
Advanced Data Structures

Labwork 5: Data structures for operations on strings

November 22, 2018

1. Construct the string-matching automaton for the pattern P = aabab and illustrate its
operation on the text string T = aaababaabaababaab.

2. (Homework) Draw a state-transition diagram for a string-matching automaton for the
pattern ababbabbababbababbabb over the alphabet {a, b}.

3. A gap character in a pattern P is a special character � that can match an arbitrary
string of characters (even one of zero length). For example, the pattern P = ab�ba�c
occurs in the text cabccbacbacab as

c ab︸︷︷︸
ab

cc︸︷︷︸
�

ba︸︷︷︸
ba

cba︸︷︷︸
�

c︸︷︷︸
c

ab and as c ab︸︷︷︸
ab

cc︸︷︷︸
�

ba︸︷︷︸
ba

c︸︷︷︸
�

c︸︷︷︸
c

bacab

Given a pattern P containing gap characters, show how to build a finite automaton
that can find an occurrence of P in a text T in O(n) matching time, where n = |T |.

4. Construct the keyword tree and its failure links of the set of patterns

P = {The, hand, and, pork, port, pot}.

Indicate a string-matching automaton which recognizes the occurrences of patterns in
P.

5. (Homework) Construct the keyword tree and its failure links of the set of patterns P =
{woman, man, meat, animal}. Indicate a string-matching automaton which recognizes
the occurrences of patterns in P.

6. The construction of the transition function of the string matching automaton for
O[1..m] described in Lecture 7 has time complexity O(m3 · |Σ|). There are better
methods to construct the transition function, with time complexity O(m · |Σ|).
Write down the pseudocode of an algorithm that constructs the transition function in
time O(m · |Σ|), and prove that the complexity of your algorithm is O(m · |Σ|).

7. Draw the suffix tree and it suffix links for the text banana$.

8. (Homework) Draw the suffix tree and its suffix links for the text mamaia$.

9. (Homework) Draw the generalized suffix tree and its suffix links for the set of texts
{tatar, tabac}.

1

Programming labwork

Write in C++ or Java a program which solves the following problem:

1. It reads a text T from a text file specified by the user

2. It reads from the terminal the number z of strings (patterns) P1, P2, . . . , Pz

3. It reports all positions from T where there is an occurrence of a patterns Pi (1 ≤ i ≤ z)

The interaction of the user with the program should be as follows:

Enter the source file for the text: file-name
Enter the number of patterns: z
Enter pattern 1: P1

...

Enter pattern z: Pz

Afterwards, the program displays the occurrences of every pattern in text the T which was
read from the text file file-name:

Pattern 1 occurs at positions p1,1 ... p1,n1

...

Pattern z occurs at positions pz,1 ... pz,nz

The program should implement the Aho-Corasick algorithm which builds the keyword tree
of the set of templates P = {P1, P2, . . . , Pz} together with its failure links.

Illustrated example

Suppose that the filel source.txt contains the text

Tim a mers la Timisoara sa-si cumpere o casa.

If we specify

Enter the source file for the text: source.txt

Enter the number of patterns: 4

Enter pattern 1: Tim

Enter pattern 2: Timis

Enter pattern 3: sa

Enter pattern 4: casa

then the program must display

Pattern 1 occurs at positions 1 15

Pattern 2 occurs at positions 15

Pattern 3 occurs at positions 25 43

Pattern 4 occurs at positions 41

2

