vertical sweep line passes through the given set of geometric objects, usually from left to right.
 - We will assume that the sweeping line moves across the x-dimension

Simplifying assumptions

- No input segment is vertical
- No three input segments intersect at a single point

Auxiliary notions Ordering segments

Assumptions: $s_1, s_2 \in S$ are two line segments; sw_x is the vertical sweep line with x-coordinate x

- s_1, s_2 are comparable at x if sw_x intersects both s_1 and s_2
- $s_1 \succeq_x s_2$ if s_1, s_2 are *x*-comparable, and the intersection point $s_1 \cap sw_x$ is higher than $s_2 \cap sw_x$

Example

In the figure below, we have $a \succeq_r c$, $a \succeq_t b$, $b \succeq_t c$, and $b \succeq_u c$. Segment d is not comparable with any other segment.

Remark: \succeq_x is a total preorder relation: reflexive, transitive, but neither symmetric nor antisymmetric.

Detecting segment intersections

When line segments e and f intersect, they reverse their orders: we have $e \succeq_{V} f$ and $f \succeq_{W} e$.

- Simplifying assumption 2 implies ∃vertical sweep line sw_x for which the intersections with segments e and f are consecutive w.r.t. total preorder ∠_x.
 - ⇒ Any sweep line that passes through the shaded region in figure above (such as z) has e and f consecutive in its total preorder.

Moving the sweep line

- The sweep line moves from left to right, through the sequence of endpoints sorted in increasing order of the *x*-coordinate.
- The sweeping algorithm maintains two data structures:

Sweep line status: the relationships among the objects that the sweep line intersects.

Event-point schedule: a sequence of points (the *event points*) ordered from left to right according to their *x*-coordinates.

Moving the sweep line

- The sweep line moves from left to right, through the sequence of endpoints sorted in increasing order of the *x*-coordinate.
- The sweeping algorithm maintains two data structures:
 - Sweep line status: the relationships among the objects that the sweep line intersects.
 - Event-point schedule: a sequence of points (the *event points*) ordered from left to right according to their *x*-coordinates.

Whenever the sweep line reaches the *x*-coordinate of an event point: the sweep halts, processes the event point, and then resumes

► Changes to the sweep-line status occur only at event points.

The sweeping algorithm for segment intersections Auxiliary data structures

THE SWEEP LINE STATUS: container for a total preorder $T = \succeq_x$ between line segments from S

Requirements: to perform efficiently the following operations:

- insert (T, s): insert segment s into T
- 2 delete(T, s): delete segment s from T
- above (T, s): return the segment immediately above segment s in T.
- below(T, s): return the segment immediately below segment s in T.

REMARK: all these operations can be performed in $O(\log n)$ time using red-black trees.

The sweeping algorithm for segment intersections

```
AnySegmentsIntersect(S)
1. T = \emptyset
2. sort the endpoints of the segments in S from left to right,
   breaking ties by putting left endpoints before right endpoints
   and breaking further ties by putting points with lower v-coordinates first
3. for each point p in the sorted list of endpoints
        if p is the left endpoint of a segment s
4.
5.
           insert(T, s)
6.
           if (above (T, s)) exists and intersects s)
               or (below(T, s) exists and intersects s)
7.
               return TRUE
8.
        if p is the right endpoint of a segment s
9.
           if both above (T, s) and below (T, s) exist
               and above (T, s) intersects below (T, s)
10.
               return TRUE
11.
           delete(T,s)
12. return FALSE
```

The sweeping algorithm for segment intersection

- Every dashed line is the sweep line at an event point.
- The ordering of segment names below each sweep line corresponds to the total preorder T at the end of the for loop processing the corresponding event point.
- The rightmost sweep line occurs when processing the right endpoint of segment *c*.

ASSUMPTION: *Q* is a finite set of *n* points.

The convex hull CH(Q) of Q is the smallest convex polygon P with vertices in Q, such that each point in Q is either on the boundary of P or in its interior.

Intuition: each point of Q is a nail stuck in a board \Rightarrow convex hull = the shape formed by a tight rubber band that surrounds all the nails.

EXAMPLE:

The Graham's scan method

Computes CH(P) in $O(n \log n)$, where n = |Q| with a technique named rotational sweep:

vertices are processed in the order of the polar angles they form with a reference vertex.

MAIN IDEA: Maintain a stack *S* of candidate points for the vertices of *P* in counterclockwise order.

- each point of Q is pushed onto S one time.
- the points in already S, which are not in CH(Q), are popped from S.
- Related operations: push(p, S), pop(S), and
 - ▶ top(S) return, but do not pop, the point on top of S
 - nextToTop(S): return the point one entry below the top of S without changing S


```
GrahamScan(Q)
1 let p_0 be the point in Q with the minimum y-coordinate,
  or the leftmost such point in case of a tie
2 let \langle p_1, p_2, \dots, p_m \rangle be the remaining points in Q, sorted by polar angle
  in counterclockwise order around p_0 (if more than one point has the same angle.
  remove all but the one that is farthest from p_0
3 let S be an empty stack
4 push(p_0, S)
5 push(p_1, S)
6 push(p_2, S)
7 for i = 3 + 0 m
       while the angle formed by nextToTop(S), top(S), and p_i
               makes a nonleft turn
9
               pop(S)
10 push(p_i, S)
11 return S
```

Graham's scan algorithm: pseudocode

Snapshots of algorithm execution

Given a set Q of $n \ge 2$ points $P_i(x_i, y_i)$, $1 \le i \le n$ Find a closest pair of points in Q.

