Computational Geometry

October 25, 2019

What is computational geometry?

- Study of algorithms for geometric problem solving.
- Typical problems

Given a description of a set of geometric objects, e.g., set of points/segments/vertices of a polygon in a certain order.
Answer a query about this set, e.g.:
(1) do some segments intersect?
(2) what is the convex hull of the set of points?

- In this lecture, we assume objects represented by a set/sequence of n points $\left\langle p_{0}, p_{1}, \ldots, p_{n-1}\right\rangle$ where each point p_{i} is given by its pair of coordinates $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{2}$

Lines and segments

ASSUMPTION: $p_{1}=\left(x_{1}, y_{1}\right)$ and $p_{2}=\left(x_{2}, y_{2}\right)$ are distinct points.

- The line through p_{1} and p_{2} is

$$
p_{1} p_{2}=\left\{(x(t), y(t)) \in \mathbb{R}^{2} \mid x(t)=(1-t) x_{1}+t x_{2}, y(t)=(1-t) y_{1}+t y_{2}\right\}
$$

- The segment with endpoints p_{1} and p_{2} is

$$
\overline{\overline{p_{1} p_{2}}=\left\{(x(t), y(t)) \in \mathbb{R}^{2} \left\lvert\, \begin{array}{l}
x(t) \\
y(t)
\end{array}=(1-t) x_{1}+t x_{2}\right.,\right.} \begin{aligned}
& \left.(1-t) y_{1}+t y_{2}, 0 \leq t \leq 1\right\} \\
& y
\end{aligned}
$$

Vectors and their representation

The directed segment (or vector) $\overrightarrow{p_{1} p_{2}}$ imposes an ordering on its endpoints: p_{1} is its origin, and p_{2} its destination.

Sum of vectors

$o=(0,0)$ is the origin of the system of coordinates.

- If $p=(x, y)$ is a point, then $\overrightarrow{o p}$ is the vector with origin o and destination p.
- If $p_{1}=\left(x_{1}, y_{1}\right)$ and $p_{2}=\left(x_{2}, y_{2}\right)$ then $p_{1}+p_{2}$ is the point with coordinates $\left(x_{1}+y_{1}, x_{2}+y_{2}\right)$, and $p_{1}-p_{2}$ is the point with coordinates $\left(x_{1}-y_{1}, x_{2}-y_{2}\right)$

Remarks:
If $r=p_{1}+p_{2}$ and $q=p_{2}-p_{1}$ then

1) $o p_{1} r p_{2}$ is a parallelogram
2) the vector $\overrightarrow{o r}$ is the sum of vectors $\overrightarrow{o p_{1}}$ and $\overrightarrow{o p h_{2}}$
3) the vector $\overrightarrow{p_{1} p_{2}}$ coincides with the vector $\overrightarrow{o q}$

Segments and vectors

Let $p=\left(x_{1}, y_{1}\right), q=\left(x_{2}, y_{2}\right)$ be two points.
(1) The vector $\overrightarrow{p q}$ and the segment $\overline{p q}$ have the same length, which is $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.
(2) The vector $\overrightarrow{o p}$ splits the plane in two parts: the semiplane of points to the left of $\overrightarrow{o p}$ (coloured green), and the semiplane of points to the right of $\overrightarrow{o p}$ (coloured blue).

Remarks:

1) q is to the right of $\overrightarrow{o p}$ if $\overrightarrow{o q}$ is rotated clockwise w.r.t. $\overrightarrow{o p}$
2) q is to the left of $\overrightarrow{o p}$ if $\overrightarrow{o q}$ is rotated counterclockwise w.r.t. $\overrightarrow{o p}$

Segments and vectors

Let $p=\left(x_{1}, y_{1}\right), q=\left(x_{2}, y_{2}\right)$ be two points.
(1) The vector $\overrightarrow{p q}$ and the segment $\overline{p q}$ have the same length, which is $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$.
(2) The vector $\overrightarrow{O p}$ splits the plane in two parts: the semiplane of points to the left of $\overrightarrow{o p}$ (coloured green), and the semiplane of points to the right of $\overrightarrow{o p}$ (coloured blue).

Remarks:

1) q is to the right of $\overrightarrow{o p}$ if $\overrightarrow{o q}$ is rotated clockwise w.r.t. $\overrightarrow{o p}$
2) q is to the left of $\overrightarrow{o p}$ if $\overrightarrow{o q}$ is rotated counterclockwise w.r.t. $\overrightarrow{O D}$

We can detect if q is to the left or right of $\overrightarrow{o p}$ by computing the sign of a cross product (see next slide).

