Lecture 10: Sorting in (sub)linear time

1. Comparison networks. Sorting networks
2. Counting-based sorting

November 29, 2018

Comparison networks
Wires and comparators

A comparison-based model of computation (it can perform only
comparisons) in which many comparison operations can be
performed simultaneously.
@ Itis made of wires and comparators
@ comparator = device with two inputs, x and y, and two
outputs, x” and y’, that performs the following function:
X' =min(x,y),y’ = max(x,y).
It is depicted by a vertical line segment.
@ wire: transmits a value from place to place.
It is depicted by a horizontal line segment.
@ We assume that each comparator operates in O(1) time.
Pictorial representation of a comparator:

3, .
X ———— X' = min(x, y)

ub)linear time

Comparison networks

Assumptions

A comparison network has ninput wires ai, a, ..., an, and n
output wires by, bo, ..., by, which produce the results computed
by the comparison network.
@ the input sequence is (ay, ao, ..., an), and the output
sequence is (by, by, ..., bp),

Example (a 4-input, 4-output comparison network)

a4 2 b
ao > AI ¢ EI b2
a2 Bl D by
as & b4

@ Each comparator produces its output values only when both of
its input values are available to it.

@ Main requirement: the graph of interconnections must be
acyclic = we can draw the network with inputs on the left, and
outputs on the right (see next slide)

Lecture 10: Sorting in (sub)linear time

Comparison networks

Example (a 4-input, 4-output comparison network)

at time 0 at time 1
9 9 5
sl . Al o
as .] 5 bs as 2 7] Z 5 e] bs
as ba ag ba
depth: depth: 1 1
at time 2 at time 3
9 5 2 9 5 2 2
Z;SAI 9C 6 2; Z;5AI 9C 6 522
as 2 2 5 EI bs as 2 2 5 EI 6 bs
a5 B[6 o] o by a5 Bl 6 D 9 % by
depth: 11 2 2 depth: 11 2 2 3

Lecture 10: Sorting in (sub)linear time

Comparison networks
Auxiliary notions

@ The depth of a wire in a comparison network is defined
recursively as follows:
e an input wire has depth 0
e If the input wires x, y of a comparator have depths d, dy,
then its output wires have depth max(dx, d,) + 1.
This is also the depth of the comparator.

@ The depth of a comparison network is the maximum depth
of an output wire.

@ A sorting network is a comparison network for which the
output sequence is monotonically increasing (that is,
b1 < b, < ... < by) for every input sequence ay, a, . . ., an.

e The comparison network from the previous example is a
sorting network: it has depth 3 = it sorts any sequence
a= (ay,a, as, as) in 3 steps.

10: Sorting in (sub)linear time

Comparison networks
Remarkable properties

Fact: If a comparison network transforms the input
sequence a = (ay, a, . .., @n) into the output
sequence b = (by, by, ..., by), then for any
monotonically increasing function f, the network
transforms the input sequence
f(a) = (f(a1), f(a2),. .., f(an)) into the output
sequence b = (f(by), f(b2), ..., f(bn)).

PROOF HINT: We can prove by induction on the depth of each
wire, the following stronger result: if a wire assumes the value
a; when the input sequence ais applied to the network, then it
assumes the value f(a;) when the input sequence f(a) is
applied.

ng in (sub)linear time

Comparison networks
lllustrated example of the remarkable property

@ A sorting network with input sequence (9,5, 2, 6):

a 9 AI 5 - 2 2 b1
a 5 9 6 EI 5 b2
as 2 BI 2 > 5 6 b3
as 6 6 9 9 b4

@ The same sorting network with function f(x) = [x/2]
applied to the inputs

a 5 AI 3 . 1 1 b1
a 3 5 3 EI 3 by
as 1 BI 1 = 3 3 bS
as 3 3 5 5 b4

ub)linear time

Comparison networks
The 0-1 principle

Fact: If a comparison network with n inputs sorts all
possible 2" sequences of 0’s and 1’s correctly,
then it sorts all sequences of arbitrary numbers
correcty.

