#### Advanced Data Structures

# Labwork 2: Disjoint-set structures. Binomial Heaps

October 18, 2019

# Disjoint set structures

This homework is about using a disjoint-set data structure to compute a minimumweight spanning tree of a weighted graph.

## Weighted graphs

A weighted graph is a finite set of nodes connected by edges which have positive real numbers as weights. For example, the following is a weighted graph with 5 nodes and 6 edges: We will assume that



Figure 1: A weighed graph which is connected

- the nodes of a graph with n nodes are labeled with numbers from 1 to n.
- a text file which stores the representation of a weighted graph in the following way:
  - The first line contains the value of n (an integer)
  - The following lines contain 3 numbers separated by whitespace:

 $i \quad j \quad w$ 

to indicate that the graph has an edge from node i to node j with weight w.

We assume that the edges are enumerated in increasing order of weight. For example, the weighted graph from Fig. 1 can be stored and read from a text file with the following content:

## Minimum weight spanning trees

A graph is **connected** if there is a path between every two nodes in the graph. Fo example the weighted graph from Fig. 1 is connected.

A spanning tree of a weighted and connected graph G is a set T of edges of G such that

- 1. Every node of G is an endpoint of an edge in T
- 2. T has no loops.

The **weight** w(T) of T is the sum of weights of edges in T.

For example, the following are spanning trees of the graph in Fig. 1:



A minimum weight spanning tree (or MWST) of G is a spanning tree of G whose weight has minimum possible value. For example,  $T_3$  is a MWST of the graph from Fig. 1.

A MWST of a connected and weighted graph G with n nodes can be found with Kruskal algorithm:

Start with the initial partition  $S = \{\{1\}, \{2\}, \dots, \{n\}\}, T = \emptyset$  and W = 0 for each edge (i, j, w) of G, in increasing order of weights  $\operatorname{\mathbf{do}}$  if i, j are not in the same component of S add (i, j, w) to T Union(i, j) W = W + w end if end for return T, W

#### Labwork 1

Implement a program that reads from a text file graph.txt the representation of a connected weighted graph G and computes a MWST of G. The program will print the weight and the list of edges of the MWST.

**Suggestion:** implement a disjoint set-data structure using the explanations from Lecture 2, and use it to implement Kruskal algorithm.

#### Labwork 2

Consider a simply linked-list of nodes with the following structure (the nodes are linked via the sibling pointers)

```
struct Node {
   int key;
   Node *sibling;
}
```

Write down a program that performs the following operations:

 $\bullet$  It reads from the console a line of n integers separated by spaces

$$k_1 \ k_2 \ \dots \ k_n$$

and creates a pointer ptr to the linked list with nodes containing the keys  $k_1, \ldots, k_n$ , in this order:



• calls the function

Node\* reverseList(Node \*ptr);

that reverses te list ptr (by making the links to point in the opposite direction), and returns a pointer to its first element.



(Note: You should implement reverseList)

• Displays the keys of the nodes in the inversed list, by traversing the nodes from head to tail.

# Binomial heaps

### Labwork 3

You can download from the webpage of this lecture

http://staff.fmi.uvt.ro/~mircea.marin/lectures/ADS/binoheap.zip

an incomplete implementation of binomial heaps. Complete the implementation with the implementation of the capability to extract the node with minimum key from a binomial heap. This amounts to implementing the following functions:

- Node\* reverseList(Node\* 1) which should behave the same as the function implemented in the previous exercise.
- Node\* findMinRoot(Node\* 1) should return a pointer to the node with minimum key from the linked list of nodes pointed to by 1. If 1 is the null pointer, the function should return the null pointer.