Operations with vectors

Cross product

Let $p=\left(x_{1}, y_{1}\right), q=\left(x_{2}, y_{2}\right)$, and $r=p+q$. The cross product $\overrightarrow{o p} \times \overrightarrow{o q}$ is

$$
\overrightarrow{\overrightarrow{o p} \times \overrightarrow{o q}=\operatorname{det}\left(\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right)=x_{1} \cdot y_{2}-x_{2} \cdot y_{1}=-\overrightarrow{o q} \times \overrightarrow{o p}}
$$

Geometric interpretation:

- $|\overrightarrow{o p} \times \overrightarrow{o q}|$ is the area of the parallelogram oprq
- q is to the left of $\overrightarrow{o p}$ if $\overrightarrow{o p} \times \overrightarrow{o q}>0$
- q is to the right of $\overrightarrow{o p}$ if $\overrightarrow{o p} \times \overrightarrow{o q}<0$
- q is on line op if $\overrightarrow{o p} \times \overrightarrow{o q}=0$

Cross product

Applications in computational geometry

Let $p_{1}=\left(x_{1}, y_{1}\right), p_{2}=\left(x_{2}, y_{2}\right), p_{3}=\left(x_{3}, y_{3}\right)$.
(1) The area of triangle $p_{1} p_{2} p_{3}$ is half of the area of the parallelogram spanned between vectors $\overrightarrow{p_{1} p_{2}}$ and $\overrightarrow{p_{1} p_{3}}$:

$$
\begin{aligned}
& \operatorname{area}\left(p_{1} p_{2} r p_{3}\right)=\left|\overrightarrow{p_{1} p_{2}} \times \overrightarrow{p_{1} p_{3}}\right|=\operatorname{abs}\left(\left|\begin{array}{ll}
x_{2}-x_{1} & x_{3}-x_{1} \\
y_{2}-y_{1} & y_{3}-y_{1}
\end{array}\right|\right), \\
& \operatorname{area}\left(p_{1} p_{2} p_{3}\right)=\operatorname{area}\left(p_{1} p_{2} r p_{3}\right) / 2=\operatorname{abs}\left(\left|\begin{array}{ll}
x_{2}-x_{1} & x_{3}-x_{1} \\
y_{2}-y_{1} & y_{3}-y_{1}
\end{array}\right|\right) / 2
\end{aligned}
$$

(2) p_{3} is to the left of $\overrightarrow{p_{1}} \overrightarrow{p_{2}} \Leftrightarrow \overrightarrow{p_{1}} \overrightarrow{p_{3}}$ is rotated counterclockwise w.r.t. $\overrightarrow{p_{1} p_{2}} \Leftrightarrow \overrightarrow{p_{1} p_{2}} \times \overrightarrow{p_{1} p_{3}}>0$.

ASSUMPTION: $p_{i}=\left(x_{i}, y_{i}\right)$ are four distinct points, $1 \leq i \leq 4$. Question: Do segments $\overline{p_{1} p_{2}}$ and $\overline{p_{3} p_{4}}$ intersect or not?
REMARK: $\overline{p_{1} p_{2}}$ and $\overline{p_{3} p_{4}}$ intersect if either (or both) of the following conditions hold:
(1) p_{1} and p_{2} are on different sides of the line $p_{3} p_{4}$; and p_{3} and p_{4} are on different sides of the line $p_{1} p_{2}$,
(2) an endpoint of one segment lies on the other segment (this condition comes from the boundary case).

The segment intersection test problem Pseudocode

$/^{*}$ check if $\overline{p_{1} p_{2}} \cap \overline{p_{3} p_{4}} \neq \emptyset$ */
SegmentsIntersect ($p_{1}, p_{2}, p_{3}, p_{4}$)
$d_{1}=\operatorname{SignedArea}\left(p_{3}, p_{4}, p_{1}\right)$
$d_{2}=\operatorname{SignedArea}\left(p_{3}, p_{4}, p_{2}\right)$
$d_{3}=\operatorname{SignedArea}\left(p_{1}, p_{2}, p_{3}\right)$
$d_{4}=\operatorname{SignedArea}\left(p_{1}, p_{2}, p_{4}\right)$
if $\left(\left(d_{1}<0 \wedge d_{2}>0\right) \vee\left(d_{1}>0 \wedge d_{2}<0\right)\right) \vee$ $\left(\left(d_{3}<0 \wedge d_{4}>0\right) \vee\left(d_{3}>0 \wedge d_{4}<0\right)\right)$ return TRUE
return FALSE
SignedArea $\left(p_{i}, p_{j}, p_{k}\right)$
return $\left(\left(p_{k}-p_{i}\right) \times\left(p_{j}-p_{i}\right)\right) / 2$

The segment intersection test problem

Given a set $S=\left\{s_{1}, \ldots, s_{n}\right\}$ of line segments
Determine if $s_{i} \cap s_{j} \neq \emptyset$ for some $1 \leq i \neq j \leq n$.