Remarks

• "closest" refers to the usual euclidean distance between two points $P(x_1, y_1)$ and $Q(x_2, y_2)$, which is

$$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$

- A simple, brute-force approach is to compute the distances between all $\binom{n}{2} = \frac{n(n-1)}{2}$ pairs of points \Rightarrow alg. with time complexity $O(n^2)$
- We will indicate an algorithm that solves this problem in time O(n log n)

Finding the closest pair of points

A divide-and-conquer algorithm

- Each recursive call of the algorithm takes as input a subset
 P ⊆ Q with |P| > 3, and arrays X and Y, each of which
 contains all the points of the input set P:
 - ➤ *X* contains the elements of *P* sorted in increasing order of the *x*-coordinate
 - Y contains the elements of P sorted in increasing order of the y-coordinate
- The base case of the algorithm is when $|P| \le 3$: in this case we try all the $\binom{|P|}{2}$ pairs and return the closest pair.

Problem 1: Finding the closest pair of points

The structure of the recursive step when |P| > 3

Consists of three substeps:

Divide

Conquer

Combine

The recursive step

1. The divide phase

- Find a vertical line ℓ that bisects the point set P into two sets P_L and P_R such that $|P_L| = \lceil |P|/2 \rceil$, $Q_L = \lfloor |P|/2 \rfloor$, all points in P_L are on or to the left of line I, and all points in P_R are on or to the right of I.
- Divide the array X into arrays X_L and X_R, which contain the points of P_L and P_R respectively, sorted by monotonically increasing x-coordinate.
- **3** Similarly, divide the array Y into arrays Y_L and Y_R , which contain the points of P_L and P_R respectively, sorted by monotonically increasing y-coordinate.

The recursive step 2. The conquer phase

Make two recursive calls, one to find the closest pair of points in P_L and the other to find the closest pair of points in P_R .

- The inputs to the first call are the subset P_L and arrays X_L and Y_L
- the second call receives the inputs P_R, X_R, and Y_R.

Let the closest-pair distances returned for P_L and P_R be δ_L and δ_R , respectively, and let $\delta = \min(\delta_L, \delta_R)$.

The recursive step

3. The combine phase

The closest pair is either

- \bullet the pair with distance δ found by one of the recursive calls, or
- a pair of points with one point in p_L and the other in p_R .

The algorithm determines whether there is a pair with one point in p_L and the other point in p_R and whose distance is less than δ .

• If such a pair exists, both points of the pair must be within δ units of line ℓ . Thus, they both must reside in the 2 δ -wide vertical strip centered at line ℓ . The way to find such a pair, if one exists, is explained next.

The recursive step

3. The combine phase (contd.)

1. Create an array Y', which is the array Y with all points not in the 2 δ -wide vertical strip removed. The array Y' is sorted by y-coordinate, just as Y is.

2. For each point p in Y', find if there is a point q in Y' whose distance to p is δ' smaller than δ . It turns out that it is sufficient to consider only the (max.) 7 points that follow p in Y'.

The recursive step 3. The combine phase (contd.)

3. If $\delta' < \delta$, then the vertical strip does indeed contain a closer pair than the recursive calls found. Return this pair and its distance δ' . Otherwise, return the closest pair and its distance δ found by the recursive calls.

The divide-and-conquer algorithm

Why are seven points sufficient for lookup?

Suppose that at some level of the recursion, the closest pair of points is $p_L \in P_L$ and $p_R \in P_R$. Let δ' be the distance between p_L and p_R . Note that $\delta' < \delta$ and

- p_L is on or to the left of ℓ , and p_L is on or to the right of ℓ .
- both p_L ane p_R are less than δ units away from ℓ .
- p_L and p_R are within δ units of each other vertically.
- \Rightarrow p_L and p_R are within a $\delta \times 2\delta$ rectangle centered t line ℓ
 - there may be other points in this rectangle as well, but
 - ▶ at most 8 points of *P* can reside in the $\delta \times 2\delta$ rectangle:

The divide-and-conquer algorithm

Implementation and running time

We know from the Master theorem that, if we have the recurrence

$$T(n) = 2T(n/2) + O(n)$$

where T(n) is the running time of the alg. for a set of n points, then $T(n) = O(n \log n)$.

- To ensure this runtime complexity, we must ensure that the combine phase gets executed in O(n) time.
- This happens if, after partitioning P into P_L and P_R, we can form arrays Y_L and Y_R in linear time:
 - This is possible, because we can use Y (which is P sorted in increasing order of the y-coordinate) to compute Y_L and Y_R in linear time (see pseudo-code on next slide)

The divide-and-conquer algorithm

Implementation and running time (contd.)

The following algorithm splits Y into Y_L and Y_R

```
1 let Y_L[1..Y.length] and Y_R[1..Y.length] be new arrays

2 Y_L.length = Y_R.length = 0

3 for i = 1 to Y.length

4 if Y[i] \in P_L

5 Y_L.length = Y_L.length + 1

6 Y_L[Y_L.length] = Y[i]

7 else Y_R.length = Y_R.length + 1

8 Y_R[Y_R.length] = Y[i]
```

References

- ▶ Chapters 33: Computational Geometry from the book
 - Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. Introduction to Algorithms. McGraw Hill, 2000.