PROOF: By contradiction: assume there is a sequence of
numbers a = (ay, ao, . . ., an) that gets sorted incorrectly. This
mean, there exists a; < &; but the network places a; before a; in
the output sequence b = (by, by, ..., b,). Consider the
monotonic function

. 0 ifx<ag
f(x) '_{ 1 ifx> a.

Then f(a) is a sequences of 0’s and 1’s that is sorted
incorrectly by the comparison network = contradiction.

Lecture 10: Sorting in (sub)linear time

Bitonic sequences

A bitonic sequence is a sequence of numbers that
monotonically increases and then monotonically decreases, or
can be circularly shifted to become monotonically increasing
and then monotonically decreasing.

@ Examples: (1,4,6,8,3,2),(6,9,4,2,3,5), and

(9,8,3,2,4,6) are bitonic sequences.
@ Remarks:
e Every sequence of length 1 or 2 is bitonic.

e The zero-one sequences that are bitonic are of the form
0/1/0% or of the form 1/0/1% for some i, j, k > 0.

10: Sorting in (sub)linear time

Half cleaners

A half-cleaner for a sequences of an even length n
a={(ay,ao,...,an) is a comparison network of depth 1 in which
input line i is compared with line i + n/2fori=1,2,...,n/2.
@ We denote the half cleaner for sequences of n numbers
with HALF-CLEANER[N].

HALF-CLEANER[8] is shown below:
by

Lecture 10: Sorting in (sub)linear time

Half cleaners
A remarkable property

Fact: If nis even, a= (ay, ap, ..., an) is a bitonic sequence,
and b = (by, b, ..., by) is the output of HALF-CLEANER[n] for
input sequence a, then:
@ both the top half (b, by, ..., by,) and the bottom half
<bn/2+1 , bn/2+27 ceey bn> are bitonic.
@ every element in the top half is at least as small as every
element of the bottom: b; < b; whenever i < n/2 < j.
© at least one half is clean (that is, consisting of only one
number, either 0 or 1).

PROOF SKETCH: see next slide.

rting in (sub)linear time

Half cleaners

Proof sketch of the remarkable property

bitonic { |

bitonic

bitonic

bitonic

_ divide

{
{.

compare

(a)

(b)

(e}

(d)

bottom

top

botiom

top

botiom

combine

=)

[Hel=]

[=[=]

=)

[=[=[I

=)

—_——— —_——— —_———— —_———

bitonic,
clean

bitonic

bitonic

bitonic,
clean

bitonic,
clean

bitonic

bitonic,

clean

bitonic

Half cleaners

Remarkable property: illustrated example

I(00—« 07 I'f 0 —- 0 \l
0 0 | bitonic, 0 0 L
‘) . 0 | clean ‘) |> bitonic
bitonic <| : 0/ bitonic <| ! 0/
| 1 1 \Il | 1 1 \l
‘ 0 0 > bitonic ‘ ! ! >bilonic,
0———— 1 | | 1 1 clean
l'. 0—e— 1) Lo — |

time

Application: a bitonic sorter

BITONICSORTER([n] is the comparison network with the
following recursive structure:

— 1 Broxic- —
— SorTER[nf2] |
— Harr | —
_ | CLEANER[n] | g L
— 1 Bromic- —
— || Sorter[nf2] |

For example, the complete picture of BITONICSORTER([8] is

0 0
(g 0 0 | 8"|
A] 0 0 o |
1 0 o] o&
bitonic 1 1 - 0 sorted
io 0 o | ll‘
1 | -
l\g 1 lI :)I

(sub)linear time

Bitonic sorter
The depth of a bitonic sorter

From the recursive structure of BITONICSORTER[n], we learn
that its depth D(n) satisfies the recursive equation

oy = { © itn=1,
T\ D(n/2)+1 ifn=2Kand k > 1.

whose solution of D(n) = log, n
= BITONICSORTER[n] sorts bitonic sequences in log, n time.

rting in (sub)linear time

Merging networks

MERGER(n] for n = 2

Given two sorted input sequences a = (ay, @, . - ., ap/2)
and b = (ap/241, - - - @n—1, an), Where n = 2k for
some k > 1

Define a comparison network MERGER([n] that merges a
and b into one sorted output sequence.

@ The sequence ¢ = (ay, ao, - . .,a,,/g,a,,,a,,_1 ..., a)is

reverse of b
bitonic = we can use BITONICSORTER[n] to sort it.