The segment intersection test problem

Given a set $S=\left\{s_{1}, \ldots, s_{n}\right\}$ of line segments
Determine if $s_{i} \cap s_{j} \neq \emptyset$ for some $1 \leq i \neq j \leq n$.
We can do this in $O(n \log n)$ time with the sweeping technique:

The segment intersection test problem

Given a set $S=\left\{s_{1}, \ldots, s_{n}\right\}$ of line segments
Determine if $s_{i} \cap s_{j} \neq \emptyset$ for some $1 \leq i \neq j \leq n$.
We can do this in $O(n \log n)$ time with the sweeping technique:

- An imaginary vertical sweep line passes through the given set of geometric objects, usually from left to right.
- We will assume that the sweeping line moves across the x-dimension

The segment intersection test problem

Given a set $S=\left\{s_{1}, \ldots, s_{n}\right\}$ of line segments
Determine if $s_{i} \cap s_{j} \neq \emptyset$ for some $1 \leq i \neq j \leq n$.
We can do this in $O(n \log n)$ time with the sweeping technique:

- An imaginary vertical sweep line passes through the given set of geometric objects, usually from left to right.
- We will assume that the sweeping line moves across the x-dimension

Simplifying assumptions
(1) No input segment is vertical
(2) No three input segments intersect at a single point

Auxiliary notions

Ordering segments

Assumptions: $s_{1}, s_{2} \in S$ are two line segments; $s w_{x}$ is the vertical sweep line with x-coordinate x

- s_{1}, s_{2} are comparable at x if $s w_{x}$ intersects both s_{1} and s_{2}
- $s_{1} \succeq_{x} s_{2}$ if s_{1}, s_{2} are x-comparable, and the intersection point $s_{1} \cap s w_{x}$ is higher than $s_{2} \cap s w_{x}$

Example

In the figure below, we have $a \succeq_{r} c, a \succeq_{t} b, b \succeq_{t} c$, and $b \succeq_{u} c$. Segment d is not comparable with any other segment.

Remark: \succeq_{x} is a total preorder relation: reflexive, transitive, but neither symmetric nor antisymmetric.

Detecting segment intersections

When line segments e and f intersect, they reverse their orders: we have $e \succeq_{v} f$ and $f \succeq_{w} e$.

- Simplifying assumption 2 implies \exists vertical sweep line $s w_{x}$ for which the intersections with segments e and f are consecutive w.r.t. total preorder \succeq_{x}.
\Rightarrow Any sweep line that passes through the shaded region in figure above (such as z) has e and f consecutive in its total preorder.

Moving the sweep line

- The sweep line moves from left to right, through the sequence of endpoints sorted in increasing order of the x-coordinate.
- The sweeping algorithm maintains two data structures:

Sweep line status: the relationships among the objects that the sweep line intersects.
Event-point schedule: a sequence of points (the event points) ordered from left to right according to their x-coordinates.

Moving the sweep line

- The sweep line moves from left to right, through the sequence of endpoints sorted in increasing order of the x-coordinate.
- The sweeping algorithm maintains two data structures:

Sweep line status: the relationships among the objects that the sweep line intersects.
Event-point schedule: a sequence of points (the event points) ordered from left to right according to their x-coordinates.

Whenever the sweep line reaches the x-coordinate of an event point: the sweep halts, processes the event point, and then resumes

- Changes to the sweep-line status occur only at event points.

The sweeping algorithm for segment intersections

The sweep line status: container for a total preorder $T=\succeq_{x}$ between line segments from S

Requirements: to perform efficiently the following operations:
(1) insert (T, s) : insert segment s into T
(2) delete (T, s) : delete segment s from T
(3) above (T, s) : return the segment immediately above segment s in T.
(4) below (T, s) : return the segment immediately below segment s in T.
REMARK: all these operations can be performed in $O(\log n)$ time using red-black trees.

