
Lecture 10: Sorting in (sub)linear time
1. Comparison networks. Sorting networks

2. Counting-based sorting

November 29, 2018

Lecture 10: Sorting in (sub)linear time



Comparison networks
Wires and comparators

A comparison-based model of computation (it can perform only
comparisons) in which many comparison operations can be
performed simultaneously.

It is made of wires and comparators
comparator = device with two inputs, x and y , and two
outputs, x ′ and y ′, that performs the following function:
x ′ = min(x , y), y ′ = max(x , y).
It is depicted by a vertical line segment.
wire: transmits a value from place to place.
It is depicted by a horizontal line segment.
We assume that each comparator operates in O(1) time.

Pictorial representation of a comparator:

x

y

x ′ = min(x , y)

y ′ = max(x , y)

7

3

3

7

Lecture 10: Sorting in (sub)linear time



Comparison networks
Assumptions

A comparison network has n input wires a1,a2, . . . ,an, and n
output wires b1,b2, . . . ,bn which produce the results computed
by the comparison network.

the input sequence is 〈a1,a2, . . . ,an〉, and the output
sequence is 〈b1,b2, . . . ,bn〉,

Example (a 4-input, 4-output comparison network)

a1
a2
a3
a4

A

B

C

D

E

9

5

2

6

b1
b2
b3
b4

Each comparator produces its output values only when both of
its input values are available to it.

Main requirement: the graph of interconnections must be
acyclic⇒ we can draw the network with inputs on the left, and
outputs on the right (see next slide)

Lecture 10: Sorting in (sub)linear time



Comparison networks

Example (a 4-input, 4-output comparison network)

at time 0
a1
a2
a3
a4

A

B

C

D

E

9

5

2

6

b1
b2
b3
b4

depth:

at time 1
a1
a2
a3
a4

A

B

C

D

E

9

5

2

6

b1
b2
b3
b4

depth: 1 1

5

9

2

6

at time 2
a1
a2
a3
a4

A

B

C

D

E

9

5

2

6

5

9

2

6

2

6

5

9

b1
b2
b3
b4

depth: 1 1 2 2

at time 3
a1
a2
a3
a4

A

B

C

D

E

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

b1
b2
b3
b4

depth: 1 1 2 2 3

Lecture 10: Sorting in (sub)linear time



Comparison networks
Auxiliary notions

The depth of a wire in a comparison network is defined
recursively as follows:

an input wire has depth 0
If the input wires x , y of a comparator have depths dx ,dy ,
then its output wires have depth max(dx ,dy ) + 1.
This is also the depth of the comparator.

The depth of a comparison network is the maximum depth
of an output wire.
A sorting network is a comparison network for which the
output sequence is monotonically increasing (that is,
b1 ≤ b2 ≤ . . . ≤ bn) for every input sequence a1,a2, . . . ,an.

The comparison network from the previous example is a
sorting network: it has depth 3⇒ it sorts any sequence
a = 〈a1,a2,a3,a4〉 in 3 steps.

Lecture 10: Sorting in (sub)linear time



Comparison networks
Remarkable properties

Fact: If a comparison network transforms the input
sequence a = 〈a1,a2, . . . ,an〉 into the output
sequence b = 〈b1,b2, . . . ,bn〉, then for any
monotonically increasing function f , the network
transforms the input sequence
f (a) = 〈f (a1), f (a2), . . . , f (an)〉 into the output
sequence b = 〈f (b1), f (b2), . . . , f (bn)〉.

PROOF HINT: We can prove by induction on the depth of each
wire, the following stronger result: if a wire assumes the value
ai when the input sequence a is applied to the network, then it
assumes the value f (ai) when the input sequence f (a) is
applied.

Lecture 10: Sorting in (sub)linear time



Comparison networks
Illustrated example of the remarkable property

A sorting network with input sequence 〈9,5,2,6〉:
a1
a2
a3
a4

A

B

C

D

E

9

5

2

6

5

9

2

6

2

6

5

9

2

5

6

9

b1
b2
b3
b4

The same sorting network with function f (x) = dx/2e
applied to the inputs
a1
a2
a3
a4

A

B

C

D

E

5

3

1

3

3

5

1

3

1

3

3

5

1

3

3

5

b1
b2
b3
b4

Lecture 10: Sorting in (sub)linear time



Comparison networks
The 0-1 principle

Fact: If a comparison network with n inputs sorts all
possible 2n sequences of 0’s and 1’s correctly,
then it sorts all sequences of arbitrary numbers
correcty.

PROOF: By contradiction: assume there is a sequence of
numbers a = 〈a1,a2, . . . ,an〉 that gets sorted incorrectly. This
mean, there exists ai < aj but the network places aj before ai in
the output sequence b = 〈b1,b2, . . . ,bn〉. Consider the
monotonic function

f (x) :=

{
0 if x ≤ ai
1 if x > ai .

Then f (a) is a sequences of 0’s and 1’s that is sorted
incorrectly by the comparison network⇒ contradiction.

Lecture 10: Sorting in (sub)linear time



Bitonic sequences

A bitonic sequence is a sequence of numbers that
monotonically increases and then monotonically decreases, or
can be circularly shifted to become monotonically increasing
and then monotonically decreasing.