@ We can reconfigure easily BITONICSORTER[n] for input
(ay, ap,...,an) to behave like BITONICSORTER([n] for input
c (see next slide).

Lecture 10: Sorting in (sub)linear time

MERGER[n] versus HALF-CLEANER]N]

Structural comparison of their first stage forn =8

a
az
sorted
as
k ay

das

a
6
sorted
ag
ag

>—4

J»—‘OOOHHOJO

(a)

— == P e P

by [
by bitoni @
itonic
by a3
b,
4 o
bitonic {
bs 8
bg _— a
bitonic
by ag
by \as

ODO'—"—"—‘D|C!

(b)

WHHOHDQDD

bitonic

bitonic

The merging network MERGER(N]

lllustrated example for n = 8

[0 0
BIToNiC- [negl 0 o 1 o
SORTER[n/2] | — sorted |) | ’
* 1 0 0 l :
I I 1 1 sorted
_ 0 1
- | : I
Bironic- orted 1 |
SORTER[n/2] | — sorted | : | 1
T 1 1 L] .
@ (b)

REMARK: The depth of MERGER[n] is the same as that of
BITONIC-SORTER(n], that is, log, n.

sub)linear time

A sorting network

Recursive structure of SORTER[n] for n = 2%

: SORTER[1/2]
: MERGER[n]
: SORTER[1/2]
Special case, when n=8

MERGER[2]]

MERGER[4]4
MERGER[2]]

T MERGER[8]

MERGER[2]

MERGER[2]

L .
el
—fial
el

MERGER[4] [

Sorting networks

Example: SORTER[8] looks as follows:

0 0

I I I,
e 0 L .
oll ll lo
| 40 . 0 l .
()Il 10 l]
0 D)
35 e e B !
depth 1 2 23 4 4 4 4 5 56

The depth of SORTER[n] satisfies the recursive relation

o = { © it n = 1
| D(n/2) +logon ifn=2Kand k > 1.

whose solution is D(n) = ©(logs n) < O(n).

Lecture 10: Sorting in (sub)linear time

Sorting based on counting

Assumptions. Known results

@ We wish to sort an array A[1..n] of integers, when we know
that 0 < A[ij < kforall1 <i<n.
@ Known result: this problem can be solved with counting
sort in time ©(n + k), which becomes ©(n) when
k = O(n).
e Main idea: for each input element x, count the number of
elements less than x; this information can be used to place
x directly into its position in the output array.

ub)linear time

Counting sort
Pseudocode

COUNTING-SORT(A, B, k)

1
2
3
4
5
6
7
8
9

10
11

fori < 0tok

do C[i] < 0
for j < 1to length|A]

do C[A[J]] < C[A[j]] + 1
> C[i] now contains the number of elements equal to .
fori < 1tok

doCli] < Cli]+C[i —1]
&> C[i] now contains the number of elements less than or equal to 7.
for j < length|A] downto 1

do B[C[A[j]]] < A[j]

ClA[/]] <« C[A[j]] -1

Counting sort
lllustrated example for an input array A[1..8]

12 3 4 5 6 7 8
al2]s5]s]o]2]3]0]3]

0o 1 2 3 4 5
c[2]of2]3]o]1]

(a)

3 4 5 6 7 8

12

» [o [T s [
o 1 2 3 4 5
clif2]afe]7]s]

(d)

(a
(b
(c),(d)(e
(f

)
)
)
)

2 3 4 5

CIIIIII 0123 4s
Cﬂlllll

(b) (©)

3 4 5 6 7 8

1 2
Bl—’()| | | ‘BI.‘I—‘ 1 2 3 4 5 6 7 8
012 3 4 z[ofo]2]2]3]3]3]s
clafafafs[7]s]

(e) ()

Arrays A and C after execution of line 4.

Array C after execution of line 7.

Arrays B and C after 1,2, and 3 iterations of the loop in lines 9-11.
The final sorted output array B.

References

T.H. Cormen et al., Introduction to algorithms. Second Edition.
The MIT Press. 2002.

@ Chapter 27: Sorting networks.
@ Chapter 8: Sorting in linear time.

near time