The sweeping algorithm for segment intersections

 PseudocodeAnySegmentsIntersect(S)

1. $T=\emptyset$
2. sort the endpoints of the segments in S from left to right, breaking ties by putting left endpoints before right endpoints and breaking further ties by putting points with lower y-coordinates first
3. for each point p in the sorted list of endpoints
4. if p is the left endpoint of a segment s
5. insert (T, s)
6. if (above (T, s) exists and intersects s) or (below (T, s) exists and intersects s)
7. return TRUE
8. if p is the right endpoint of a segment s
9. if both above (T, s) and below (T, s) exist and above (T, s) intersects below (T, s) return TRUE
10. delete(T,s)
11. return FALSE

The sweeping algorithm for segment intersection

\triangleright Every dashed line is the sweep line at an event point.
\triangleright The ordering of segment names below each sweep line corresponds to the total preorder T at the end of the for loop processing the corresponding event point.
\triangleright The rightmost sweep line occurs when processing the right endpoint of segment c.

Applicaton 2

Finding the convex hull of a set of points
ASSUMPTION: Q is a finite set of n points.
The convex hull $C H(Q)$ of Q is the smallest convex polygon P with vertices in Q, such that each point in Q is either on the boundary of P or in its interior.
Intuition: each point of Q is a nail stuck in a board \Rightarrow convex hull = the shape formed by a tight rubber band that surrounds all the nails.

Example:

The Graham's scan method

Computes $\mathrm{CH}(P)$ in $O(n \log n)$, where $n=|Q|$ with a technique named rotational sweep:

- vertices are processed in the order of the polar angles they form with a reference vertex.
MAIN IDEA: Maintain a stack S of candidate points for the vertices of P in counterclockwise order.
- each point of Q is pushed onto S one time.
- the points in already S, which are not in $C H(Q)$, are popped from S.
- Related operations: $\operatorname{push}(p, S), \operatorname{pop}(S)$, and
- top (S) return, but do not pop, the point on top of S
- nextToTop(S): return the point one entry below the top of S without changing S

Convex hull

Graham's scan algorithm: pseudocode

```
GrahamScan(Q)
    1 let \(p_{0}\) be the point in \(Q\) with the minimum \(y\)-coordinate,
        or the leftmost such point in case of a tie
2 let \(\left\langle p_{1}, p_{2}, \ldots, p_{m}\right\rangle\) be the remaining points in \(Q\), sorted by polar angle
        in counterclockwise order around \(p_{0}\) (if more than one point has the same angle,
        remove all but the one that is farthest from \(p_{0}\) )
3 let \(S\) be an empty stack
4 push \(\left(p_{0}, S\right)\)
5 push \(\left(p_{1}, S\right)\)
\(6 \operatorname{push}\left(p_{2}, S\right)\)
7 for \(i=3\) to \(m\)
8 while the angle formed by nextToTop( \(S\) ), top( \(S\) ), and \(p_{i}\)
makes a nonleft turn
\(9 \quad \operatorname{pop}(S)\)
10 push \(\left(p_{i}, S\right)\)
11 return \(S\)
```


Graham's scan algorithm: pseudocode

Snapshots of algorithm execution

Applicaton 3

Finding the closest pair of points

Given a set Q of $n \geq 2$ points $P_{i}\left(x_{i}, y_{i}\right), 1 \leq i \leq n$
Find a closest pair of points in Q.

Remarks

- "closest" refers to the usual euclidean distance between two points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$, which is

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

- A simple, brute-force approach is to compute the distances between all $\binom{n}{2}=\frac{n(n-1)}{2}$ pairs of points
\Rightarrow alg. with time complexity $O\left(n^{2}\right)$
- We will indicate an algorithm that solves this problem in time $O(n \log n)$
- Each recursive call of the algorithm takes as input a subset $P \subseteq Q$ with $|P|>3$, and arrays X and Y, each of which contains all the points of the input set P :
- X contains the elements of P sorted in increasing order of the x-coordinate
- Y contains the elements of P sorted in increasing order of the y-coordinate
- The base case of the algorithm is when $|P| \leq 3$: in this case we try all the $\binom{|P|}{2}$ pairs and return the closest pair.