Examples: 〈1,4,6,8,3,2〉, 〈6,9,4,2,3,5〉, and
〈9,8,3,2,4,6〉 are bitonic sequences.
Remarks:

Every sequence of length 1 or 2 is bitonic.
The zero-one sequences that are bitonic are of the form
0i1j0k or of the form 1i0j1k for some i , j , k ≥ 0.

Lecture 10: Sorting in (sub)linear time



Half cleaners

A half-cleaner for a sequences of an even length n
a = 〈a1,a2, . . . ,an〉 is a comparison network of depth 1 in which
input line i is compared with line i + n/2 for i = 1,2, . . . ,n/2.

We denote the half cleaner for sequences of n numbers
with HALF-CLEANER[n].

Example

HALF-CLEANER[8] is shown below:
a1

a2

a3

a4

a5

a6

a7

a8

b1

b2

b3

b4

b5

b6

b7

b8

Lecture 10: Sorting in (sub)linear time



Half cleaners
A remarkable property

Fact: If n is even, a = 〈a1,a2, . . . ,an〉 is a bitonic sequence,
and b = 〈b1,b2, . . . ,bn〉 is the output of HALF-CLEANER[n] for
input sequence a, then:

1 both the top half 〈b1,b2, . . . ,bn2〉 and the bottom half
〈bn/2+1,bn/2+2, . . . ,bn〉 are bitonic.

2 every element in the top half is at least as small as every
element of the bottom: bi ≤ bj whenever i ≤ n/2 < j .

3 at least one half is clean (that is, consisting of only one
number, either 0 or 1).

PROOF SKETCH: see next slide.

Lecture 10: Sorting in (sub)linear time



Half cleaners
Proof sketch of the remarkable property

Lecture 10: Sorting in (sub)linear time



Half cleaners
Remarkable property: illustrated example

Lecture 10: Sorting in (sub)linear time



Application: a bitonic sorter

BITONICSORTER[n] is the comparison network with the
following recursive structure:

For example, the complete picture of BITONICSORTER[8] is

Lecture 10: Sorting in (sub)linear time



Bitonic sorter
The depth of a bitonic sorter

From the recursive structure of BITONICSORTER[n], we learn
that its depth D(n) satisfies the recursive equation

D(n) =

{
0 if n = 1,
D(n/2) + 1 if n = 2k and k ≥ 1.

whose solution of D(n) = log2 n
⇒ BITONICSORTER[n] sorts bitonic sequences in log2 n time.

Lecture 10: Sorting in (sub)linear time



Merging networks
MERGER[n] for n = 2k

Given two sorted input sequences a = 〈a1,a2, . . . ,an/2〉
and b = 〈an/2+1, . . . ,an−1,an〉, where n = 2k for
some k ≥ 1

Define a comparison network MERGER[n] that merges a
and b into one sorted output sequence.

Remarks
The sequence c = 〈a1,a2, . . . ,an/2︸ ︷︷ ︸

a

,an,an−1 . . . ,a1︸ ︷︷ ︸
reverse of b

〉 is

bitonic⇒ we can use BITONICSORTER[n] to sort it.
We can reconfigure easily BITONICSORTER[n] for input
〈a1,a2, . . . ,an〉 to behave like BITONICSORTER[n] for input
c (see next slide).

Lecture 10: Sorting in (sub)linear time



MERGER[n] versus HALF-CLEANER[n]
Structural comparison of their first stage for n = 8

Lecture 10: Sorting in (sub)linear time



The merging network MERGER[n]
Illustrated example for n = 8

REMARK: The depth of MERGER[n] is the same as that of
BITONIC-SORTER[n], that is, log2 n.

Lecture 10: Sorting in (sub)linear time



A sorting network
Recursive structure of SORTER[n] for n = 2k

Special case, when n = 8

Lecture 10: Sorting in (sub)linear time



Sorting networks

Example: SORTER[8] looks as follows:

The depth of SORTER[n] satisfies the recursive relation

D[n] =

{
0 if n = 1
D(n/2) + log2 n if n = 2k and k ≥ 1.

whose solution is D(n) = Θ(log2
2 n) < Θ(n).

Lecture 10: Sorting in (sub)linear time



Sorting based on counting
Assumptions. Known results

We wish to sort an array A[1..n] of integers, when we know
that 0 ≤ A[i] ≤ k for all 1 ≤ i ≤ n.
Known result: this problem can be solved with counting
sort in time Θ(n + k), which becomes Θ(n) when
k = O(n).

Main idea: for each input element x , count the number of
elements less than x ; this information can be used to place
x directly into its position in the output array.

Lecture 10: Sorting in (sub)linear time



Counting sort
Pseudocode

Lecture 10: Sorting in (sub)linear time



Counting sort
Illustrated example for an input array A[1..8]

(a) Arrays A and C after execution of line 4.

(b) Array C after execution of line 7.

(c),(d)(e) Arrays B and C after 1,2, and 3 iterations of the loop in lines 9-11.

(f) The final sorted output array B.

Lecture 10: Sorting in (sub)linear time



References

T.H. Cormen et al., Introduction to algorithms. Second Edition.
The MIT Press. 2002.

Chapter 27: Sorting networks.
Chapter 8: Sorting in linear time.

Lecture 10: Sorting in (sub)linear time


