## Advanced Data Structures <br> Labwork 5: Data structures for operations on strings

November 22, 2018

1. Construct the string-matching automaton for the pattern $P=$ aabab and illustrate its operation on the text string $T=$ aaababaabaababaab.
2. (Homework) Draw a state-transition diagram for a string-matching automaton for the pattern ababbabbababbababbabb over the alphabet $\{\mathrm{a}, \mathrm{b}\}$.
3. A gap character in a pattern $P$ is a special character $\diamond$ that can match an arbitrary string of characters (even one of zero length). For example, the pattern $P=\mathrm{ab} \triangleleft \mathrm{ba} \triangleleft \mathrm{c}$ occurs in the text cabccbacbacab as


Given a pattern $P$ containing gap characters, show how to build a finite automaton that can find an occurrence of $P$ in a text $T$ in $O(n)$ matching time, where $n=|T|$.
4. Construct the keyword tree and its failure links of the set of patterns

$$
\mathcal{P}=\{\text { The, hand, and, pork, port, pot }\} .
$$

Indicate a string-matching automaton which recognizes the occurrences of patterns in $\mathcal{P}$.
5. (Homework) Construct the keyword tree and its failure links of the set of patterns $\mathcal{P}=$ \{woman, man, meat, animal\}. Indicate a string-matching automaton which recognizes the occurrences of patterns in $\mathcal{P}$.
6. The construction of the transition function of the string matching automaton for $O[1 . . m]$ described in Lecture 7 has time complexity $O\left(m^{3} \cdot|\Sigma|\right)$. There are better methods to construct the transition function, with time complexity $O(m \cdot|\Sigma|)$.
Write down the pseudocode of an algorithm that constructs the transition function in time $O(m \cdot|\Sigma|)$, and prove that the complexity of your algorithm is $O(m \cdot|\Sigma|)$.
7. Draw the suffix tree and it suffix links for the text banana\$.
8. (Homework) Draw the suffix tree and its suffix links for the text mamaia\$.
9. (Homework) Draw the generalized suffix tree and its suffix links for the set of texts \{tatar, tabac\}.

## Programming labwork

Write in $\mathrm{C}++$ or Java a program which solves the following problem:

1. It reads a text $T$ from a text file specified by the user
2. It reads from the terminal the number $z$ of strings (patterns) $P_{1}, P_{2}, \ldots, P_{z}$
3. It reports all positions from $T$ where there is an occurrence of a patterns $P_{i}(1 \leq i \leq z)$

The interaction of the user with the program should be as follows:

```
Enter the source file for the text: file-name
Enter the number of patterns: z
Enter pattern 1: P
Enter pattern z: P
```

Afterwards, the program displays the occurrences of every pattern in text the $T$ which was read from the text file file-name:

```
Pattern 1 occurs at positions p p,1 ... p
Pattern z occurs at positions pz,1 ... p
```

The program should implement the Aho-Corasick algorithm which builds the keyword tree of the set of templates $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots, P_{z}\right\}$ together with its failure links.

## Illustrated example

Suppose that the filel source.txt contains the text
Tim a mers la Timisoara sa-si cumpere o casa.
If we specify

```
Enter the source file for the text: source.txt
Enter the number of patterns: 4
Enter pattern 1: Tim
Enter pattern 2: Timis
Enter pattern 3: sa
Enter pattern 4: casa
```

then the program must display

```
Pattern 1 occurs at positions 1 15
Pattern 2 occurs at positions 15
Pattern 3 occurs at positions 25 43
Pattern 4 occurs at positions 41
```