Problem 1: Finding the closest pair of points

The structure of the recursive step when $|P|>3$

Consists of three substeps:
Divide
Conquer Combine

The recursive step

1. The divide phase
(1) Find a vertical line ℓ that bisects the point set P into two sets P_{L} and P_{R} such that $\left|P_{L}\right|=\lceil|P| / 2\rceil, Q_{L}=\lfloor|P| / 2\rfloor$, all points in P_{L} are on or to the left of line I, and all points in P_{R} are on or to the right of l.
(2) Divide the array X into arrays X_{L} and X_{R}, which contain the points of P_{L} and P_{R} respectively, sorted by monotonically increasing x-coordinate.
(3) Similarly, divide the array Y into arrays Y_{L} and Y_{R}, which contain the points of P_{L} and P_{R} respectively, sorted by monotonically increasing y-coordinate.

Make two recursive calls, one to find the closest pair of points in P_{L} and the other to find the closest pair of points in P_{R}.

- The inputs to the first call are the subset P_{L} and arrays X_{L} and Y_{L}
- the second call receives the inputs P_{R}, X_{R}, and Y_{R}.

Let the closest-pair distances returned for P_{L} and P_{R} be δ_{L} and δ_{R}, respectively, and let $\delta=\min \left(\delta_{L}, \delta_{R}\right)$.

The closest pair is either

- the pair with distance δ found by one of the recursive calls, or
- a pair of points with one point in p_{L} and the other in p_{R}.

The algorithm determines whether there is a pair with one point in p_{L} and the other point in p_{R} and whose distance is less than δ.

- If such a pair exists, both points of the pair must be within δ units of line ℓ. Thus, they both must reside in the 2δ-wide vertical strip centered at line ℓ. The way to find such a pair, if one exists, is explained next.

The recursive step

3. The combine phase (contd.)
4. Create an array Y^{\prime}, which is the array Y with all points not in the 2δ-wide vertical strip removed. The array Y^{\prime} is sorted by y-coordinate, just as Y is.

5. For each point p in Y^{\prime}, find if there is a point q in Y^{\prime} whose distance to p is δ^{\prime} smaller than δ. It turns out that it is sufficient to consider only the (max.) 7 points that follow p in Y^{\prime}.
6. If $\delta^{\prime}<\delta$, then the vertical strip does indeed contain a closer pair than the recursive calls found. Return this pair and its distance δ^{\prime}. Otherwise, return the closest pair and its distance δ found by the recursive calls.

The divide-and-conquer algorithm

Why are seven points sufficient for lookup?

Suppose that at some level of the recursion, the closest pair of points is $p_{L} \in P_{L}$ and $p_{R} \in P_{R}$. Let δ^{\prime} be the distance between p_{L} and p_{R}. Note that $\delta^{\prime}<\delta$ and

- p_{L} is on or to the left of ℓ, and p_{L} is on or to the right of ℓ.
- both p_{L} ane p_{R} are less than δ units away from ℓ.
- p_{L} and p_{R} are within δ units of each other vertically.
$\Rightarrow p_{L}$ and p_{R} are within a $\delta \times 2 \delta$ rectangle centered t line ℓ
- there may be other points in this rectangle as well, but
- at most 8 points of P can reside in the $\delta \times 2 \delta$ rectangle:

The divide-and-conquer algorithm

 Implementation and running timeWe know from the Master theorem that, if we have the recurrence

$$
T(n)=2 T(n / 2)+O(n)
$$

where $T(n)$ is the running time of the alg. for a set of n points, then $T(n)=O(n \log n)$.

- To ensure this runtime complexity, we must ensure that the combine phase gets executed in $O(n)$ time.
- This happens if, after partitioning P into P_{L} and P_{R}, we can form arrays Y_{L} and Y_{R} in linear time:
- This is possible, because we can use Y (which is P sorted in increasing order of the y-coordinate) to compute Y_{L} and Y_{R} in linear time (see pseudo-code on next slide)

The following algorithm splits Y into Y_{L} and Y_{R}

```
1 let \(Y_{L}[1 \ldots Y\). length \(]\) and \(Y_{R}[1 \ldots Y\). length \(]\) be new arrays
        \(Y_{L}\). length \(=Y_{R}\).length \(=0\)
        for \(i=1\) to Y.length
        if \(Y[i] \in P_{L}\)
        \(Y_{L}\). length \(=Y_{L}\). length +1
        \(Y_{L}\left[Y_{L}\right.\). length \(]=Y[i]\)
        else \(Y_{R}\).length \(=Y_{R}\).length +1
        \(Y_{R}\left[Y_{R}\right.\). length \(]=Y[i]\)
```


References

- Chapters 33: Computational Geometry from the book
- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest. Introduction to Algorithms. McGraw Hill, 2000.

